This application claims priority under 35 U.S.C. §119 to Swedish Patent Application No. 1050771-3, filed on Jul. 9, 2010, which is incorporated by reference herein in its entirety.
The present invention relates generally to an inertia cone crusher including an outer crushing shell and an inner crushing shell forming between them a crushing chamber, the inner crushing shell being supported on a crushing head which is attached on a crushing shaft which is rotatable in a sleeve, an unbalance weight being attached to the sleeve, a vertical drive shaft being connected to the sleeve for rotating the same, the drive shaft being supported by a drive shaft bearing. The present invention further relates generally to a method of balancing an inertia cone crusher.
An inertia cone crusher may be utilized for efficient crushing of material, such as stone, ore, etc. into smaller sizes. An example of an inertia cone crusher can be found in RU 2 174 445. In such an inertia cone crusher, material is crushed between an outer crushing shell, which is mounted in a frame, and an inner crushing shell, which is mounted on a crushing head which is supported on a spherical bearing. The crushing head is mounted on a crushing shaft. An unbalance weight is arranged on a cylindrical sleeve encircling the crushing shaft. The cylindrical sleeve is, via a drive shaft, connected to a pulley. A motor is operative for rotating the pulley, and, hence, the cylindrical sleeve. Such rotation causes the unbalance weight to rotate and to swing to the side, causing the crushing shaft, the crushing head, and the inner crushing shell to gyrate and to crush material that is fed to a crushing chamber formed between the inner and outer crushing shells.
An object of the invention to provide an inertia cone crusher with improved durability, compared to crushers of the prior art.
In an embodiment, the invention provides an inertia cone crusher, including an outer crushing shell and an inner crushing shell forming between them a crushing chamber, the inner crushing shell being supported on a crushing head which is attached on a crushing shaft which is rotatable in a sleeve, an unbalance weight being attached to the sleeve, a vertical drive shaft being connected to the sleeve for rotating the sleeve, the drive shaft being supported by a drive shaft bearing, and a first counterbalance weight and a second counterbalance weight, the first counterbalance weight being attached to the drive shaft in a position located below the drive shaft bearing, the second counterbalance weight being attached to the drive shaft in a position located above the drive shaft bearing.
An advantage of this crusher is that with first and second counterbalance weights arranged in the manner described, the load on the drive shaft bearing will be reduced, and the durability of the drive shaft bearing will be improved compared to the prior art.
According to one embodiment, the first and second counterbalance weights are attached to the same vertical side of the drive shaft. An advantage of this embodiment is that the load on the drive shaft bearing is further reduced, leading to a further improved durability of the drive shaft.
According to one embodiment, the second counterbalance weight is mounted on a rigid portion of the drive shaft. An advantage of this embodiment is that the second counterbalance weight does not swing to the side during crusher operation, such that the durability of moving parts, such as a ball spindle, is improved.
According to one embodiment, the moment of inertia of the unbalance weight is no more than 10 times the sum of the moments of inertia of the first and second counterbalance weights. An advantage of this embodiment is that the net centrifugal force acting on the crusher during crusher operation will be rather limited, which decreases the vibration and improves the durability of the crusher. If the moment of inertia of the unbalance weight would be more than 10 times the sum of the moments of inertia of the first and second counterbalance weights, the crusher would be exposed to extensive vibrations, requiring either a very heavy crusher frame to dampen such vibrations, or a reduced crushing capacity.
According to one embodiment, the moment of inertia of the unbalance weight is 1 to 10 times the sum of the moments of inertia of the first and second counterbalance weights. If the moment of inertia of the unbalance weight would be less than the sum of the moments of inertia of the first and second counterbalance weights, the crusher would be less efficient.
According to one embodiment, a moment of inertia of the first counterbalance weight is within +/−30% of the moment of inertia of the second counterbalance weight. An advantage of this embodiment is that a limited, or no, bending force will act on drive shaft bearing during operation of the crusher. This will further increase the durability of the drive shaft bearing.
A further object of the present invention is to provide a method of balancing an inertia cone crusher to improve the durability of the crusher compared to crushers of the prior art.
In another embodiment, the invention provides a method of balancing an inertia cone crusher, the cone crusher including an outer crushing shell and an inner crushing shell forming between them a crushing chamber, the inner crushing shell being supported on a crushing head which is attached on a crushing shaft which is rotatable in a sleeve, an unbalance weight being attached to the sleeve, a vertical drive shaft being connected to the sleeve for rotating the sleeve, and the drive shaft being supported by a drive shaft bearing. The method includes attaching a first counterbalance weight to the drive shaft in a position located below the drive shaft bearing, and attaching a second counterbalance weight to the drive shaft in a position located above the drive shaft bearing.
An advantage of this method is that the durability of the drive shaft bearing is improved, since bending forces are reduced.
According to one embodiment, the method further includes attaching the first and second counterbalance weights to the same vertical side of the drive shaft. An advantage of this embodiment is that the load on the drive shaft bearing is further reduced, hence improving the durability of the drive shaft.
