Referring to
Referring now to
Referring again to
Typically, conventional communication connectors 105–150 are pre-colored depending upon the functional connection (e.g., line-out, line-in, mic-in). For example, a conventional computer system typically has three jacks 120–130 providing a line-out connection, a line-in correction and a mic-in connection. The line-out is typically utilized to provide left and right audio output channels to drive a set of speakers. The line-in connection is typically utilized to receive data from peripheral devices such as mini disks. The mic-in connection is typically utilized to receive audio input from a microphone. The jacks 120–130 providing mic-in, line-out, and line-in functions may be pre-colored red, green and blue respectively. The pre-colored communication connectors 105–150 are intended to simplify connectivity of peripheral components to the device.
In order to reduce the size and/or cost of electronic devices 100, such as computers, game consoles, and personal entertainment centers, it may desirable to reconfigure one or more communication connectors 105–150. However, if one or more of the communication connectors 105–150 are re-configured, the pre-colored communication connectors may no longer correspond to the new communication function provided by the communication connector. Thus, the pre-color communication connectors 105–150 utilized in combination with re-configurability may make connectivity more difficult for users.
Embodiments of the present invention are directed toward an improved communication connector. In one embodiment, the communication connector includes a housing having an opening, a light source, and a first and second interconnect. The light source is disposed in the housing and is operable to emit illumination. The opening is operable for removably receiving a mating communication connector. The first interconnect is operable to couple a communication signal between a device and a peripheral component. The second interconnect is operable to couple an indicator signal to the light source.
In another embodiment, the communication connector may be a jack. The jack includes an insulative housing having a cylindrical opening, a light source, and a first and second electrical interconnect. The insulative housing includes a body portion and a head portion. The cylindrical opening extends through the head portion and partially into the body portion of the insulative housing. The light source is disposed in the insulative housing proximate the head portion. The first electrical interconnect includes a terminal portion for fixedly connecting the jack to a device. The first electrical interconnect also includes a contact portion consisting of a resilient conductive element disposed in the cylindrical opening for engaging a plug. The second electrical interconnect couples an indicator signal to the light source.
Another embodiment provides a method of configuring a plurality of jacks. The method includes receiving an identifier of a peripheral component to be added to a device. A jack to be used to connect the peripheral component to the device is illuminated. The jack is also configured to provide the appropriate audio function.
Advantageously, embodiments simplify connectivity of peripheral components to the device. Embodiments may advantageously reduce the cost of the device by reducing the number of jacks in the device. Embodiments may also advantageously reduce the form factor of the device by reducing the number of jacks in the device. Embodiments may also advantageously free-up area in the device previously occupied by conventional art audio jacks for use by additional circuits in the device.
Embodiments of the present invention are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
Reference will now be made in detail to the embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it is understood that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Referring to
A first interconnect 335 receives an indicator signal for selectively controlling illumination 345 (e.g., color, brightness, etc.) emitted by the housing 310–315. A second interconnect 320 couples a communication signal between a device (e.g., computer, game console, personal entertainment center) and a peripheral component (e.g., speaker(s), microphone).
Although embodiments of the present invention are described herein with reference to a jack, it is appreciated that the embodiments of the present invention may be adapted for use with numerous other types of communication connectors, such as RCA connectors, coaxial connectors, USB connectors, FireWire connectors, DVI connectors, HDMI connectors, CAT5 connectors, telephone connectors, serial port connectors, RS-232 connectors, parallel port connectors, IEEE 1284 connectors, Centronics 36 connectors, DB25 port connectors, PS/2 port connectors, Ethernet connector, fiber optic cable connectors and the like. Although embodiments of the preset invention are described herein with reference to electromagnetic transmitted audio signals, it is appreciated that embodiments of the present invention may be adapted for use with any other communication means, such as electromagnetic transmitted video signals, electromagnetic transmitted data communication signals, optical transmitted audio signals, optical transmitted video signals, optical transmitted data communication signals and/or the like. It is also appreciated that illuminated communication connectors, in accordance with embodiments of the preset invention, are particularly advantageous for connecting peripheral components to a given device when the communication channel between the device and the peripheral component is a simplex communication link (e.g., communication in one direction).
