1. Field of the Invention
This invention relates to conference equipment including a video conference unit and a speakerphone, more specifically to enhance and expand the features and functions of a combination of existing and future videoconference units and speakerphones.
2. Description of the Related Art
Teleconferencing has long been an essential tool for communication in business, government and educational institutions. There are many types of teleconferencing equipment based on many characterizations. One type of teleconferencing unit is a video conference unit, which transmits real-time video images as well as real-time audio signals. A video conferencing unit typically comprises a video processing component and an audio processing component. The video processing component may include a camera to pick up live images of conference participants and a video display for showing real-time video images of conference participants or images of documents. The audio portion of a video conferencing unit typically includes one or more microphones to pick up voice signals of conference participants, and loudspeakers to reproduce voices of the participants at the far end. There are many ways to connect video conferencing units. At the low end the link may be an analog plain old telephone service (POTS) line. It may be a digital service line such as an integrated service digital network (ISDN) line or a digital interface to PBX which may use a T1 or PRI line. More recently video conference units and speakerphones may be linked by digital networks using the Internet Protocol.
Video signals in a video conferencing unit are typically very different compared to an audio signal. Video signals are more complicated and bandwidth demanding than audio signals.
Another type of teleconference unit is a speakerphone, which is typically a speakerphone that includes at least a loudspeaker and a microphone. Similar to a video conference unit, a speakerphone may also have various connections to another speakerphone. The connection may be an analog POTS line, a digital service line such as an ISDN line or an IP connection.
Although video conferencing units and speakerphones have many overlapping features and functionalities, they do not usually work very well with each other. Typically, in a business or other entities, there is a video conferencing unit and a speakerphone in the same conference room. When a video conference is desired or required, the video conferencing unit is used. If only an audio conferencing is needed or available, the speakerphone is used.
As indicated above, the video conference unit and speakerphone have many features and functions overlapping. As a consequence, there is duplicate equipment for each conference unit. For example, there are microphones for the video conference unit and there are microphones for the speakerphone. There are both loudspeakers for the video conferencing unit and for the speakerphone. There are also wires connecting all these pieces. It is desirable to reduce the redundant equipment and un-clutter a typical conference room. It is desirable to have the video conference unit and the speakerphones share common components or to expand the capability and functions with redundant components.
The sound quality and features in a good speakerphone are typically better than the sound quality of the audio component in a video conference unit. The control on a speakerphone is simpler and easier to work with than a videoconference unit. It is desirable to upgrade and extend the sound quality of a video conference unit using new or existing speakerphones.
It is desirable to have a method and an apparatus with improved teleconferencing capabilities.
The present invention uses a conference link between a video conferencing unit and a speakerphone. With this link, audio signals may be transmitted between the video conferencing unit and the speakerphone. The connected video conferencing unit and the speakerphone can work as a single unit to take advantage of the components within the two units. In one embodiment, the redundant equipment in the video conferencing unit such as loudspeakers and microphones can be eliminated from a typical conference room. In another embodiment, all audio signal processing is performed by one of the audio signal processors in either the video conference unit or the speakerphone such that the best audio processing algorithm can be used. The conference link can connect multiple video conference units with multiple speakerphones in serial or parallel. In systems with multiple video conference units or speakerphones, the audio processing may be allocated in one or more processors, either in a video conference unit or a speakerphone. The conference link may be an analog link or a digital link, wired or wireless. Similarly, other data may also be transmitted through the conference link. Other data processing may be allocated to one or more processors. In addition to sharing microphones and loudspeakers, the speakerphone and the video conference unit may also share directories in each device. A dialing program can adapt the dialing stream with the locations of the near end and the dialed far end. The dialing program can automatically select a mutually supported network or protocol to establish a connection between two sites.
A better understanding of the invention can be had when the following detailed description of the preferred embodiments is considered in conjunction with the following drawings, in which:
A typical speakerphone is shown in
A block diagram of a speakerphone according to an embodiment of the current invention is shown in
Analog Link
As one can see from
Alternatively, if the audio components in the video conference unit 100 are retained, then the audio components in the speakerphone 200 can expand the capability of the video conferencing unit regarding the audio pickup and reproduction. The microphones and loudspeakers in the speakerphone 200 can provide wider coverage in a large conference room.
Digital Link
In another embodiment of the current invention, as shown in
When a digital connection is used, various data packets can be transmitted between the video unit 100 and the speakerphone 200. These data may include multiple channels of digitized audio data between the two units.
