Configurable metadata-based automation and content classification architecture for cloud-based collaboration platforms

Information

  • Patent Grant
  • 11146600
  • Patent Number
    11,146,600
  • Date Filed
    Tuesday, May 26, 2020
    4 years ago
  • Date Issued
    Tuesday, October 12, 2021
    3 years ago
Abstract
Scalable architectures, systems, and services are provided herein for generating jobs by applying user-specified metadata rules to metadata events. More specifically, the scalable architecture described herein uses metadata to drive automations and/or polices in a cloud-based environment. In one embodiment, the architecture integrates a metadata service with an event-based automation engine to automatically trigger polices and/or automations based on metadata and/or changes in metadata changes. The metadata service can include customizable and/or pre-build metadata templates which can be used to automatically apply a metadata framework (e.g., particular fields) to files based on, for example, the upload or placement of a particular file in a particular folder. The architecture also provides for advanced metadata searching and data classification.
Description
BACKGROUND

As electronic and digital content use in enterprise settings and/or other organizational settings has become the preferred mechanism for project, task, and work flow management, so has the need for streamlined collaboration and sharing of digital content and documents. In such collaboration environments, multiple users share, access, and otherwise perform actions or tasks on content and files in shared workspaces.


When a user performs an action on a file in a collaboration environment, a corresponding job can be scheduled. For example, in response to a file being uploaded, the file might responsively be scanned. Current automation architectures for collaboration environments provide a mechanism to kick off the jobs at the front-end (e.g., at the web or application servers). Unfortunately, these current architectures are not easily scalable and do not provide for customizations of the jobs to be performed responsive to particular actions in a distributed computing environment.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a diagram of an example system having a host server of a cloud service and/or cloud storage accounts in a configurable event-based automation architecture.



FIG. 2 depicts a diagram of an example web-based or online collaboration platform deployed in an enterprise or other organizational setting for organizing work items and workspaces, as one example of a hosted cloud service and/or cloud storage accounts in a configurable event-based automation architecture.



FIG. 3 depicts a diagram of an example workspace in a cloud-based, online or web-based collaboration environment accessible by multiple collaborators through various devices authorized to access the work space.



FIG. 4 depicts a diagram illustrating an example event-based automation architecture for cloud-based collaboration platforms including a user-configurable back-end event-based automation engine.



FIG. 5 depicts a diagram illustrating an example metadata service engine.



FIG. 6 depicts a diagram illustrating an example event-based automation engine including a rule-based engine and a computing platform.



FIG. 7 depicts a block diagram illustrating example components of a rule manager of a rule-based engine for automatically translating events into one or more job requests based on user (or administrator) specified rules.



FIG. 8 depicts a block diagram illustrating example components of a job manager of a computing platform for queuing jobs and ensuring job execution.



FIG. 9 depicts a data flow diagram illustrating generation of a metadata event, according to an embodiment.



FIG. 10 depicts a data flow diagram illustrating an example process for automatically translating metadata events into one or more job requests based on user (or administrator) specified metadata rules, according to an embodiment.



FIG. 11 depicts a data flow diagram illustrating an example process for automatically translating events into one or more job requests based on user (or administrator) specified rules, according to an embodiment.



FIG. 12 depicts a flow diagram illustrating an example process for generating and storing a rule, according to an embodiment.



FIG. 13 depicts a flow diagram illustrating an example process for generating and storing a metadata rule, according to an embodiment.



FIG. 14 depicts a flow diagram illustrating an example process for queuing jobs and ensuring job execution, according to an embodiment.



FIG. 15 depicts a diagram illustrating another example event-based automation engine including a rule-based engine and a computing platform.



FIG. 16 depicts a diagrammatic representation of a machine in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.





DETAILED DESCRIPTION

The following description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. References to one or an embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and such references mean at least one of the embodiments.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted. It will be appreciated that same thing can be said in more than one way.


Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification.


Without intent to limit the scope of the disclosure, examples of instruments, apparatus, methods and their related results according to the embodiments of the present disclosure are given below. Note that titles or subtitles may be used in the examples for convenience of a reader, which in no way should limit the scope of the disclosure. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions will control.


Scalable architectures, systems, and services are provided herein for generating jobs by applying user-specified rules to various metadata events. More specifically, the scalable architecture described herein uses metadata to drive automations and/or polices in a cloud-based environment.


