The present invention relates to the field of illumination devices and, more specifically, to the field of light-emitting diode (LED)-based linear illumination devices, and associated methods.
Linear-type illumination devices typically are characterized by multiple light sources mounted and spaced apart from one another along a length of an elongate substrate. Such illumination devices are often designed to present a low profile when installed flush to an existing surface, such as a wall.
Current linear illumination device designs commonly consist of multiple members that often are complex to manufacture and assemble. For example, linear illumination device components may include light sources, circuit boards, power supplies, heat sinks, support structures, electrical connectors, external housings, enclosures/reflectors, and inter-member fasteners. Design complexity may negatively impact both the manufacturability and the ease of installation of linear illumination devices.
More specifically, design complexity may complicate volume manufacturing of illumination products, which often involves collaboration between Original Equipment Manufacturers (OEMs) and Value Added Resellers (VARs). As used herein, an OEM is a company whose capital goods are used as components in other companies' finished consumer goods. A VAR is a company that builds and sells a finished consumer good using an OEM's components. The OEM often will customize component designs based on a VAR's requirements. Complexity of design in a component and/or a finished consumer good often results in error-prone and time-consuming assembly processes, and may make separation of distinct product manufacturing responsibilities among OEMs and VARs unworkably difficult.
A major design decision that may significantly impact illumination product cost and complexity is selection of the type of light sources to include in the product. For example, digital lighting technologies such as light-emitting diodes (LEDs) offer significant advantages over legacy light sources such as incandescent and fluorescent lamps. These advantages include, but are not limited to, better lighting quality, longer operating life, and lower energy consumption. Consequently, LED-based lamps increasingly are being used not only in original product designs, but also in products designed to replace legacy light sources in conventional lighting applications such as linear lighting devices. However, a number of design challenges and costs are associated with replacing traditional lamps with LED illumination devices. These design challenges include thermal management, installation ease, and manufacturing cost control.
The complex designs of current LED-based linear illumination devices often suffer from high material and component costs, and also from cumbersome component configurations that may sacrifice lighting adjustability and limit customization options. Design decisions that fix the positions or interrelationships between members of a linear illumination device can compromise the ability of a manufacturer and/or an installer to tailor or reconfigure the device to meet a consumer's lighting performance requirements.
The lighting industry is experiencing advancements in LED applications, some of which may be pertinent to improving the design of linear illumination devices.
U.S. Pat. No. 7,815,341 to Steedy et al. discloses a low-profile strip illumination device having a substrate supporting an elongate heat conductor as well as positively and negatively charged elongate rails. A plurality of LEDs are mounted so as to be powered by the elongate rails, and so as to define a heat flow path from each LED through the elongate heat conductor and to the environment. However, relying on separate components for mechanical support (i.e., the substrate) and for thermal management (i.e., the elongate heat conductor) adds to design complexity for the disclosed device.
U.S. Pat. No. 8,267,540 to Klus discloses a linear lighting apparatus that includes an elongated element having a substantially U-shaped cross section and an LED strip placed longitudinally along a bottom of the elongated element. However, the depth of the U-shape elongated element presumes recessed mounting, thereby precluding low-profile flush-mounting applications. Also, the placement of LEDs on a common strip prevents reconfiguration and/or replacement of subsets of the LEDs employed in the linear lighting apparatus.
U.S. patent application Ser. No. 11/026,816 by Reo et al. discloses a linear lighting apparatus having a plurality of LEDs, a plurality of optical assemblies, and a housing. The apparatus housing is configured to hold a secondary optical assembly and to dissipate radiated energy from the LEDs. However, the depth of the U-shaped housing suffers the same recessed mounting disadvantage as the Klus implementation. Furthermore, delegating primary mechanical support of the optical assemblies to an LED tray while relying on the housing to provide primary thermal management for the optical assemblies results in a component proliferation problem similar to that exhibited by the Steedy implementation.
Accordingly, a need exists for a low-profile, LED-based linear illumination device that is less complex in design, less expensive to manufacture and assemble, reconfigurable during assembly and post-installation, and efficient at heat dissipation.