Referring now to
A first set of interconnects 335–336 couple one or more indicator signals (e.g., brightness, color, etc.) and/or supply potentials (e.g., source and ground) to the light source 350. A second set of interconnects 321–332 couple one or more communication signals (e.g., audio out, right channel, left channel, etc.) and/or supply potentials (e.g., source and ground) between a device (e.g., computer, game console, personal entertainment center, media center PC, portable wireless appliance/terminal) and a peripheral component (e.g., speaker(s), microphone).
In one implementation, one or more of electrical interconnects may each include a terminal portion 321, 326, 331 and a contact portion 322, 327, 332. The contact portion 322, 327, 332 may be a resilient conductive element disposed in the cylindrical opening 340. The contact portion 322, 327, 332 engages a particular portion of the plug when inserted into the cylindrical opening 340. The terminal portion 321, 326, 331 may be a conductive element for fixedly coupling to the device.
In one implementation, a first one of the electrical interconnects 321–322 may operably receive a first audio signal (e.g., left channel). A second one of the electrical interconnects 326–327 may operably receive a second audio signal (e.g., right channel). A third one of the electrical interconnects 335 may operably receive an indicator signal. The plurality of electrical interconnects 321–335 may also include a fourth electrical interconnect 331–332, for operably coupling a ground potential to the peripheral component. The plurality of electrical interconnects 335 may also include a fifth electrical interconnect 336 for operably coupling a ground potential to the light source 350.
In one implementation, the indicator signal may cause the light source 350 to emit a steady illumination or a time-varying (e.g., flashing) illumination to prompt a user to plug a particular peripheral component into the jack 300. The light source 350 may be a light emitting diode (LED), one or more LEDs, a multi-color LED or the like. In one implementation, the head portion 315 of the insulative body 310–315 may include a lens for directing the light emitted there from, a diffraction grating for dispersing the light emitted there from, a filter for selectively emitting a particular color of light, and/or the like.
Referring now to
In a first exemplary implementation, the multiple audio jack assembly 400 is to be configured to provide six speaker surround sound output. A first one of the jacks 430, 460–465 may be configured to operably output left and right front audio signals. A first portion of the insulative housing 415, proximate the first jack 430, 460–465, may be configured to emit a first color (e.g., red) of light. A second one of the jacks 435, 470–475 may be configured to operably output left and right rear audio signals. A second portion of the insulative housing 420, proximate the second jack 435, 470–475, may be configured to emit a second color (e.g., green) light. A third one of the jacks 440, 480–485 may be configured to operably output center and subwoofer audio signals. A third portion of the insulative housing 425, proximate the third jack 440, 480–485, may be configured to emit a third color (e.g., blue) of light. The red, green and blue lights provide optical prompts to insert the applicable plug of the appropriate speakers.
In another exemplary implementation, the multiple audio jack assembly 400 is to be configured to provide a stereo speaker output and a microphone input (not shown). To start, a first one of the jacks may be configured to operably output left and right front audio signals. A first portion of the insulative housing proximate the first jack may be configured to emit a flashing light until insertion of the stereo speaker plug into the jack is detected (e.g., impedance sensing). A second one of the jacks may be configured to operably receive a microphone audio signal. Upon detection that the stereo speakers have been plugged in, a second portion of the insulative housing proximate the second jack may be configured to emit a flashing light until insertion of the microphone plug into the second jack is detected. The third jack may not configured to provide an input or output audio signal and the insulative housing proximate the second jack may not be configured to emit light.
Referring now to
Referring now to
It is appreciated that the above described methods for configuring a plurality of audio jacks may be implemented as independent methods of configuring a particular device, as alternative methods of configuring a particular device, or as a combined method of configuring a particular device.
Referring now to
In one implementation, a user indicates that he or she wants to attach surround sound speakers to a device by selecting the corresponding entry from the pull-down menu 610 of the graphical user interface 600. The graphical user interface 600 in response to the indication that the user wants to add surround sound speakers to the device, may then provide instructions for attaching the surround sound speakers 625–630. The instructions may state that: the left and right front speakers are to be plugged into the red illuminated jack; the left and right rear speakers are to be plugged into the green illuminated jack; and the center and sub-wofer speakers are to be plugged into the blue illuminated jack. The user's selection of surround sound speakers from the drop down menu 610 may also cause the device to configure: the red illuminated jack to operably output left and right front audio signals the green illuminated jack to operably output left and right rear audio signals; and the blue illuminated jack to operably output center and subwoofer audio signals. After a period of time or upon detection that the speakers have been plugged into the jacks, the illumination of the jacks may be turned off.