In one embodiment, the architecture integrates a metadata service with an event-based automation engine to automatically trigger polices and/or automations based on metadata and/or metadata changes. The metadata service can include customizable and/or pre-build templates via a templating system. The templates can be used to automatically apply a metadata framework (e.g., particular fields) to files based on, for example, the upload or placement of a particular file in a particular folder. The automation engine tracks the metadata and/or changes to the metadata and can responsively kick off jobs (e.g., notifications, policies, workflows, etc.). The architecture also provides for advanced metadata searching and data classification. For example, when a user uploads a file and classifies it using metadata as highly confidential, this can trigger a particular policy or automation.


In one embodiment, the scalable architectures also facilitate support for a dynamic set of customizable metadata rules or conditions and job descriptions. The scalable architectures are distributed and fault tolerant.


Definitions:


Action: A user action can include, for example, file operation actions like uploads or previews, as well as collaboration operations like task assignment and comments. The user actions are logged by the action log framework.


Job: A job consists of asynchronous work that needs to be executed as a result of an action. For example, a job can include notification to a user or conversion of a specific file. The jobs are described using a set of parameters specific to the work to be executed, as well as the action log data of the event that triggered the job and any routing information required.


Rule: A rule defines what jobs are generated given a particular action. More than one rule can be triggered given an action and multiple jobs can be generated from a single rule.


Rule Manager: A rule manager is responsible for managing rules and applying rules to incoming actions. The jobs generated are forwarded to the job manager.


Job Manager: A job manager is responsible for tracking job statuses and distributing work to worker machines.


Embodiments of the present disclosure describe an architecture including systems and methods for configurable event-based automation in a cloud-based collaboration platform or environment.



FIG. 1 illustrates an example diagram of a system having a host server 100 of a cloud service and/or cloud storage accounts in a configurable event-based automation architecture.


The client devices 102 can be any system and/or device, and/or any combination of devices/systems that is able to establish a connection, including wired, wireless, cellular connections with another device, a server and/or other systems such as host server 100 and/or notification server 150. Client devices 102 will typically include a display and/or other output functionalities to present information and data exchanged between the devices 102 and/or the host server 100 and/or notification server 150.


For example, the client devices 102 can include mobile, hand held or portable devices or non-portable devices and can be any of, but not limited to, a server desktop, a desktop computer, a computer cluster, or portable devices including, a notebook, a laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a smart phone, a PDA, a Blackberry device, a Treo, a handheld tablet (e.g. an iPad, a Galaxy, Xoom Tablet, etc.), a tablet PC, a thin-client, a hand held console, a hand held gaming device or console, an iPhone, and/or any other portable, mobile, hand held devices, etc. running on any platform or any operating system (e.g., Mac-based OS (OS X, iOS, etc.), Windows-based OS (Windows Mobile, Windows 7, etc.), Android, Blackberry OS, Embedded Linux platforms, Palm OS, Symbian platform. In one embodiment, the client devices 102, host server 100, and app server 110 are coupled via a network 106. In some embodiments, the devices 102 and host server 100 may be directly connected to one another.


The input mechanism on client devices 102 can include touch screen keypad (including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor, proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination or variation of the above.


Signals received or detected indicating user activity at client devices 102 through one or more of the above input mechanism, or others, can be used in the disclosed technology by various users or collaborators (e.g., collaborators 108) for accessing, through network 106, a web-based collaboration environment or online collaboration platform (e.g., hosted by the host server 100).


The collaboration platform or environment hosts workspaces with work items that one or more users can access (e.g., view, edit, update, revise, comment, download, preview, tag, or otherwise manipulate, etc.). A work item can generally include any type of digital or electronic content that can be viewed or accessed via an electronic device (e.g., device 102). The digital content can include .pdf files, .doc, slides (e.g., Powerpoint slides), images, audio files, multimedia content, web pages, blogs, etc. A workspace can generally refer to any grouping of a set of digital content in the collaboration platform. The grouping can be created, identified, or specified by a user or through other means. This user may be a creator user or administrative user, for example.


In general, a workspace can be associated with a set of users or collaborators (e.g., collaborators 108) which have access to the content included therein. The levels of access (e.g., based on permissions or rules) of each user or collaborator to access the content in a given workspace may be the same or may vary among the users. Each user may have their own set of access rights to every piece of content in the workspace, or each user may have different access rights to different pieces of content. Access rights may be specified by a user associated with a work space and/or a user who created/uploaded a particular piece of content to the workspace, or any other designated user or collaborator.


In general, the collaboration platform allows multiple users or collaborators to access or collaborate efforts on work items such that each user can see, remotely, edits, revisions, comments, or annotations being made to specific work items through their own user devices. For example, a user can upload a document to a work space for other users to access (e.g., for viewing, editing, commenting, signing-off, or otherwise manipulating). The user can login to the online platform and upload the document (or any other type of work item) to an existing workspace or to a new workspace. The document can be shared with existing users or collaborators in a work space.