This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
With the foregoing in mind, embodiments of the present invention are related to a linear light assembly used to produce a configurable beam of light emanating along a length of a luminaire. Embodiments of the present invention advantageously may provide an LED-based linear illumination device that is less complex in design, is less expensive to manufacture, is reconfigurable during assembly and post-installation, and is efficient with respect to heat dissipation.
These and other benefits, features and advantages are preferably provided by a linear light assembly according to embodiments of the present invention that may include an elongate tray and a plurality of moveable lighting packages. The single-member, dual-purpose elongate tray may be configured to be employed advantageously to provide both mechanical support and heat dissipation during the operation of the moveable lighting packages. Each of the moveable lighting packages may be reconfigured during assembly and post-installation to advantageously adjust the direction of light emitted by at least one light source. Modularization of other components designed to mount to the elongate tray, including power supplies and custom finishes, may advantageously facilitate collaborative manufacturing of linear-type illumination devices among participating OEMs and VARs. More specifically, modularization may equip an OEM to efficiently and inexpensively produce a universal linear fixture, deliverable in various states of completeness of assembly and staged for finishing by several different VARs. VARs, in turn, may use universal linear fixtures produced by OEMs to tailor finished linear-type illumination devices for consumption by diverse customers.
The elongate tray may comprise a medial channel portion, and first and second flange portions. The medial channel portion may comprise a track member and two opposing rim members. The track member may have a substantially planar main body with generally flat front and rear sides and with upper and lower edges. The two opposing rim members may be positioned adjacent to the upper and lower edges of the track member. Each rim member may be longitudinally coextensive with the track member, and may be configured to project outward in a generally perpendicular direction with respect to the front side of the track member. The medial channel portion and the first and second flange portions may be integrally molded as a monolithic unit.
Each of the first and second flange portions may have a substantially U-shaped cross-section defined by a base member and fin members. The base member may comprise a substantially planar central body with generally flat first and second sides and with generally linear leading and trailing edges. The two opposing fin members may be positioned adjacent to the leading and trailing edges of the base member, respectively, and may be configured to project perpendicularly outward from the base member in a generally parallel direction with respect to the main body of the track member. The second sides of the base members of the first and second flange portions each may be attached to a respective rim member of the medial channel portion. Each of the first and second flange portions may be longitudinally coextensive with the track member.
Each of the plurality of moveable lighting packages may comprise an assembly tray and an optical assembly. The optical assembly may comprise at least one light source, and may be carried by the assembly tray. The optical assembly and the assembly tray may be integrally molded as a monolithic unit. A power supply may be in electrical communication with each light source. A generally central passageway may be formed between the assembly tray and the medial channel portion. An electrical connection may pass from the power supply through an aperture in the track member, and may extend through the central passageway to an electrical contact on each light source. Each light source may comprise a light emitting diode (LED).
The elongate tray may come into mechanical communication with each of the moveable lighting packages. More specifically, the elongate tray may further comprise a plurality of tray segments each in mechanical communication with a subset of the moveable lighting packages. Each of the moveable lighting packages may be moveably positioned along and independently removed from the front side of the track member. The elongate tray may include at least one mounting assembly, each of which may comprise fasteners, snap-fit connectors, and/or fitted grooves. The elongate tray may include mounting positions each suitable for mounting one of the moveable lighting packages to a mounting assembly. The elongate tray may be configured to mechanically connect to a housing and/or to a fixture.
The elongate tray may be positioned in thermal communication with each of the moveable lighting packages. The elongate tray may be characterized by a heat dissipation rate of not less than a combined heat generation rate of the moveable lighting packages. More specifically, the elongate tray may comprise a plurality of tray segments each in thermal communication with a subset of the moveable lighting packages. Each of the tray segments may have a heat dissipation rate of not less than a combined heat generation rate of the subset of the moveable lighting packages with which the try segment makes contact. The elongate tray may be constructed of a heat-dissipating material such as thermoplastic, ceramic, porcelain, aluminum, and aluminum alloys. The elongate tray may be configured to connect thermally to the housing such that a combined heat dissipation rate of the elongate tray and of the housing is not less than a combined heat generation rate of the packages.