The data transmitted between the units are in data packets. Each packet may include several 16-bit words, typically two to eight words. Each word may represent the digitized data for one audio channel, one control command, one response or the like. In one embodiment, the digital link is implemented in a master/slave protocol, for example, a video unit is a master and all connected speakerphone are slaves. The communication between them is asymmetric.
Making Conference Calls, Master/Slave
Once the connection between a video conference unit and one or more speakerphones is setup, the audio data are transmitted between them. The video unit may be a master and the audio unit may be a slave. The audio unit is collecting audio data from its internal, external and auxiliary microphones at the local conference room, possibly in many distinct audio channels. The connection can be in parallel as shown in
The combined video conference unit and a speakerphone can be used to make various conference calls, e.g. an audio only conference call, a video conference call or a three-party mixed video and audio conference call.
When the speakerphone alone is making an audio only call, the speakerphone can be used as a normal speakerphone, except that part of the audio signal may be sent to the video unit for processing and reproduction. For example, the audio data from the far end is sent to the video unit via the conference link. The bass sound is produced in the subwoofer. The microphones in the video units are disabled.
When the video conference unit is making a video conference call, it can be used normally, except that the near end audio input is generated from the microphones in the speakerphone.
When a video conference unit and a speakerphone are both used in a three-site conference call as illustrated in
At the near end site, the audio portion may be processed as shown in
In the above examples where the master/slave protocol is used, the speakerphones perform only minimum data processing. The speakerphone is used primarily as an interface to the POTS network, as external microphones and as external loudspeakers. Therefore, a “dumb” and typically cheaper speakerphone may be installed in a conference room without degrading the audio conference capability in that conference room.
Alternatively, the data processing may be distributed differently, for example, by allocating all video data processing in the video conference unit and allocating all audio data processing in the speakerphone. In this embodiment, regardless of the types of conference calls, all video data are collected and processed by the processor in the video unit; all audio data are collected from various far end sites or near end site are sent to the speakerphone and processed in the speakerphone.
In yet another embodiment, the data processing is allocated among various components on an as-needed/as-available basis such that processing power in either the video conference unit or the speakerphone is fully utilized and balanced. In some state of the art video conference units or speakerphones, the processors are general purpose processors and very powerful, for example the processors in the Polycom VSX7000 video conference units or VTX1000 speakerphones have up to 1000 MIPS capabilities (1 MIPS=1 Million Instructions Processed per Second). As long as an appropriate software program is loaded to a processor, either a video data processing program or an audio data processing program, the processor can perform the processing task as dictated by the program. This way, each component, the video conference unit or the speakerphone does not run out of processing power until the combined units run out of processing power. Another benefit of this embodiment is making the combined video/speakerphone very scalable, i.e. the unit's processing power can grow gradually rather than replacing the old unit with a new more powerful one every time when the demands exceed the current capacity. For example, still referring to the system shown in
To simplify the process to establish a conference call, either a video conference call or an audio conference call, an auto dialing program may be installed. The auto dialing program may be installed in one of the processors in the devices linked by the conference links. It can keep track of calling information of itself and other parties. The calling information may include the POTS phone number, ISDN phone number, IP address etc. Each type of number may have a default mode of conference call, either a video call or an audio call. From its own calling information and that of the called party, the processor can determine which type of call will take place and what prefix, if any, is needed to be added in front of the dialing stream. All of the dialing information may be stored in a directory on each device. When a user wants to make a call, he can manually input the dialing information as usual, or he may select the other party from the directory list. When the user selects an entry from the directory, the dialing program determines the type of the call and the necessary prefix. For example, if both parties are internal to a same company, then only the four-digit extension 4567 is dialed, where the called party's phone number is 1-832-123-4567. The phone number includes the country code 1, area code 832, phone number 123-4567. If parties are in different countries, then appropriate country code, area code plus the access code will be added to the dialing stream. For example, when a speakerphone in Houston, Tex., USA dials a speakerphone in London, England, the dialing stream may be 9-011-44-20-1234-5678. The added prefix includes an access number 9 to reach an external telephone network and international phone call access number 011. But when the speakerphone in London dials the speakerphone in Houston, the dialing stream is 00-1-832-123-4567, where the international access number changes to 00 and no external access number is needed when the speakerphone is connected to the public telephone network directly.