A diagrammatic illustration of the online collaboration environment and the relationships between workspaces and users/collaborators are illustrated with further reference to the example of FIG. 2. A diagrammatic illustration of a workspace having multiple work items with which collaborators can access through multiple devices is illustrated with further reference to the example of FIG. 3.


In one embodiment, client devices 102 communicates with the host server 100 and/or people search engine 150 over network 106. In general, network 106, over which the client devices 102, the host server 100, and/or people search engine 150 communicate, may be a cellular network, a telephonic network, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet, or any combination thereof. For example, the Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging, visual voicemail, push mail, VoIP, and other services through any known or convenient protocol, such as, but is not limited to the TCP/IP protocol, Open System Interconnections (OSI), FTP, UPnP, iSCSI, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.


The network 106 can be any collection of distinct networks operating wholly or partially in conjunction to provide connectivity to the client devices 102 and the host server 100 and may appear as one or more networks to the serviced systems and devices. In one embodiment, communications to and from the client devices 102 can be achieved by, an open network, such as the Internet, or a private network, such as an intranet and/or the extranet. In one embodiment, communications can be achieved by a secure communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).


In addition, communications can be achieved via one or more networks, such as, but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network (WWAN), enabled with technologies such as, by way of example, Global System for Mobile Communications (GSM), Personal Communications Service (PCS), Digital Advanced Mobile Phone Service (D-Amps), Bluetooth, Wi-Fi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, 3G LTE, 3GPP LTE, LTE Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst, UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1×RTT, EV-DO, messaging protocols such as, TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD, IRC, or any other wireless data networks or messaging protocols.


A diagrammatic illustration of the cloud-based environment (e.g., collaboration environment) and the relationships between workspaces and users/collaborators are illustrated with further reference to the example of FIG. 2. A diagrammatic illustration of a workspace having multiple work items with which collaborators can access through multiple devices is illustrated with further reference to the example of FIG. 3.


In one embodiment, actions performed on work items or other activities that occur in a workspace can be detected in real time or in near real time. The host server can generate notifications or notification events for one or more of the plurality of activities and select one or more recipients for each notification. Various mechanisms or external messaging applications can then be used to notify users or collaborators, including through the web interface to access the collaboration platform, via email, and/or SMS, for example.


In one embodiment, the host server can comprise a distributed system including both front-end and back-end components (systems). Although not shown, the host server can include an action log, an event dispatcher, one or more processors, one or more databases, and one or more real time clients. Together these components are generally referred to herein as an “action log framework” (ALF). Components of the ALF may reside in the front-end systems, the back-end systems, or a combination thereof.


In one embodiment, the event dispatcher (also referred to as the event manager dispatcher, see e.g., FIG. 14), accumulates events and dispatches and/or otherwise distributes the events to one or more rule managers. As described herein, the event-based automation engine includes a rule-based engine to automatically translate each event into one or more jobs based on user-specified rules (e.g., administrator-specified rules) and the job manager



FIG. 2 depicts a diagram of a web-based or online collaboration platform deployed in an enterprise or other organizational setting 250 for organizing work items 215, 235, 255 and workspaces 205, 225, 245, as one example of a hosted cloud file sharing, collaboration service and/or cloud storage service in a configurable event-based automation architecture.


The web-based platform for collaborating on projects or jointly working on documents can be used by individual users and shared among collaborators. In addition, the collaboration platform can be deployed in an organized setting including but not limited to, a company (e.g., an enterprise setting), a department in a company, an academic institution, a department in an academic institution, a class or course setting, or any other types of organizations or organized setting.


When deployed in an organizational setting, multiple workspaces (e.g., workspace A-N) may be created to support different projects or a variety of work flows. Each workspace may have its own associate work items. For example, work space A 205 may be associated with work items 215, work space B 225 may be associated with work items 235, and work space N may be associated with work items 255. The work items 215, 235, and 255 may be unique to each work space but need not be. For example, a particular word document may be associated with only one work space (e.g., work space A 205) or it may be associated with multiple work spaces (e.g., work space A 205 and work space B 225, etc.).


In general, each work space has a set of users or collaborators associated with it. For example, work space A 205 is associated with multiple users or collaborators 206. In some instances, work spaces deployed in an enterprise may be department specific. For example, work space B may be associated with department 210 and some users shown as example user A 208 and workspace N 245 may be associated with departments 212 and 216 and users shown as example user B 214.


