This invention relates generally to RFID transponder systems and more particularly to RFID transponders for use in electronic toll collection systems that are mounted externally on a vehicle.
RFID (radio frequency identification) tags have been used for highway toll collection, railroad cars and multi-modal shipping container tracking, inventory control, access control, fleet maintenance, hospital access, parking lots access, and manufacturing lines for decades. Externally mounted RFID tags have been offered by various RFID manufactures including AWID, Intermec, and TransCore, including license plate tags for toll collections and rail tags for railroad applications with high power radar signals. Generally, tags and tag mounting hardware are designed for a specific application and mounting arrangement. New applications require new tag configurations. Rarely are tags interchangeable onto equipment or vehicles having differing mounting surfaces. Thus, a manufacturer must produce and stock a wide variety of tags for the various applications and mounting surfaces. The result is high inventory costs because each application requires the stocking of a different tag type.
An example of an application where variety of mounting surfaces must be accommodated is externally mounted vehicle tags. Conventional electronic toll tags are mounted internally, usually on a windshield. Mounting of the tag inside the cab environment of the vehicle can be done with low cost adhesive strips and hook and lock (Velcro®) style fasteners. The fastening is not critical in that environment since the tag will still be in the vehicle even if it separates from the fastening surface. This is not the case for external mounting. There, the tag must be weather-tight and securely fastened to survive shock, vibration, moisture, humidity and temperature extremes in addition to thwarting vandalism and theft of the tag. Unlike the cab environment, where the tag can be conveniently fasted to a dashboard or windshield with minimal difficulty, a external tag must be more securely fastened. Usually this will be to a metal vehicle part, such as a bumper, fender or license plate. The available external mounting surfaces on different vehicles each present different attachment problems. The metal of a fender, bumper or license plate presents an additional challenge in that it can severely alter the impedance of the tag's antenna. One application where internal mounting is not an option is a motorcycle. A mounted tag on a motorcycle is always an externally mounted tag and must survive the aforementioned elements. With the possible exception of the license plate, there is no common surface configuration that is universal to all motorcycles for which a single “one size fits all” tag mount would work.
An externally-mounted tag is necessary for motorcycles and also for cars with metalized windshields. Motorcycles and metalized windshield cars present different engineering challenges. Vehicles having metalized windshields come with varying locations and the space availability to install a tag, for example, because some vehicles have two windshield wipers, while others come with one. With respect to motorcycles, there are a few hundred different motorcycle styles with a wide variation for the usable space where a tag can be installed. Many motorcycles have non-metallic components such as cowlings, fenders and windshields that would be likely tag mounting locations.
Tag performance depends on the operating frequency, physical size, the electrical properties of the surrounding material and the gap between the antenna element and metallic ground planes. For instance, a dipole antenna (
Therefore it would be desirable that an externally mounted tag have following features; Mechanically configurable by inter-locking the ROD assembly with the bracket; Electrically configurable so that different antenna with the same mounting hole positions would be over-molded with the same outside plastics for different applications which might require a different shape of antenna; As small and thin as possible; Cost effective to cover a wide range of applications; Narrow and long dipole shape so that the tags can be used on the most motorcycles with various and limited mounting space; Designed for mounting directly on metal or other materials; Mechanically strong enough to be operational under the severe environmental conditions of vibration, temperature, ultraviolet light and aging; Usable for vehicles, containers and other assets; Hermetically sealed assembly housing the antenna assembly in protective plastic; and Adhesive backing for simple installation or fastened by screws.
An alternative approach to specialized tags for each different mounting arrangement is to produce a universal tag insert housing the tag electronics in a single type casing and a number of mounting packages into which the tag fits. Because the main cost is in the tag electronics, this concept reduces the stocking burden on manufacturers and distributors of having many types of tags. Instead, the more expensive component, the electronics, is a universal component that can be applied to a host of applications. The only component that must be stocked in a variety of configurations then becomes the mounting package into which the tag fits.
Thus, a need exists for an RFID tag that combines a universal electronics assembly that is housed in a variety of enclosures, each enclosure being adapted for mounting to a different structure, such as vehicles with differing mounting surface configurations, different kinds of vehicles or differing applications altogether.
In an embodiment of the invention there is disclosed an RFID tag having an electronics assembly (an RFID Tag insert) and a tag housing (bracket) having mounting points for mounting the tag housing to an object. The electronics assembly is adapted to mount into a plurality of differently styled tag housings wherein the tag housings have different configurations of mounting points for mounting the tag housings to objects having different shapes.
In a further embodiment the tag housing mounting points include holes for receiving threaded fasteners. In a further embodiment, the tag housing mounting points include protruding members adapted to fit into mating sockets or holes. In a further embodiment, the electronics assembly includes a printed circuit board, an antenna and an application specific integrated circuit for receiving and transmitting RF signals, and the antenna is formed on the printed circuit board. In a further embodiment, the tag housing comprises an antenna reflector. In a further embodiment the said tag housing is configured to place said electronics assembly a predetermined distance from a metallic mounting surface such that said metallic mounting surface acts as an antenna reflector. In a further embodiment the electronics assembly is incorporated into the tag housing by mechanical interlocking (i.e. snap-in). In a further embodiment, the electronics assembly is attached to the tag housing with a potting material that acts as a dielectric. In a further embodiment, the electronics assembly includes an antenna designed to be compatible with a predetermined housing and object to which the housing is attached. In another embodiment, the tag is adapted for use on a vehicle windshield having a metal film laminate and the metal film laminate acts as an antenna reflector for the tag.
In another embodiment, there is disclose a method of manufacturing an RFID tag including the steps of assembling an electronics assembly having predetermined dimensions; and placing the electronics assembly in a tag housing, wherein the tag housing is one of a plurality of tag housings compatible with the electronics assembly dimensions, the plurality of tag housings have different external dimensions and mounting points for mounting the tag housings and electronics assemblies to objects having different shapes.
In another embodiment, there is disclosed a method of applying an RFID tag to a plurality of objects having different shapes and electrical characteristics. The method includes the steps of manufacturing a plurality of types of RFID tag electronics modules, wherein each type has the same outer dimensions as the other types but different electrical characteristics; manufacturing a plurality of types of tag housings wherein each type is adapted for accepting any of the RFID tag electronic module types, and wherein particular housing types are compatible with the shape and electrical characteristics of a particular one of the plurality of objects; and selecting one of the electronics modules and one of the tag housings that are physically and electrically compatible with a particular one of the objects.
With reference to
This utility application claims the benefit under 35 U.S.C. §119(e) of Provisional Application Ser. No. 61/187,252 filed on Jun. 15, 2009 and entitled Configurable External RFID Tag, the entire disclosure of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61187252 | Jun 2009 | US |