According to one embodiment, the method further includes attaching the first and second counterbalance weights to a vertical side of the drive shaft which is different from that vertical side of the sleeve on which the unbalance weight is attached. An advantage of this embodiment is that the inertia cone crusher is even better balanced, hence further reducing the vibrations generated during operation of the crusher.
According to one embodiment, the second counterbalance weight is prevented from being displaced from the central axis of the drive shaft during operation of the crusher.
According to one embodiment, the amount of the centrifugal force caused by the first counterbalance weight and acting on the drive shaft below the drive shaft bearing is within +/−30% of the amount of the centrifugal force caused by the second counterbalance weight and acting on the drive shaft above the drive shaft bearing. An advantage of this embodiment is that the crusher becomes well balanced, such that vibrations are minimized. A further advantage is that the durability of the drive shaft bearing is further improved.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate the presently preferred embodiments of the invention, and together with the general description given above and the detailed description given below, serve to explain features of the invention.
The lower frame portion 6 supports an inner crushing shell arrangement 14. The inner crushing shell arrangement 14 includes a crushing head 16, which has the form of a cone and which supports an inner crushing shell 18, which is a wear part which may be made from, for example, a manganese steel. The crushing head 16 rests on a spherical bearing 20, which is supported on an inner cylindrical portion 22 of the lower frame portion 6.
The crushing head 16 is mounted on a crushing shaft 24. At a lower end thereof, the crushing shaft 24 is encircled by a cylindrical sleeve 26. The cylindrical sleeve 26 is provided with an inner cylindrical bearing 28 making it possible for the cylindrical sleeve 26 to rotate around the crushing shaft 24.
An unbalance weight 30 is mounted on one side of the cylindrical sleeve 26. At its lower end the cylindrical sleeve 26 is connected to a vertical drive shaft 32. The drive shaft 32 includes a ball spindle 34, a pulley shaft 36, an intermediate shaft 37 connecting the ball spindle 34 to the pulley shaft 36, an upper connector 38 which connects the ball spindle 34 to the cylindrical sleeve 26, and a lower connector 40 which is arranged on the intermediate shaft 37 and which connects the ball spindle 34 to the intermediate shaft 37. The two connectors 38, 40 are connected to the ball spindle 34 in a non-rotating manner, such that rotational movement can be transferred from the pulley shaft 36 to the cylindrical sleeve 26 via the intermediate shaft 37 and the ball spindle 34. A bottom portion 42 of the lower frame portion 6 includes a vertical cylindrical drive shaft bearing 44 in which the vertical drive shaft 32 is supported. As depicted in
A pulley 46 is mounted on a low vibrating part (not shown) of the crusher 1 and is connected to the pulley shaft 36, below the drive shaft bearing 44. A motor (not shown) may be connected via, for example, belts or gear wheels, to the pulley 46. According to one alternative embodiment the motor may be connected directly to the pulley shaft 36.
The drive shaft 32 is provided with a first counterbalance weight 48, and a second counterbalance weight 50. As is illustrated in
The first counterbalance weight 48 is arranged below the bearing 44, which means that the first counterbalance weight 48 is also located below the bottom portion 42 of the lower frame portion 6. In the embodiment illustrated in
The second counterbalance weight 50 is arranged above the bearing 44, which means that the second counterbalance weight 50 is also located above the bottom portion 42 of the lower frame portion 6. The second counterbalance weight 50 is, in the embodiment illustrated in
The crusher 1 may be suspended on springs 52 to dampen vibrations occurring during the crushing action.
The outer and inner crushing shells 12, 18 form between them a crushing chamber 54 to which material that is to be crushed is supplied. The discharge opening of the crushing chamber 54, and thereby the crushing capacity, can be adjusted by turning the upper frame portion 4, by the threads 8,10, such that the distance between the shells 12, 18 is adjusted.
When the crusher 1 is in operation the drive shaft 32 is rotated by the not shown motor. The rotation of the drive shaft 32 causes the sleeve 26 to rotate and swing outwards by the unbalance weight 30, displacing the unbalance weight 30 further away from the central axis C of the crusher 1, in response to the centrifugal force to which the unbalance weight 30 is exposed. Such displacement of the unbalance weight 30 and of the cylindrical sleeve 26 to which the unbalance weight 30 is attached is allowed due to the ball spindle 34 and to the fact that the sleeve 26 may slide somewhat, due to the cylindrical bearing 28, in the vertical direction along the crushing shaft 24. The combined rotation and swinging of the cylindrical sleeve 26 with unbalance weight 30 mounted thereon causes an inclination of the crushing shaft 24, and makes the crushing shaft 24 gyrate, such that material is crushed between the outer and inner crushing shells 12,18 forming between them the crushing chamber 54.