Entries in a directory in a device may be entered or collected by various ways. They may be entered by a user manually, or downloaded from other speakerphones or video conference units linked by conference link, or captured during a conference call. During the process of establishing a conference call, the video conference units or speakerphones involved exchange dialing information. Such information may be stored in the directory maintained by the speakerphone or video conference units for later use.
The auto dialing program is aware of the different dialing numbers and their associated networks or protocols. When a user select an entry to establish a conference call, the auto dialing program selects a mutually supported network and protocol between the near end device and the far end device for the selected type of call. The selection of the networks or protocols is transparent to the user. In one embodiment, the available types of conference between the near end and a far end entry in the directory are indicated in the directory. So a user knows the types of conference calls available between the two parties before trying to establish a conference call. For example, a local video device may is capable of video calls through IP, ISDN or other network, but a far end only supports an ISDN video call. When a user initiates a video conference call, he can simply select the far end from the entry in the directory which may indicate that video conference capability is available at the far end. The auto dialing program selects the ISDN network and the ISDN number of the far end party to establish the video conference call. The user does not need to know the detail of what type of video call is established.
In addition to sharing components such as microphones and loudspeakers between linked speakerphones and video conference units via conference links, more functions and resources may be shared among them. For example, a directory on one device may be accessed by another device through the conference link.
The conference link may be an analog link or a digital link as described above. These examples are just some of many ways of implementing the current invention. When the audio signals are digital signals, the conference link may be a regular Ethernet link, a USB link or other packet network. The digital signal processor in the speakerphone can process the digital signals, performing D/A and A/D conversions. The processor in the videoconference unit can separate or combine the audio data with the video data. The combined digital video and audio data are exchanged through the digital network with the video conference unit on the far end. Many digital video conference protocols may be used, for example, the ITU H.32x family of recommendations that provides multimedia communication over a variety of networks. The video data and audio data under these recommendations are processed by different codecs or components. The processes are allocated to different logical components and can be easily allocated to different physical components. According to one embodiment of the current invention discussed above, the video processing is allocated to a video conference unit and the audio processing is allocated to the speakerphone. This way, more processing power in the video conference unit can be dedicated to the video processing. Alternatively, the processor in the video unit may control all the signal processing in a master/slave arrangement as discussed in the above examples.
The audio link between a speakerphone and a video conference unit can be wired as discussed above, or it can alternatively be wireless. Using a wireless connection can avoid the many problems associated with many different wires, such as limitation of the relative locations between the speakerphone and the video conferencing unit, the unsightly wires around the conference room and table, and the trip hazards for conference participants. In the example shown in
As discussed above, the embodiments of the current invention combine video conference units with speakerphones to make them work together seamlessly using conference links. With conference links, various speakerphone functions or video conference functions may be allocated among the two. The embodiments of the current invention improve and expand functionalities and features of videoconference units and speakerphones or allow cost reductions in the units. In either case, certain redundant hardware, particularly microphones and loudspeakers can be eliminated.
“Audio signals” as used in the current application can be either analog signals for audio channels in a teleconference unit, or digital signals for audio channels in a digital system. “Audio data” as used in the current application refers to digitized audio signals. “Audio data” are typically used in digital signal processors.
While illustrative embodiments of the invention have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
This patent application is a continuation of co-pending and commonly assigned U.S. application Ser. No. 10/897,318, filed on Jul. 21, 2004 and entitled “Conference Link Between a Speakerphone and a Video Conference Unit,” which is a Non-Provisional of Application Ser. No. 60/562,782, filed on Apr. 16, 2004 and entitled “A Speakerphone with a Cellular Phone Connection,” assigned to the same assignee. The benefit of priority under 35 U.S.C. §§119-120 is hereby claimed. This patent application is related to another patent application by Jed Wilson, Kate Nogarede and Greg Rousch, assigned to the same assignee, entitled “Method and Apparatus for Videoconference Interaction with Bluetooth-enabled Cellular Telephone,” 11/075,616.