A method aspect according to an embodiment of the present invention is for installing a linear light assembly. The method may comprise adjustably positioning each of the moveable lighting packages on the medial channel portion of the elongate tray, and affixing each of the moveable lighting packages to a respective mounting position. The installation method may further comprise moving a first subset of the moveable lighting packages to a respective mounting position on a first tray segment, removing a second subset of the moveable lighting packages from a second tray segment, separating the second tray segment from the first tray segment, and mounting the first tray segment to a light fixture. The installation method may still further comprise removing the power supply from the second tray segment, and mounting the power supply to the first tray segment.
The present invention will now be described fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art will realize that the following embodiments of the present invention are only illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” “front,” “rear,” and other like terms are used for the convenience of the reader in reference to the drawings. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention. Like numbers refer to like elements throughout.
Referring now to
Example systems and methods for a configurable linear light assembly are described herein below. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of example embodiments. It will be evident, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details and/or with different combinations of the details than are given here. Thus, specific embodiments are given for the purpose of simplified explanation and not limitation.
Referring now to
Each of the moveable lighting packages 120 may be mounted upon the elongate tray 110. Although the configuration of the linear light assembly illustrated in
Referring now to
Continuing to refer to
Continuing to refer to
For example, and without limitation, the medial channel portion 212 and the first and second flange portions 222 may be integrally molded as a monolithic unit. Also for example, and without limitation, the elongate tray 110 may have a maximum overall depth of 1 inch, measured as the distance between the leading and trailing edges of the widest of the base members 424 of the two flange portions 222. Also for example, and without limitation, the elongate tray 110 may have a maximum overall height of 5 inches, measured as the distance between outermost points on the fin members 426 of the first and second flange portions 222.
Referring again to
Referring additionally to
LEDs normally produce singular points of light. However, the linear light assembly 100 according to an embodiment of the present invention may be configured to refract light produced from one or more LEDs 444 in such a way as to produce a continuous linear beam of light emanating along a length of the linear light assembly 100. Such a beam of light may be useful, for example, in building grazing applications or wall washing lighting effects. The optic 442 that may be included in the optical assembly 125 may be configured to interact with light emitted by the LEDs 444 to refract incident light. Accordingly, the LEDs 444 may be disposed such that light emitted therefrom is incident upon the optic 442. The optic 442 may be formed in any shape to impart a desired refraction. For example, and without limitation, the optic 442 may have a generally concave geometry. Additionally, the optic 442 may be configured to generally diffuse light incident thereupon, and from a material that refracts or collimates light emitted by the LEDs 444.
The optic 442 may be formed of any material with transparent or translucent properties that comport with the desired refraction to be performed by the optic 442. For example, the optic 442 may include an extruded refractory material. Alternatively, or in addition, an exemplary material for the optic 442 may be an acrylic material, such as cast acrylic or extruded acrylic. In addition, the optic 442 may be formed of cast acrylic with diamond polishing. Acrylic materials may be suitable for the optic 442 due to their excellent light transmission and UV light stability properties.
Continuing to refer to
For example, and without limitation, the power source 230 may be in the form of an on-board power supply unit configured to deliver electrical power to LEDs 444 present in the moveable lighting packages 120. The on-board power supply unit 230 may have a converter (not shown) that may convert an AC input voltage to a DC output voltage. The on-board power supply unit 230 also may have a regulator (not shown) that may sustain a DC output voltage within a target DC bias range.
In one embodiment, the on-board power supply unit 230 may have at least one induction coil (not shown) configured to receive an AC input voltage through inductive coupling. In another embodiment, the on-board power supply unit 230 may have at least one wire connector configured to receive the AC input voltage through conductive coupling. Alternatively, the power source 230 may be in the form of at least one power terminal (not shown) that receives power from a source external to the linear light assembly 100, and that transmits that electrical power to the light sources 444 and/or other electronic components comprising the moveable lighting packages 120. Additional information directed to the use of power sources to deliver electric current to an illumination apparatus is found in U.S. patent application Ser. No. 13/608,999 titled System for Inductively Powering an Electrical Device and Associated Methods, the entire contents of which are incorporated herein by reference.
