The invention pertains to optical fiber transmission systems, and is particularly relevant to transmission of large volumes of data over long distances at high rates. An improved apparatus achieving precise dispersion compensation in a fiber span is disclosed. In particular, the invention teaches a configurable dispersion compensation trimmer with automatic detection of configuration.
A goal of many modem long haul optical transport systems is to provide for the efficient transmission of large volumes of voice traffic and data traffic over trans-continental distances at low costs. Various methods of achieving these goals include time division multiplexing (TDM) and wavelength division multiplexing (WDM). In time division multiplexed systems, data streams comprised of short pulses of light are interleaved in the time domain to achieve high spectral efficiency, high data rate transport. In wavelength division multiplexed systems, data streams comprised of short pulses of light of different carrier frequencies, or equivalently wavelength, are co-propagate in the same fiber to achieve high spectral efficiency, high data rate transport.
The transmission medium of these systems is typically optical fiber. In addition there is a transmitter and a receiver. The transmitter typically includes a semiconductor diode laser, and supporting electronics. The laser may be directly modulated with a data train with an advantage of low cost, and a disadvantage of low reach and capacity performance. After binary modulation, a high bit may be transmitted as an optical signal level with more power than the optical signal level in a low bit. Often, the optical signal level in a low bit is engineered to be equal to, or approximately equal to zero. In addition to binary modulation, the data can be transmitted with multiple levels, although in current optical transport systems, a two level binary modulation scheme is predominantly employed.
Consequently the data propagates through the optical fiber as a short pulse. One of the impairments that this pulse can suffer is its spreading, or dispersion, in time. Excessive pulse spreading resulting from dispersion will cause interference between adjacent bits at the receiver. Dispersion can occur for a variety of reasons both linear and nonlinear. In multimode fiber, different transverse modes propagate different effective distances, to cause modal dispersion. Consequently optical transport over any appreciable distance is accomplished using single mode fiber. Chromatic dispersion of the pulse occurs because the index of refraction of the glass fiber varies with frequency. Since a short data pulse is comprised of a band of frequencies, chromatic dispersion causes pulse shape distortion and spreading as the different spectral components of the data pulse propagate at different velocities in the fiber. In modem optical transport systems this dispersion, or pulse spreading must be periodically corrected, while comprehending the effect of pulsewidth on the nonlinear impairments in the fiber.
Correcting for chromatic dispersion is therefore an important engineering challenge in optical transport systems. As the reach or capacity of a long haul optical transport system increases, so do the requirements on dispersion compensation. Dispersion compensation is accomplished by adding lengths of fiber to positively or negatively correct for dispersion. For ultra long haul optical transport systems, dispersion compensation must be done quite often, and must be done with great precision. This precision creates a logistical challenge to ensure the correct dispersion compensation is available at time of installation. Currently dispersion compensators are highly customized, and are not designed to alleviate this logistical challenge. There is a need for flexible dispersion compensators that are settable to a precise dispersion compensation value upon installation.
A second challenge that arises with ultra long haul transport systems is that there physical plant extends over thousands of kilometers. In current optical transport systems inventory and configuration data is recorded manually. There is a need for the automated recording of dispersion configuration data in particular in optical transport systems.
It is an object of this invention to teach an improved method and apparatus for measuring dispersion that does not suffer from these limitations in accuracy and precision. It is a further object of this invention to provide a compact apparatus that makes a chromatic dispersion measurement in only a few seconds.
In the present invention, an improved apparatus achieving precise dispersion compensation in a fiber span is taught as required by ultra long haul optical transport systems capable of transcontinental reach.
In one embodiment of the invention, a flexible dispersion compensator that is settable to a precise dispersion compensation value is disclosed.
In another embodiment of the invention a configurable dispersion compensation trimmer is disclosed.
In another embodiment of the invention, a configurable dispersion compensation trimmer with automatic detection of configuration is disclosed.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments described herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
In a DWDM system, different channels operating at distinct carrier frequencies are multiplexed using a multiplexer 121. Such multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. After multiplexing, the optical signals are coupled into the transport fiber for transmission to the receiving end of the link. The total link distance may in today's optical transport systems be two different cities separated by continental distances, from 1000 km to 6000 km, for example. To successfully bridge these distances with sufficient optical signal power relative to noise, the total fiber distance is separated into fiber spans 122, and the optical signal is periodically amplified using an in line optical amplifier 123 after each fiber span 122. Typical fiber span distances between optical amplifiers 123 is 50-100 km. Thus, for example, 30 100 km spans would be used to transmit optical signals between points 3000 km apart. Examples of inline optical amplifers 123 include erbium doped fiber amplifiers (EDFAs) and semiconductor optical amplifiers (SOAs).
