The present invention relates to the field of cutter mechanisms for label and receipt printers. More specifically, the present invention relates to a cutter mechanism that can be configured based on the width of a paper roll present in the printer and corresponding methods for configuring a cutter mechanism.
Printers that print from paper rolls require a cutter to separate the printed portion from the remainder of the roll. Such printers include label printers, ticket printers, receipt printers, and the like (collectively referred to herein as “label and receipt printers”). Various types of cutters are known for label and receipt printers, including rotary or “pizza-type” cutters.
However, typical label and receipt printers are configured to accept a single size of paper roll. With such printers, there is no need to program or configure a cutter mechanism for different paper widths.
The Assignee of the present invention, TransAct Technologies Inc., is developing a printer that can be configured to accept paper rolls of different widths. Accordingly, it would be advantageous to provide a configurable cutter mechanism that can be automatically configured for cutting paper rolls of different widths. In particular, it would be advantageous to provide a cutter mechanism that can be configured to control a length of travel of a movable cutter element, such as a rotary cutter.
The methods and apparatus of the present invention provide the foregoing and other advantages.
The present invention relates to a cutter mechanism that can be configured based on the width of a paper roll present in the printer and corresponding methods for configuring a cutter mechanism.
In accordance with one example embodiment of a configurable cutter mechanism for a printer in accordance with the present invention, the cutter mechanism may comprise a rotary cutter mounted for rotation about a rotation axis and for translation across at least a portion of a width of a paper path perpendicular to the rotation axis. A fixed blade assembly may be provided that is adapted to cooperate with the rotary cutter. The fixed blade assembly may extend across the width of the paper path. A controller may be provided for controlling a variable length of travel of the rotary cutter across the width of the paper path. The paper path runs between the rotary cutter and the fixed blade assembly.
A biasing mechanism may be provided for biasing the fixed blade assembly against the rotary cutter. The biasing mechanism may comprise, for example, one or more springs, a resilient member, a counterweight, or the like.
In one example embodiment, the rotary cutter may be mounted in a pivoting printer cover together with a platen. The fixed blade assembly may be mounted in a housing of the printer. In such an example embodiment, closing of the cover clamps the paper in the paper path between the platen and a print head and biases the fixed blade assembly against the rotary cutter.
The rotary cutter may locate to a home position on one side of the paper path. The rotary cutter may translate from the home position across at least a portion of the paper path when performing a cutting operation. A blade edge of the fixed blade assembly may be configured to rise slightly from a first end to a second end of the blade edge, the first end of the blade edge corresponding to the home position of the rotary cutter. With such a configuration, as the rotary cutter translates from the home position across the paper path, due to the biasing of the rotary cutter against the fixed blade assembly, the rotary cutter depresses the fixed blade assembly during completion of the cutting operation.
A cutter home sensor may be provided for sensing when the rotary cutter is in the home position.
In a further example embodiment of the present invention, a bucket sensor may be provided in the printer which is adapted to sense at least one of insertion of a divider into a paper bucket of the printer and removal of the divider from the paper bucket and to provide a corresponding paper size signal to the controller. The controller controls the length of travel of the rotary cutter in accordance with the paper size signal from the bucket sensor. The controller may reduce the length of travel of the rotary cutter in accordance with the paper size signal when the bucket sensor senses the insertion of the divider into the paper bucket. The controller may increase the length of travel of the rotary cutter in accordance with the paper size signal when the bucket sensor senses the removal of the divider from the paper bucket.
The configurable cutter mechanism may further comprise a carriage for carrying the rotary cutter, as well as a gear, rack, and lead screw assembly for rotating and translating the rotary cutter. The rotary cutter may be rotatably mounted on the carriage. The gear may be mounted to the rotary cutter. The carriage may be mounted on the lead screw and adapted to translate along the lead screw upon rotation of the lead screw. In such an example embodiment, as the carriage translates along the lead screw, teeth of the gear contact corresponding teeth of the rack, causing the rotary cutter to rotate as the carriage translates.
In an example embodiment of a method for configuring a cutter mechanism for a printer, the method may comprise: providing a rotary cutter mounted for rotation about a rotation axis and for translation across at least a portion of a width of a paper path perpendicular to the rotation axis; providing a fixed blade assembly adapted to cooperate with the rotary cutter, the fixed blade assembly extending across the width of the paper path; and controlling a variable length of travel of the rotary cutter across the width of the paper path.
The method may also include additional features discussed above in connection with the various embodiments of the corresponding configurable cutter mechanism.
The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like reference numerals denote like elements, and:
a and 7b show an example embodiment of a divider and bucket sensor for configuring the cutter mechanism for different size paper rolls; and
The ensuing detailed description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the ensuing detailed description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing an embodiment of the invention. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
The controller may be implemented on a printed circuit board 48 of the printer as discussed below in connection with
The length of travel of the rotary cutter 12 may be controlled in dependence on the width of the paper to be cut, as discussed in more detail below. Controlling the length of travel of the rotary cutter 12 in this manner avoids unnecessary wear of the cutter blades.
A biasing mechanism 18 may be provided for biasing the fixed blade assembly 16 against the rotary cutter 12. The biasing mechanism may comprise, for example, one or more springs 18. The biasing member may also comprise a resilient member, a counterweight, or the like. The biasing mechanism 18 provides shear pressure in cooperation with the rotary cutter 12 to facilitate the cutting operation.
As shown for example in
The rotary cutter 12 may locate to a home position on one side of the paper path. For example,
In one example embodiment, as shown in
This keeps the leading edge of the rotary cutter 12 in contact with the fixed blade assembly 16 during the cut, but not during the return stroke. A cutter home sensor 26 may be provided for sensing when the rotary cutter is in the home position.
Label printers may use a paper roll with glue or other adhesive on one side for printing sticky labels rather than plain thermal paper rolls. Such rolls containing adhesive may include evenly spaced apart black dots or lines denoting print areas for the sticky labels. To accommodate the use of sticky label paper rolls, a paper sensor 38 may be provided for sensing a presence of black marks (e.g., lines or dots) on the paper roll and providing a paper type signal to the controller. The controller, in response to the paper type signal indicating the presence of black marks, may at least one of decreases a print speed of the print mechanism and increases an energy of the print mechanism to better print on the sticky paper roll. For example, the second sized (smaller) paper roll may be an adhesive backed paper roll, and the black marks may denote a location of adhesive, which is positioned between the black marks. If no black marks are sensed, the print speed may be increased and the print energy may be reduced.
In a further example embodiment of the present invention, as shown in
For example,
Although
As an example, paper rolls having widths of either 40 mm or 80 mm are typically used in label and receipt printers. The bucket sensor 45 senses the size of the paper roll and controls the movement of the cutter accordingly. Partial or full cuts of the paper roll can be selected. For example, if a 40 mm paper roll is sensed, the controller may limit the cutter to a paper path that is 39 columns long and if an 80 mm paper roll is sensed, the controller may limit the cutter to a paper path that is 79 columns long, resulting in a partial cut of the paper roll (a full cut corresponding to a 40 or 80 column paper path for the 40 and 80 mm rolls, respectively). The cutter mechanism may be controlled such that a full cut is completed at selected intervals (e.g., every third or fifth cut).
As shown in
It should now be appreciated that the present invention provides an advantageous configurable cutter mechanism for receipt and label printers which can be used with different sized paper rolls, as well as corresponding methods for configuring a cutter mechanism for cutting different sized paper rolls.
Although the invention has been described in connection with various illustrated embodiments, numerous modifications and adaptations may be made thereto without departing from the spirit and scope of the invention as set forth in the claims.