Referring again to
The optical assembly 125 of each LED package 120 may be carried by the assembly tray 123. A person skilled in the art will appreciate that each assembly tray 123 may be bonded to an optical assembly 125 using any manner of bonding. For example, and without limitation, the optical assembly 125 and the assembly tray 123 may be integrally molded as a monolithic unit.
Each of the plurality of moveable lighting packages 120 may be configured to be both moveably positioned along and independently removed from the front side 218 of the track member 314. For example, and without limitation, each assembly tray 123 may include a snap-fit connection to the recessed track member 314 of the elongate tray 110. In another example, each assembly tray 123 may be slid onto the recessed portion 218 of the track member 314 from one end of the elongate tray 110.
Referring additionally to
The linear light assembly 100 according to embodiments of the present invention therefore may provide a very simple and fast mechanism by which optical assemblies 125 and/or assembly trays 123 (as described above) may be replaced or repaired. For example, and without limitation, assembly trays 123 may be slid off of or otherwise removed from the tray 110 in order to replace or repair the assembly tray 123 and/or the optical assembly 125.
Referring additionally to
Referring again to
Continuing to refer to
*For example, and without limitation, the medial channel portion 212 may be positioned adjacent the LED package 120 and may be thermally coupled to the light source 444. This thermal coupling may be accomplished by any method, including thermal adhesives, thermal pastes, thermal greases, thermal pads, and all other methods known in the art. Where a thermal adhesive, paste, or grease is used, the medial channel portion 212 may be connected to any part of the moveable lighting package 120 as may effectively cause thermal transfer between the light source 444 and the elongate tray 110. Connection point location largely may depend on the heat distribution within the light source 444. For example, the medial channel portion 212 may be thermally coupled to one or more LEDs 444, to the circuit board (not shown), or to both so as to increase the thermal dissipation capacity of the lighting device 100. The method of thermal coupling may be selected based on criteria including ease of application/installation, thermal conductivity, chemical stability, structural stability, and constraints placed by the linear light assembly 100.
Continuing to refer to
The configuration of the fin members 426 may be as described above, or according to the direction of the incorporated references. In the embodiment of the invention illustrated in
The medial channel portion 212 and the first and second flange portions 222 of the elongate tray 110 may be made by molding, casting, or stamping of a thermally conductive material. Materials may include, without limitation, thermoplastic, ceramics, porcelain, aluminum, aluminum alloys, metals, metal alloys, carbon allotropes, and composite materials. Additional information directed to the use of heat sinks for dissipating heat in an illumination apparatus is found in U.S. Pat. No. 7,922,356 titled Illumination Apparatus for Conducting and Dissipating Heat from a Light Source, and U.S. Pat. No. 7,824,075 titled Method and Apparatus for Cooling a Light Bulb, the entire contents of each of which are incorporated herein by reference.
The elongate tray 110 may be characterized by a heat dissipation rate that equals or exceeds a combined heat generation rate of the plurality of moveable lighting packages 120. Referring again to
Alternatively, or in addition, the elongate tray 110 may be configured to connect thermally to a housing 810 and/or a fixture 820 as illustrated in
Referring now to flow chart 1000 of
Referring now to flow chart 1070 of
Still referring to
At Block 1190, the linear light assembly 100 may be mounted to a standard light fixture 820, whether or not that assembly 100 may have been shortened (Block 1115) and/or adjusted (Block 1175). At Block 1195, a determination may be made whether or not to add a housing 810, such as a finish, external to the linear light assembly 100. If not, the process ends at Block 1199. Otherwise, a housing 810 may be mounted to the configurable linear light assembly 100 (Block 1197) before the process ends at Block 1199.
Some of the illustrative aspects of the present invention may be advantageous in solving the problems herein described and other problems not discussed which are discoverable by a skilled artisan. While the above description contains much specificity, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presented embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. The scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/643,310 filed on May 6, 2012 and titled Configurable Linear Light and Associated Methods, the entire contents of which are incorporated herein by reference.