Number | Name | Date | Kind |
---|---|---|---|
3573377 | Lincroft | Apr 1971 | A |
3612767 | Anderson et al. | Oct 1971 | A |
3649761 | Bush | Mar 1972 | A |
3854010 | Yoshino et al. | Dec 1974 | A |
3927269 | Yoshino et al. | Dec 1975 | A |
4008376 | Flanagan et al. | Feb 1977 | A |
4058769 | Alderman | Nov 1977 | A |
4257119 | Pitroda | Mar 1981 | A |
4311877 | Kahn | Jan 1982 | A |
4351062 | Yoshiya | Sep 1982 | A |
4384362 | Leland | May 1983 | A |
4425642 | Moses et al. | Jan 1984 | A |
4541118 | Eastmond et al. | Sep 1985 | A |
4544804 | Herr et al. | Oct 1985 | A |
4763317 | Lehman et al. | Aug 1988 | A |
4782521 | Bartlett | Nov 1988 | A |
4796293 | Blinken et al. | Jan 1989 | A |
4901307 | Gilhousen et al. | Feb 1990 | A |
4945412 | Kramer | Jul 1990 | A |
4995071 | Weber et al. | Feb 1991 | A |
5003593 | Mihm, Jr. | Mar 1991 | A |
5007049 | Ohtsuka | Apr 1991 | A |
5155743 | Jacobs | Oct 1992 | A |
5157689 | Kurihara | Oct 1992 | A |
5195087 | Bennett et al. | Mar 1993 | A |
5276704 | Dixon | Jan 1994 | A |
5353373 | Drogo de Iacovo et al. | Oct 1994 | A |
5434913 | Tung et al. | Jul 1995 | A |
5436941 | Dixon et al. | Jul 1995 | A |
5473631 | Moses | Dec 1995 | A |
5526354 | Barraclough et al. | Jun 1996 | A |
5530699 | Kline | Jun 1996 | A |
5572247 | Montgomery et al. | Nov 1996 | A |
5583963 | Lozach | Dec 1996 | A |
5598429 | Marshall | Jan 1997 | A |
5625407 | Biggs et al. | Apr 1997 | A |
5677728 | Schoolman | Oct 1997 | A |
5687095 | Haskell et al. | Nov 1997 | A |
5724383 | Gold et al. | Mar 1998 | A |
5724416 | Foladare et al. | Mar 1998 | A |
5758079 | Ludwig | May 1998 | A |
5760824 | Hicks, III | Jun 1998 | A |
5761239 | Gold et al. | Jun 1998 | A |
5761292 | Wagner et al. | Jun 1998 | A |
5790591 | Gold et al. | Aug 1998 | A |
5790652 | Gulley et al. | Aug 1998 | A |
5822360 | Lee et al. | Oct 1998 | A |
5835129 | Kumar | Nov 1998 | A |
5841763 | Leondires et al. | Nov 1998 | A |
5844600 | Kerr | Dec 1998 | A |
5855502 | Truchsess | Jan 1999 | A |
5886734 | Ozone et al. | Mar 1999 | A |
5894321 | Downs et al. | Apr 1999 | A |
5914940 | Fukuoka et al. | Jun 1999 | A |
5916302 | Dunn et al. | Jun 1999 | A |
5943337 | Sasagawa | Aug 1999 | A |
5950125 | Buhrmann et al. | Sep 1999 | A |
5963246 | Kato | Oct 1999 | A |
5983192 | Botzko et al. | Nov 1999 | A |
5983261 | Riddle | Nov 1999 | A |
5991385 | Dunn et al. | Nov 1999 | A |
5999207 | Rodriguez et al. | Dec 1999 | A |
5999966 | McDougall et al. | Dec 1999 | A |
6049531 | Roy | Apr 2000 | A |
6088347 | Minn et al. | Jul 2000 | A |
6088368 | Rubinstain et al. | Jul 2000 | A |
6094213 | Mun et al. | Jul 2000 | A |
6108327 | Schilling et al. | Aug 2000 | A |
6111936 | Bremer | Aug 2000 | A |
6122259 | Ishida | Sep 2000 | A |
6130880 | Naudus et al. | Oct 2000 | A |
6134223 | Burke et al. | Oct 2000 | A |
6148068 | Lowery et al. | Nov 2000 | A |
6151578 | Bourcet et al. | Nov 2000 | A |
6154484 | Lee et al. | Nov 2000 | A |
6154524 | Bremer | Nov 2000 | A |
6170011 | Macleod Beck et al. | Jan 2001 | B1 |
6178237 | Horn | Jan 2001 | B1 |
6185285 | Relyea et al. | Feb 2001 | B1 |