The centrifugal force acting on the unbalance weight 30, illustrated by an arrow FU in
The forces influencing the crusher 1 during operation can be evaluated by calculating the moment of inertia. The moment of inertia of a solid body rotating around an axis, in this case the central axis C of rotation of the drive shaft 32, can be calculated, for example, by the following equation for a point mass:
I=m×r
2 [eq 1.1]
where:
m=mass of the body [unit: kg]
r=distance between point load and axis of rotation [unit: m]
I=moment of inertia [unit: kgm2]
For non-point loads other equations can be used for calculating the moment of inertia. For example, a dimensionless constant c, called the inertial constant and being related to the shape of the load, could be multiplied with mass and length to arrive at the correct moment of inertia I. Hence:
I=c×m×L
2 [eq. 1.2]
where:
c=the dimensionless constant that varies with the shape of the object in consideration [unit: −]
m=the mass of the object [unit: kg]
L=a length dimension, correlated to c [unit: m]
I=moment of inertia [unit: kgm2]
Hence, it is possible to calculate the moment of inertia, I, of each of the unbalance weight 30, the first counterbalance weight 48 and the second counterbalance weight 50 based on the respective mass m, the respective L and the respective inertial constant c. The respective moments of inertia could be denoted I30, for the moment of inertia of the unbalance weight 30, I48 for the moment of inertia of the first counterbalance weight 48, and I50 for the moment of inertia of the second counterbalance weight 50.
Preferably the moment of inertia of the unbalance weight 30 is no more than 10 times the sum of the moments of inertia of the first and second counterbalance weights 48, 50. Hence, I30<=10×(I48+I50. More preferably the moment of inertia of the unbalance weight 30 is 1 to 10 times the sum of the moments of inertia of the first and second counterbalance weights 48, 50. Hence, the moment of inertia I30 of the unbalance weight 30 should fulfill the following equation: 1×(I48+I50)<=I30<=10×(I48+I50).
The amount of the centrifugal force FC1 acting on the first counterbalance weight 48 when the crusher 1 is operating is preferably rather similar to the amount of the centrifugal force FC2 acting on the second counterbalance weight 50. If FC1 is rather similar to FC2, for example FC1=FC2, there will be a very limited bending force exerted on the drive shaft bearing 44. With a low bending force exerted on the drive shaft bearing 44 it will be possible to arrange heavy counterbalance weights 48, 50 without exposing the drive shaft bearing 44 to forces that would significantly reduce the life thereof.
The centrifugal force FC1, FC2 of each counterbalance weight 48, 50 can be calculated according to:
FC=m*v
2
/r [eq. 1.3]
where:
FC=the centrifugal force [unit: N]
m=the mass of the body [unit: kg]
v=the velocity in the pathway [unit: m/s]
r=the distance from axis of rotation to the center of mass [unit: m]
In accordance with one preferred embodiment, the amount of the centrifugal force FC1 acting on drive shaft 32 below the drive shaft bearing 44 when the crusher 1 is in operation is within +/−30%, more preferably within +/−20%, of the amount of the centrifugal force FC2 acting on drive shaft 32 above the drive shaft bearing 44. Hence, for example, if the centrifugal force FC2 acting on drive shaft 32 above the drive shaft bearing 44 is 50 kilo Newton (kN), then the centrifugal force FC1 acting on drive shaft 32 below the drive shaft bearing 44 should preferably be within the range 35 to 65 kN, more preferably 40 to 60 kN. Most preferably the forces FC1 and FC2 are substantially equal, since that gives the lowest bending load on the drive shaft bearing 44. The centrifugal force FU of the unbalance weight 30 is preferably 1 to 10 times the sum of the centrifugal forces FC1 and FC2 when the crusher 1 is in operation, i.e. 1 ×(FC1+FC2)<=FU<=10×(FC1+FC2).
Furthermore, the moment of inertia, in kgm2, of the first counterbalance weight 48 is preferably within +/−30% of the moment of inertia, in kgm2, of the second counterbalance weight 50.
Hereinbefore, it has been described that the entire unbalance acting on crushing shaft 24 comes from unbalance weight 30. It will be appreciated that there might be further, usually small, unbalance weights, and even small counterbalance weights, attached to cylindrical sleeve 26, and also other items, such as unbalance weight fastening means, that are not absolutely symmetric around cylindrical sleeve 26. When calculating the centrifugal force FU, or the moment of inertia I, the effect of such other unbalances are preferably also taken into account, such that the net centrifugal force FU acting on cylindrical sleeve 26 may be calculated. In a similar manner there might be further, usually small, counterbalance weights, or even unbalance weights, arranged below and/or above the drive shaft bearing 44, including devices for mounting the counterbalance weights 48, 50 to the drive shaft 32, that are not absolutely symmetric around drive shaft 32. When calculating the centrifugal forces FC1 and FC2, or the moment of inertia I, the effect of such other counterbalances are preferably also taken into account, such that the net centrifugal forces FC1 and FC2 acting on drive shaft 32, and in particular on drive shaft bearing 44, may be calculated.
While the invention has been disclosed with reference to certain preferred embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the invention, as defined in the appended claims and their equivalents thereof. For example, hereinbefore it has been described that the unbalance weight 30 and the counterbalance weights 48, 50 each include one weight. It will be appreciated that any one of the unbalance weight 30, the first counterbalance weight 48 and the second counterbalance weight 50 may include several weight segments and/or several sub-weights located in various positions. Accordingly, it is intended that the invention not be limited to the described embodiments, but that it have the full scope defined by the language of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1050771-3 | Jul 2010 | SE | national |