Each user associated with a work space may generally access the work items associated with the work space. The level of access may depend on permissions associated with the specific work space, and/or with a specific work item. Permissions may be set for the work space or set individually on a per work item basis. For example, the creator of a work space (e.g., one of user A 208 who creates work space B) may set one permission setting applicable to all work items 235 for other associated users and/or users associated with the affiliate department 210, for example. Creator user A 208 may also set different permission settings for each work item, which may be the same for different users, or varying for different users.


In each work space A, B, . . . , N, when an action is performed on a work item by a given user or any other activity is detected in the work space, other users in the same work space may be notified (e.g., in real time or in near real time, or not in real time). Activities which trigger real time notifications can include, by way of example but not limitation, adding, deleting, or modifying collaborators in the work space, uploading, downloading, adding, deleting a work item in the work space, and creating a discussion topic in the work space.


In some embodiments, items or content (content items) downloaded or edited in accordance with the techniques described in the present disclosure can cause notifications to be generated. Such notifications can be sent to relevant users to notify them of actions surrounding a download, an edit, a change, a modification, a new file, a conflicting version, an upload of an edited or modified file. Additionally, as discussed above, actions performed on the content items can be maintained by an ALF system.


In one embodiment, in a user interface of the web-based collaboration platform where notifications are presented, users can, via the user interface, create action items (e.g., tasks) and delegate the action items to other users including collaborators pertaining to a work item 215, for example. The collaborators 206 may be in the same workspace A 205 or the user may include a newly invited collaborator. Similarly, in the same user interface where discussion topics can be created in a work space (e.g., work space A, B or N, etc.), actionable events on work items can be created and/or delegated/assigned to other users such as collaborators of a given work space 206 or other users. Through the same user interface, task status and updates from multiple users or collaborators can be indicated and reflected. In some instances, the users can perform the tasks (e.g., review or approve or reject, etc.) via the same user interface.



FIG. 3 depicts an example diagram of a workspace 302 in an online or web-based collaboration environment accessible by multiple collaborators 322 through various devices authorized to access the work space.


Each of users 316, 318, and 320 may individually use multiple different devices to access and/or manipulate work items 324 (e.g., content items) in the work space 302 with which they are associated with. For example, users 316, 318, 320 may be collaborators on a project to which work items 324 are relevant. Since the work items 324 are hosted by the collaboration environment (e.g., a cloud-based environment), each user may access the work items 324 anytime, and from any physical location using any device (e.g., including devices they own or any shared/public/loaner device).


Work items to be edited or viewed may be accessed from the workspace 302 in accordance with the platform and/or application independent mechanisms. Users may also be notified of access, edit, modification, and/or upload related-actions performed on work items 324 by other users or any other types of activities detected in the work space 302. For example, if user 316 modifies a document, one or both of the other collaborators 318 and 320 can be notified of the modification in real time, or near real-time, or not in real time. The notifications can be sent through any of all of the devices associated with a given user, in various formats including, one or more of, email, SMS, or via a pop-up window in a user interface in which the user uses to access the collaboration platform. In the event of multiple notifications, each notification may be depicted preferentially (e.g., ordering in the user interface) based on user preferences and/or relevance to the user (e.g., implicit or explicit).


For example, a notification of a download, access, read, write, edit, or upload related activities may be presented in a feed stream among other notifications through a user interface on the user device according to relevancy to the user determined based on current or recent activity of the user in the web-based collaboration environment.


In one embodiment, a notification feed stream includes updates when an invited user accepts an invitation and/or successfully creates a new account through receipt of an invitation from an existing user. The invited user, upon creation of the new account, receives the account having enhanced features. The new user can automatically be connected to the existing user who sent the invitation. The system can also automatically prompt both users to query who they wish to be collaborators in a common work space.


Work items hosted by a collaboration environment (e.g., a cloud-based collaboration environment) can be accessed by users (e.g., users 316, 318, and 320) via multiple different devices (e.g., devices 304-314) for viewing, editing, processing or performing other manipulations on work items. The devices can include applications for accessing a server hosting a cloud-based platform or service or other back-end web services (hereinafter “cloud-based collaboration platform application”) and applications for viewing, editing, processing, or performing other manipulations on work items. The communication between such applications are generally facilitated by a communication mechanism of the OS. For example, in Android OS, the communication mechanism is based on “Intents”. As previously described, the underlying communication mechanism is generally insecure, and any data passed between applications is visible to all other applications on a device.



FIG. 4 depicts a diagram illustrating an example event-based automation architecture 400 for a cloud-based collaboration platform 405 including a user-configurable back-end event-based automation engine 430 and a metadata service engine 450. As shown, the event-based automation architecture 400 can include various client (or user or administer) systems 410 and the cloud-based collaboration platform 405. Notably, as illustrated and discussed in the example of FIG. 4, placement of the event-based automation engine 430 is in the back-end of the cloud-based architecture providing scalability in the architectural design.