Often, there is also included dispersion compensation modules 124 with the in line amplifiers 123. These dispersion compensator modules 124 adjust the phase information of the optical pulses in order to compensate for the chromatic dispersion in the optical fiber while counteracting the role of optical nonlinearities in the optical fiber.
At the receiving end of the link, the optical channels are de-multiplexed using a demultiplexer 125. Such de-multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. Each channel is then optically coupled to separate optical receivers 126. The optical receiver 126 is typically comprised of a semiconductor photodetector and accompanying electronics.
It is a purpose of this invention to teach improved dispersion compensators. An improved apparatus achieving precise dispersion compensation in a fiber span is disclosed. In particular, the invention teaches a configurable dispersion compensation trimmer with automatic detection of configuration.
It should be noted that
Other common variations include the presence of post-amplifiers and pre-amplifers just before and after the multiplexer 121 and de-multiplexer 125. Another variation that may be employed is the optical dropping and adding of channels at cities located in between the two end cities. The invention disclosed herein, would find application in any of these variations, as well as others. For example, the improved dispersion compensator module taught herein would benefit short reach, or metro applications which may not include an inline optical amplifier 123.
In
The connectors on the connectorized inputs and outputs may further be specified to enable a large degree of interconnectivity as will be taught below, in reference to
In a preferred embodiment standard dispersion compensator 202 is comprised of a dispersion element that will correct for approximately 70-100% of the required dispersion in an average fiber span 122. In a preferred embodiment this dispersion element comprises a length of dispersion compensating fiber. This dispersion element is positioned between main input 201 and internal output 205, or this dispersion element is positioned between internal input 207 and main output 203. In this embodiment short dispersion trim section 212, intermediate dispersion trim section 214 and long dispersion trim section 216 are comprised of additional lengths of dispersion compensating fiber.
In an alternate embodiment standard dispersion compensator 202 is comprised of a dispersion element that will correct for approximately 100-130% of the required dispersion in an average fiber span 122. In a preferred embodiment this dispersion element comprises a length of dispersion compensating fiber. This dispersion element is positioned between main input 201 and internal output 205, or this dispersion element is positioned between internal input 207 and main output 203. In this alternate embodiment short dispersion trim section 212, intermediate dispersion trim section 214 and long dispersion trim section 216 are comprised of lengths of SMF-28 fiber.
In a preferred embodiment, the length of fiber in short dispersion trim section 212 provides amount of dispersion equal to δ, intermediate dispersion trim section 214 provides amount of dispersion equal to 2δ, and long dispersion trim section 216 provides amount of dispersion equal to 4δ. It should be noted that more than three trim sections can be included in the dispersion compensation trimmer. If so, the lengths of fiber in the trimmers can be dictated by the series:
20δ,21δ,22δ . . . 2n−1δ
where “n” is the number of trimmers. The result is that through correct permutation an offset dispersion of δ, 2δ, 3δ . . . 2nδ can be achieved in general. Of course, no dispersion trimming is achieved when the trimmers are bypassed.
In an alternate preferred embodiment, short dispersion trim section 212, intermediate dispersion trim section 214 and long dispersion trim section 216 are disposed vertically on top of each other in order to conserve space. As shown in
The use of the standard dispersion compensator module 202 and dispersion compensator trimmer 210 may now be understood in reference to
In
In
As shown in
For example, one end of long dispersion trim section electronic output connection 431 is mechanically attached to long dispersion trim section output 231 and the other end of long dispersion trim section electronic output connection 431 is electrically connected to resistor 410 and voltage source 402. Similarly, one end of long dispersion trim section electronic input connection 429 is mechanically attached to long dispersion trim section input 229 and the other end of long dispersion trim section electronic input connection 429 is electrically connected to resistor 412 and resistor 410. Similarly, one end of intermediate dispersion trim section electronic output connection 427 is mechanically attached to intermediate dispersion trim section output 227 and the other end of intermediate dispersion trim section electronic output connection 427 is electrically connected to resistor 414 and resistor 412. Similarly, one end of intermediate dispersion trim section electronic input connection 425 is mechanically attached to intermediate dispersion trim section input 225 and the other end of intermediate dispersion trim section electronic input connection 425 is electrically connected to resistor 416 and resistor 414. Similarly, one end of short dispersion trim section electronic output connection 423 is mechanically attached to short dispersion trim section output 223 and the other end of short dispersion trim section electronic output connection 423 is electrically connected to resistor 418 and resistor 416. Similarly, one end of short dispersion trim section electronic input connection 421 is mechanically attached to short dispersion trim section input 221 and the other end of short dispersion trim section electronic input connection 421 is electrically connected to resistor 418 and ground reference 404.