6192395 | Lerner et al. | Feb 2001 | B1 |
6201859 | Memhard et al. | Mar 2001 | B1 |
6202084 | Kumar et al. | Mar 2001 | B1 |
6208372 | Barraclough | Mar 2001 | B1 |
6230197 | Beck et al. | May 2001 | B1 |
6236854 | Bradshaw, Jr. | May 2001 | B1 |
6262978 | Bruno et al. | Jul 2001 | B1 |
6272176 | Srinivasan | Aug 2001 | B1 |
6301339 | Staples et al. | Oct 2001 | B1 |
6327567 | Willehadson et al. | Dec 2001 | B1 |
6332006 | Rydbeck et al. | Dec 2001 | B1 |
6343313 | Salesky et al. | Jan 2002 | B1 |
6345047 | Regnier | Feb 2002 | B1 |
6366570 | Bhagalia | Apr 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6421355 | Quiring et al. | Jul 2002 | B1 |
6442190 | Nguyen | Aug 2002 | B1 |
6442272 | Osovets | Aug 2002 | B1 |
6453022 | Weinman, Jr. | Sep 2002 | B1 |
6453336 | Beyda et al. | Sep 2002 | B1 |
6501739 | Cohen | Dec 2002 | B1 |
6501740 | Sun et al. | Dec 2002 | B1 |
6526385 | Kobayashi et al. | Feb 2003 | B1 |
6553062 | Marum | Apr 2003 | B1 |
6580789 | Simpson et al. | Jun 2003 | B1 |
6584138 | Neubauer et al. | Jun 2003 | B1 |
6597667 | Cerna | Jul 2003 | B1 |
6628644 | Nelson et al. | Sep 2003 | B1 |
6628768 | Ramaswamy et al. | Sep 2003 | B1 |
6661833 | Black et al. | Dec 2003 | B1 |
6671263 | Potter et al. | Dec 2003 | B1 |
6728222 | Ono | Apr 2004 | B1 |
6728367 | Swam | Apr 2004 | B1 |
6731609 | Hirni et al. | May 2004 | B1 |
RE38523 | Ozluturk | Jun 2004 | E |
6765895 | Watanabe | Jul 2004 | B1 |
6792092 | Michalewicz | Sep 2004 | B1 |
6798753 | Doganata et al. | Sep 2004 | B1 |
6807563 | Christofferson et al. | Oct 2004 | B1 |
6810116 | Sorensen et al. | Oct 2004 | B1 |
6812955 | Takaki et al. | Nov 2004 | B2 |
6885652 | Ozukturk et al. | Apr 2005 | B1 |
6888935 | Day | May 2005 | B1 |
6898620 | Ludwig et al. | May 2005 | B1 |
6931113 | Ortel | Aug 2005 | B2 |
6940826 | Simard et al. | Sep 2005 | B1 |
6978001 | Shaffer et al. | Dec 2005 | B1 |
7003042 | Morelos-Zaragoza et al. | Feb 2006 | B2 |
7006456 | Rabipour et al. | Feb 2006 | B2 |
7006616 | Christofferson et al. | Feb 2006 | B1 |
7007235 | Hussein et al. | Feb 2006 | B1 |
7099448 | Laniepce et al. | Aug 2006 | B1 |
7107312 | Hackbarth et al. | Sep 2006 | B2 |
7185054 | Ludwig et al. | Feb 2007 | B1 |
7221663 | Rodman et al. | May 2007 | B2 |
7227938 | Rodman et al. | Jun 2007 | B2 |
7274662 | Kalmanek, Jr. et al. | Sep 2007 | B1 |
7302050 | Michalewicz | Nov 2007 | B1 |
7317791 | Carlson | Jan 2008 | B2 |
7339605 | Rodman et al. | Mar 2008 | B2 |
7366907 | Ezaki | Apr 2008 | B1 |
7386026 | Gold | Jun 2008 | B1 |
7428223 | Nierhaus et al. | Sep 2008 | B2 |
7519098 | Schilling | Apr 2009 | B2 |
7526078 | Rodman et al. | Apr 2009 | B2 |
7633996 | Haentzschel et al. | Dec 2009 | B2 |
7689568 | Lee et al. | Mar 2010 | B2 |
7796565 | Elias | Sep 2010 | B2 |
7814150 | Sonnenfeldt et al. | Oct 2010 | B1 |
20010008556 | Bauer et al. | Jul 2001 | A1 |
20010016038 | Sammon et al. | Aug 2001 | A1 |
20010033613 | Vitenberg | Oct 2001 | A1 |
20010043571 | Jang et al. | Nov 2001 | A1 |
20020018117 | Tosaya | Feb 2002 | A1 |
20020034166 | Barany et al. | Mar 2002 | A1 |
