The field of the invention is roller cone rock bits and more particularly a retention system for the cone that allows control of axial play and more particularly employing the use of tapered roller bearings and components that facilitate bearing support and lubricant distribution.
Roller cone bits have typically used roller bearings and have employed a variety of connection methods for the cone to the bit body. U.S. Pat. No. 2,038,388 used a pin 19 that turned on bearings 18 with the cone 1. A set screw into the pin 19 through the cone 1 ensured that the pin and cone would turn together. The bearings 18 get preloaded but not the roller bearings between the head and the cone. U.S. Pat. No. 2,490,151 shows a tension rod mounted to cone, then welded to the head. It retains the cone but does not use rollers, eliminate axial play, communicate grease, or load the bearing assembly. It also acts as a thrust pin. U.S. Pat. No. 3,193,025 uses threads in the nose of the head bearing to lock down a flanged head and load the opposed tapered rollers. In US Publication 2009/0173546 the entire head bearing is independent of the head section itself, and is used as both the male journal as well as the pre-loading mechanism. There is no provision for grease compensation.
What is needed is a way of taking out axial play from bearings on a roller cone while still providing for a sufficiently strong support structure adjacent the nose bearing to withstand the loads encountered during drilling or reaming. The present invention applies tension to a tension rod in the head at a remote location from the head end where the cone nose bearing is supported. Grease passages are provided from a fill location in the rear of the head through the bore for the tension rod and on the way to the cone bearings. The rod is provided with a flat to minimize material removal as an aid to resisting bending stresses through the cone and to allow a more sturdy support for the bearing assembly. An alignment feature is provided to allow the flat to be oriented to the grease passages and to allow torque to be applied to a torque nut whose position is then maintained with welding. The nose bearing can be supported from a retainer nut threaded into the cone such that tension in the rod will remove the axial play on the nose bearing against the retainer nut and further tension will bring the head and cone closer to remove axial play on the main bearing. Alternatively a spacer between the bearings will remove axial play in the main bearing as force is transferred from the nose bearing into the spacer and into the main bearing through the spacer. These and other features of the present invention will be more readily apparent to those skilled in the art from a review of the detailed description and the associated drawings while recognizing that the full scope of the invention is to be determined by the appended claims.
The roller cone is retained to the head with axial play taken out of the bearings with a tension rod that is tensioned from the rear of the head and away from the nose bearing region of the head allowing greater resistance to loading in the region of the nose bearing and a reduction in critical stresses. The tension rod has a flat and is oriented for tightening so that the flat faces grease passages to allow grease to gain access to the bearings through the bore for the tension rod and otherwise fill the bore so the tension rod actively supports loading in the head bearing. The nose bearing can be separately supported to the cone directly with a retainer threaded to the cone or a spacer between the bearings can be used so that tensioning of the rod takes out the axial play in both bearings with force transmitted to a retainer at the back of the cone.
A pressure compensation system 20 permits the loading of grease that passes through passage 22 into the tension rod bore 24. Tension rod 26 has a flat 28 on shaft 30 to create a passage 32 in bore 24 that leads to passage 34 that extends to the location between the bearings 16 and 18. Tension rod 26 has a cap 36 that fits in a cavity 38 in the cone 12. If the cap 36 and the cavity 38 are shaped for relative rotation an orientation pin 40 in the cap 36 can extend into a blind bore 42 in the head 14 so that relative rotation between the cap 36 and the head 14 will be prevented. The location of the pin and blind bore can be reversed to get the same effect. Alternatively the cap 36 and the cavity 38 can be shaped so that a single orientation is possible for makeup that coincidentally aligns the flat 28 to allow grease to flow between passages 22 and 34.
Bearing 18 has an inner race 44, tapered rollers 46 and an outer race 48. A retainer 50 is threaded at 52 to the cone 12 and the threaded position is retained with retaining ring 54. Cap 36 has a clearance to the end of the cone 12 while bearing down on the inner race 44 with clearance remaining to head 14.
Bearing 16 has an inner race 56, tapered rollers 58 and an outer race 60. A retainer 62 is secured at thread 64 using a tool inserted into depressions 66. The retainer 62 holds in place an o-ring seal 68 on the outside and a metal to metal loaded seal assembly 70 on the inside. In
Shaft 30 has thread 74 located near the opposite end from the cap 36. A nut 76 is formed to mate at a leading end to a taper 78 in the head 14. Nut 76 can have a hex top end that is 6 or 12 point or some other feature for engaging nut 76 with a tool to turn it and make up the thread 74 to put tension into the tension rod 26. A cap 80 that has a lower end that conforms to the top of the nut 76 is put onto the nut 76 after tensioning and welded at 82 in bore.
Tightening the nut 76 makes cap 36 push on inner race 44 without contacting the head 14. That force transfers to the rollers 46 and then to outer race 48 and then into the cone 12 through the retainer 50. Further tightening then pulls the head 14 toward the cone 12 to exert a force on the inner race 56 that is transferred to the outer race 60 through rollers 58. The cone 12 has a shoulder that backstops the outer race 60 and the axial play is removed from bearings 16 and 18.
The exterior of the roller cones is not discussed as the cutting structure is known in the art. The same is true for the passages in the head that lead to the nozzles some of which are shown in
By locating the threads 74 on the opposite side of the tension rod 26 from the cap 36 the support for the nose bearing 18 is enhanced as compared to prior designs that put a thread in that location near the cap. A thread that is cut into a loaded region of the head 14 weakens it by removing metal. As a result there is a greater stress concentration under the nose bearing as opposed to application of a tensioning force remotely with nut 76 leaving no threads in head 14. Shaft 30 fills bore 24 in the region within the bearing 18 for greater resistance to bending moments. The use of flat 28 rather than a circular groove additionally strengthens head 14 against bending moments while drilling by filling bore 24. Alignment features on the rod 26 ensure that the flat 28 will be properly oriented to allow grease communication between passages 22 and 34. The bearings 16 and 18 can transmit load directly through a spacer 86 shown in FIG. 3 or with a separate retainer 50 supporting bearing 18 that allows rotation of nut 76 to first take out axial play on bearing 18 and then take out the axial play on bearing 16 from the opposite direction.
While the discussion above has focused on a single mounting of a cone those skilled in the art will appreciate that when there are multiple cones the same discussion applies to each cone. While bearings 16 and 18 are shown with tapered rollers that are preferred for larger sized bits, those skilled in the art will recognize that the depiction of tapered roller bearings is intended to be schematic for other bearing types that can be used notably for smaller bit sizes with cylindrical and thrust bearings.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
Number | Name | Date | Kind |
---|---|---|---|
2038388 | Sherman | Apr 1936 | A |
2058155 | Howard et al. | Oct 1936 | A |
2111732 | Reed | Mar 1938 | A |
2490151 | Nobel et al. | Dec 1949 | A |
2579819 | Green | Dec 1951 | A |
3193025 | Reitzel | Jul 1965 | A |
3476195 | Galle | Nov 1969 | A |
3658141 | Schumacher, Jr. | Apr 1972 | A |
3998500 | Dixon | Dec 1976 | A |
4802539 | Hall et al. | Feb 1989 | A |
20090173546 | Peterson et al. | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20130105229 A1 | May 2013 | US |