The dispersion compensation trimmer section with automatic detection 400 further comprises voltage readout position 441, voltage readout position 443, voltage readout position 445, voltage readout position 447, voltage readout position 449, and voltage readout position 451. Voltage readout position 441 is situated between ground reference 404 and resistor 418. Voltage readout position 443 is situated between resistor 418 and resistor 416. Voltage readout position 445 is situated between resistor 416 and resistor 414. Voltage readout position 447 is situated between resistor 414 and resistor 412. Voltage readout position 449 is situated between resistor 412 and resistor 410. Voltage readout position 451 is situated between resistor 410 and DC power supply 402.
The operation of the dispersion compensation trimmer section with automatic detection may now be described in reference to
In
Switchable mirror 516 is disposed between internal output 205 and short dispersion trim section input 221. When switchable mirror 516 is set out of the optical plane the optical signal exiting internal output 205 is coupled into short dispersion trim section input 221. When switchable mirror 516 is set in the optical plane the optical signal exiting internal output 205 is incident on mirror 516 and is directed away from short dispersion trim section input 221 and towards the in optical plane positions of switchable mirror 514, switchable mirror 512 and switchable mirror 510.
Switchable mirror 514 is disposed between short dispersion trim output 223 and intermediate dispersion trim input 225. When switchable mirror 514 is set out of the optical plane any optical signal exiting short dispersion trim section output 223 is coupled into intermediate dispersion trim section input 225 and any optical signal propagating from the in optical plane position of switchable mirror 516 will propagate towards switchable mirror 512 and switchable mirror 510. When switchable mirror 514 is set in the optical plane any optical signal propagating from in optical plane position of mirror 516 will be directed into intermediate dispersion trim section input 225 and any optical signal exiting short dispersion trim section output 223 will be directed toward the in optical plane positions of switchable mirror 512 and switchable mirror 510.
Switchable mirror 512 is disposed between intermediate dispersion trim output 227 and long dispersion trim input 229. When switchable mirror 512 is set out of the optical plane any optical signal exiting intermediate dispersion trim section output 227 is coupled into long dispersion trim section input 229 and any optical signal propagating from the in optical plane position of switchable mirror 516 or switchable mirror 514 will propagate towards switchable mirror 510. When switchable mirror 512 is set in the optical plane, any optical signal propagating from “in” optical plane position of mirror 516 or 514 will be directed into long dispersion trim section input 229 and any optical signal exiting intermediate dispersion trim section output 227 will be directed toward the in optical plane positions of switchable mirror 510.
Switchable mirror 510 is disposed between long dispersion trim output 231 and internal input 207. When switchable mirror 510 is set out of the optical plane the optical signal exiting long dispersion trim section output 231 is coupled into internal input 207. When switchable mirror 510 is set in the optical plane the optical signal propagating from any of switchable mirror 516, switchable mirror 514 or switchable mirror 512 will be coupled into internal input 207.
Therefore, by setting the positions of switchable mirror 516, switchable mirror 514, switchable mirror 512 and switchable mirror 510 any dispersion trim value of
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application claims priority to Provisional Application Ser. No. 60/385,948, entitled “Configurable Dispersion Compensation Trimmer with Automatic Detection of Configuration,” by Guo, et al., filed Jun. 4, 2002, the content of which is hereby incorporated by reference herein in its entirety. This application is related by subject matter to U.S. Pat. No. 6,965,738, issued Nov. 15, 2005; U.S. patent application Ser. No. 11/179,134, filed Jul. 11, 2005; and U.S. patent application Ser. No. 11/515,331, filed Aug. 31, 2006.