Referring now to
The computer system 700 also includes one or more peripheral components 740, 750, 760, 770 (e.g. display, keyboard, pointing device, speaker, microphone, network interface card, and the like) coupled to the bus 710. One or more peripheral components 740, 750 may be coupled to the bus 710 by one or more conventional art connectors 745, 755. The conventional art connectors 745, 755 provide a communication signal transmission function. One or more peripheral components 760, 770 are coupled to the bus 710 by one or more configurable lighted connectors 765, 775. The configurable lighted connectors 765, 775 provide a communication signal transmission function and a configuration indicator function.
Certain processes and steps of the present invention are realized as a series of instructions (e.g. object code) that reside on a computer-readable medium such as the memory unit 730, and are executed by the processor 720. When executed, the instructions cause the processor 720 to provide an operating system and one or more application programs. One of the applications may provide for configuring the one or more configurable lighted connectors 765, 775. In one implementation, the application for configuring the configurable lighted connectors 765, 775 may provide the user with a graphical user interface. In one implementation, a user may specify a peripheral component to be added utilizing the graphical user interface. Upon receipt of the identification of a peripheral component to be added, an appropriate connector is illuminated. In one implementation, hardware and/or the application for configuring the configurable lighted connectors 765, 775 sends an indicator signal to the appropriate connector for illuminating the connector (e.g., steady illumination, flashing illumination, flashing followed by steady illumination, etc.). The graphical user interface may also provide instructions for inserting the mating connector of the peripheral component into the appropriate connector. The application for configuring the configurable lighted connectors 765, 775 also configures the appropriate connector to provide the appropriate audio function (e.g., audio output, audio input, etc.). In one implementation, a particular color of light is output by the appropriate connector to indicate the audio function provided by the configured lighted connector (e.g., red for audio output, blue for audio input, etc.).
Alternatively or in combination with the graphical user interface, the application may interrogate one or more of the configurable lighted connectors 765, 775 to detect the presence of a new peripheral component. In one implementation, interrogating the configurable lighted connectors 765, 775 may include impedance sensing. The application for configuring the configurable lighted connectors 765, 775 causes the connector, in which a new peripheral component has been inserted, to be illuminated. In one implementation, the illumination may act as a visual confirmation of detection of the peripheral component. The application for configuring the configurable lighted connectors 765, 775 also configures the connector to provide the appropriate audio function (e.g., audio output, audio input, etc.). In one implementation, a particular color of light is output by the connector, in which a new peripheral component has been inserted, to indicate the audio function provided by the configured lighted connector (e.g., red for audio output, blue for audio input, etc.).
Embodiments advantageously simplify connectivity of peripheral components to the device for the user. Embodiments may advantageously reduce the cost of the device by reducing the number of jacks in the device. Embodiments may also advantageously reduce the form factor of the device by reducing the number of jacks in the device. Embodiments may also advantageously free-up available device surface area previously occupied by conventional art audio jacks for use by additional circuits in the device.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4978317 | Pocrass | Dec 1990 | A |
5601451 | Driones et al. | Feb 1997 | A |
5704802 | Loudermilk | Jan 1998 | A |
5885100 | Talend et al. | Mar 1999 | A |
5924889 | Wang | Jul 1999 | A |
6224408 | Wu | May 2001 | B1 |
6224409 | Chang | May 2001 | B1 |
6227905 | Tsai et al. | May 2001 | B1 |
6234833 | Tsai et al. | May 2001 | B1 |
6257934 | Gong et al. | Jul 2001 | B1 |
6346013 | Zhang et al. | Feb 2002 | B1 |
6364717 | Lin | Apr 2002 | B1 |
6409530 | Zhao et al. | Jun 2002 | B1 |
6482044 | Ma et al. | Nov 2002 | B1 |
6491533 | Costello et al. | Dec 2002 | B2 |
6561847 | Xiang et al. | May 2003 | B1 |
6568963 | Zhang et al. | May 2003 | B2 |
6572402 | Lin | Jun 2003 | B2 |
6575793 | Li et al. | Jun 2003 | B1 |
6618636 | Sakai et al. | Sep 2003 | B1 |
6688908 | Wallace | Feb 2004 | B2 |
20040242087 | Hoshina | Dec 2004 | A1 |