20020071026 | Agraharam et al. | Jun 2002 | A1 |
20020083462 | Arnott | Jun 2002 | A1 |
20020093985 | Nimmagadda | Jul 2002 | A1 |
20020097679 | Berenbaum | Jul 2002 | A1 |
20020122429 | Griggs | Sep 2002 | A1 |
20020131377 | DeJaco et al. | Sep 2002 | A1 |
20020151294 | Kirby et al. | Oct 2002 | A1 |
20020188731 | Potekhin et al. | Dec 2002 | A1 |
20030004867 | Kight et al. | Jan 2003 | A1 |
20030016676 | Allen et al. | Jan 2003 | A1 |
20030048353 | Kenoyer et al. | Mar 2003 | A1 |
20030053443 | Owens | Mar 2003 | A1 |
20030072429 | Slobodin et al. | Apr 2003 | A1 |
20030091244 | Schnee et al. | May 2003 | A1 |
20030112947 | Cohen | Jun 2003 | A1 |
20030114122 | Strakovsky | Jun 2003 | A1 |
20030123645 | Comisky | Jul 2003 | A1 |
20030142635 | Roher et al. | Jul 2003 | A1 |
20030179859 | Chea et al. | Sep 2003 | A1 |
20040003045 | Tucker et al. | Jan 2004 | A1 |
20040012669 | Drell et al. | Jan 2004 | A1 |
20040022272 | Rodman et al. | Feb 2004 | A1 |
20040125932 | Orbach et al. | Jul 2004 | A1 |
20040213474 | Kato | Oct 2004 | A1 |
20050014491 | Johnson | Jan 2005 | A1 |
20050018756 | Nuytkens et al. | Jan 2005 | A1 |
20050149876 | Kortum et al. | Jul 2005 | A1 |
20050157777 | Mizuno | Jul 2005 | A1 |
20050185602 | Simard et al. | Aug 2005 | A1 |
20050195733 | Walton et al. | Sep 2005 | A1 |
20050206721 | Bushmitch et al. | Sep 2005 | A1 |
20050212908 | Rodman et al. | Sep 2005 | A1 |
20050213517 | Rodman et al. | Sep 2005 | A1 |
20050213725 | Rodman | Sep 2005 | A1 |
20050213726 | Rodman et al. | Sep 2005 | A1 |
20050213728 | Rodman et al. | Sep 2005 | A1 |
20050213729 | Rodman et al. | Sep 2005 | A1 |
20050213730 | Rodman et al. | Sep 2005 | A1 |
20050213731 | Rodman et al. | Sep 2005 | A1 |
20050213732 | Rodman et al. | Sep 2005 | A1 |
20050213733 | Rodman et al. | Sep 2005 | A1 |
20050213734 | Rodman et al. | Sep 2005 | A1 |
20050213735 | Rodman et al. | Sep 2005 | A1 |
20050213736 | Rodman et al. | Sep 2005 | A1 |
20050213737 | Rodman et al. | Sep 2005 | A1 |
20050213738 | Rodman et al. | Sep 2005 | A1 |
20050213739 | Rodman et al. | Sep 2005 | A1 |
20050232166 | Nierhaus | Oct 2005 | A1 |
20050254558 | Dutka | Nov 2005 | A1 |
20050271194 | Woods et al. | Dec 2005 | A1 |
20050281319 | Schilling | Dec 2005 | A1 |
20060098692 | D'Angelo | May 2006 | A1 |
20060109890 | Willenegger | May 2006 | A1 |
20060222155 | Summers et al. | Oct 2006 | A1 |
20080144701 | Gold | Jun 2008 | A1 |
20090132391 | Jacobs | May 2009 | A1 |
Number | Date | Country |
---|---|---|
0 669 749 | Aug 1995 | EP |
0 680 190 | Nov 1995 | EP |
1 006 706 | Jul 2003 | EP |
05300509 | Dec 1993 | JP |
08125738 | May 1996 | JP |
408125738 | May 1996 | JP |
10-042264 | Feb 1998 | JP |
10042264 | Feb 1998 | JP |
2 096 921 | Nov 1997 | RU |
9418779 | Aug 1994 | WO |
9819458 | May 1998 | WO |
9819458 | May 1998 | WO |
9912351 | Mar 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20080143819 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60562782 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10897318 | Jul 2004 | US |
Child | 12040718 | US |