Number | Name | Date | Kind |
---|---|---|---|
4229831 | Lacher | Oct 1980 | A |
4535459 | Hogge, Jr. | Aug 1985 | A |
4636859 | Vernhet et al. | Jan 1987 | A |
4710022 | Soeda et al. | Dec 1987 | A |
5224183 | Dugan | Jun 1993 | A |
5225922 | Chraplyvy et al. | Jul 1993 | A |
5267071 | Little et al. | Nov 1993 | A |
5299048 | Suyama | Mar 1994 | A |
5321541 | Cohen | Jun 1994 | A |
5455703 | Duncan et al. | Oct 1995 | A |
5559625 | Smith et al. | Sep 1996 | A |
5608562 | Delavaux et al. | Mar 1997 | A |
5613210 | Van Driel et al. | Mar 1997 | A |
5726784 | Alexander et al. | Mar 1998 | A |
5737118 | Sugaya et al. | Apr 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5790285 | Mock | Aug 1998 | A |
5812290 | Maeno et al. | Sep 1998 | A |
5877881 | Miyauchi et al. | Mar 1999 | A |
5903613 | Ishida | May 1999 | A |
5914794 | Fee | Jun 1999 | A |
5914799 | Tan | Jun 1999 | A |
5936753 | Ishikaawa | Aug 1999 | A |
5940209 | Nguyen | Aug 1999 | A |
5963350 | Hill | Oct 1999 | A |
5995694 | Akasaka et al. | Nov 1999 | A |
6005702 | Suzuki et al. | Dec 1999 | A |
6005997 | Robinson et al. | Dec 1999 | A |
6021245 | Berger et al. | Feb 2000 | A |
6038062 | Kosaka | Mar 2000 | A |
6043914 | Cook et al. | Mar 2000 | A |
6075634 | Casper et al. | Jun 2000 | A |
6078414 | Iwano | Jun 2000 | A |
6081360 | Ishikawa et al. | Jun 2000 | A |
6084694 | Milton et al. | Jul 2000 | A |
6088152 | Berger et al. | Jul 2000 | A |
6108074 | Bloom | Aug 2000 | A |
6122095 | Fatehi | Sep 2000 | A |
6151334 | Kim et al. | Nov 2000 | A |
6157477 | Robinson | Dec 2000 | A |
6160614 | Unno | Dec 2000 | A |
6163392 | Condict et al. | Dec 2000 | A |
6163636 | Stentz et al. | Dec 2000 | A |
6173094 | Bowerman et al. | Jan 2001 | B1 |
6177985 | Bloom | Jan 2001 | B1 |
6198559 | Gehlot | Mar 2001 | B1 |
6229599 | Galtarossa | May 2001 | B1 |
6236481 | Laor | May 2001 | B1 |
6236499 | Berg et al. | May 2001 | B1 |
6246510 | BuAbbud et al. | Jun 2001 | B1 |
6259553 | Kinoshita | Jul 2001 | B1 |
6259554 | Shigematsu et al. | Jul 2001 | B1 |
6259693 | Ganmukhi et al. | Jul 2001 | B1 |
6259845 | Sardesai | Jul 2001 | B1 |
6272185 | Brown | Aug 2001 | B1 |
6275315 | Park et al. | Aug 2001 | B1 |
6288811 | Jiang et al. | Sep 2001 | B1 |
6288813 | Kirkpatrick et al. | Sep 2001 | B1 |
6307656 | Terahara | Oct 2001 | B2 |
6317231 | Al-Salameh et al. | Nov 2001 | B1 |
6317255 | Fatehi et al. | Nov 2001 | B1 |
6320687 | Ishikawa | Nov 2001 | B1 |
6323950 | Kim et al. | Nov 2001 | B1 |
6327060 | Otani et al. | Dec 2001 | B1 |
6356384 | Islam | Mar 2002 | B1 |
6359729 | Amoruso | Mar 2002 | B1 |
6370300 | Eggleton et al. | Apr 2002 | B1 |
6388801 | Sugaya et al. | May 2002 | B1 |
6393188 | Jeong et al. | May 2002 | B1 |
6396853 | Humphrey et al. | May 2002 | B1 |
6417961 | Sun et al. | Jul 2002 | B1 |
6501892 | Okuno et al. | Dec 2002 | B1 |
6501982 | Ruchti et al. | Dec 2002 | B1 |
6504973 | DiGiovanni et al. | Jan 2003 | B1 |
6519082 | Ghera et al. | Feb 2003 | B2 |
6757468 | Bickham et al. | Jun 2004 | B2 |
6865311 | Li et al. | Mar 2005 | B2 |
6943935 | Bickham et al. | Sep 2005 | B2 |
6965738 | Eiselt et al. | Nov 2005 | B2 |
20010005271 | Leclerc et al. | Jun 2001 | A1 |
20010007605 | Inagaki et al. | Jul 2001 | A1 |
20010009468 | Fee | Jul 2001 | A1 |
20010014104 | Bottorff et al. | Aug 2001 | A1 |
20020012152 | Agazzi et al. | Jan 2002 | A1 |
20020015220 | Papernyl et al. | Feb 2002 | A1 |
20020034197 | Tornetta et al. | Mar 2002 | A1 |
20020044317 | Gentner et al. | Apr 2002 | A1 |
20020044324 | Hoshida et al. | Apr 2002 | A1 |
20020048287 | Silvers | Apr 2002 | A1 |
20020051468 | Ofek et al. | May 2002 | A1 |
20020063948 | Islam et al. | May 2002 | A1 |
20020064181 | Ofek et al. | May 2002 | A1 |
20020075903 | Hind | Jun 2002 | A1 |
20020080809 | Nicholson et al. | Jun 2002 | A1 |
20030026533 | Danziger et al. | Feb 2003 | A1 |
20030047524 | Sato et al. | Mar 2003 | A1 |
20040042067 | Eiselt | Mar 2004 | A1 |
20040208607 | Eiselt et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
01115230 | May 1989 | JP |
02238736 | Sep 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20040047550 A1 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
60385948 | Jun 2002 | US |