In one embodiment, the cloud-based collaboration platform 405 can include the host server 100 and/or the notification server 150 of FIG. 1. The cloud-based collaboration platform 405 can include various front-end system(s) and back-end system(s) that can be physically and/or functionally distributed. As shown, the cloud-based collaboration platform 405 includes front-end system 420 (e.g., a web server), a back-end even-based automation engine 430, various data warehouse(s) 440, and a metadata service engine 450. The client systems 410 can be configured to communicate via the network 406a with the front-end system(s) 420. Similarly, the front-end system(s) 420 can be configured to communicate with the client or user system(s) 410 and the event-based automation engine 430 via the network 406b, and the event-based automation engine 430 can be configured to communicate with the front-end system(s) 420 via the network 406b and the data warehouses 440.


Additionally, in some embodiments, an administrator system 410 can be configured to bypass the front-end systems in order to directly submit a job, determine the status of a job, kill a job, etc. via a web interface or application program interface built into the event-based automation engine 430. In some embodiments, clients, users and/or administrators can access the metadata service engine 450 in order to select, configure, and/or generate templates or provide input for metadata searching.


In one embodiment, the front-end system(s) 420 can include various web applications and/or web servers. Additionally, in some embodiments, the front-end system(s) 420 can provide ALF events to the event-based automation engine 430. As discussed in greater detail with reference to FIG. 6, the back-end event-based automation engine 430 can include a rule-based engine and a computing platform. The rules based engine can be configured to generate and manage user-defined (or specified) rules and apply the rules to incoming ALF events. The computing platform includes a jobs manager configured to generate jobs based on job requests, track the job statuses, and distribute work to workers. The various components, functions, and or tools that can be associated with and/or included within an event-based automation engine are discussed in greater detail with reference to FIG. 6.


In one embodiment, the rules-based engine can be configured to generate and manage user-defined (or specified) metadata rules and apply the metadata rules to metadata events generated by the metadata service engine 450. As described in greater detail with reference to FIG. 5, the metadata service engine 450 monitors metadata (e.g., job requests, events, actions, etc.) to identify changes to metadata. The metadata events can be generated responsive to these metadata changes. As described herein, the metadata service engine 450 can provide the ability to generate and/or select templates for providing a metadata framework to particular work items. Additionally, the metadata service engine 450 provides the ability to search metadata in the cloud-based environment.



FIG. 5 depicts a diagram illustrating an example metadata service engine 500. The metadata service engine 500 can be the metadata service engine 450 of FIG. 4, although alternative configurations are possible. As shown in the example of FIG. 5, the metadata service engine includes an administrator/user interface 515, a templating in engine 520, a template database 525, a metadata event generation engine 530, a metadata chance detection engine 540, a metadata monitoring engine 550, a metadata search engine 560, and a metadata rules interface 570. The templating engine 520 includes a template selection engine 522, template generation engine 524, and a template configuration engine 526.


Additional or fewer components/modules/engines can be included in the metadata service engine 500 and/or in each illustrated component/module/engine. Further, although illustrated as included as part of the metadata service engine 500, the components/modules/engines and/or the template databases 525 can be physically and/or functionally distributed.


One embodiment of the metadata service engine 500 includes the administrator/user interface 515. The administrator/user interface 515 can comprise any interface configured to facilitate receiving and processing of templating inputs for selection, configuration, and/or generation of metadata templates. For example, the administrator/user interface 515 can include a network interface having a networking module that enables the metadata service engine 500 to mediate data in a network with an entity that is external to the metadata service engine 500, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.,), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.


Additionally, the administrator/user interface 515 can comprise any interface configured to facilitate receiving of metadata search input. As discussed below, the administrator/user interface 515 interacts with the metadata search engine 560 to provide users and/or administrators the ability to search by metadata.


One embodiment of the metadata service engine 500 includes the templating engine 520. The templating engine 520 can include customizable and/or pre-build metadata templates which can be used to automatically apply a metadata framework (e.g., particular fields) to files (or work items) based on, for example, the upload or placement of a particular file in a particular folder, selection of those files by a user or administrator, and/or in other manners discussed herein or known in the art. As discussed above, the templating engine 520 includes a template selection engine 522, template generation engine 524, and a template configuration engine 526. The template selection engine 522 is configured to select one or more pre-configured templates for application of those templates to work items in the cloud-based collaborative environment. The template generation engine 524 and a template configuration engine 526 are configured to generate and configure metadata templates responsive to the templating input. One or more template database(s) 525 persistently stores the templates in the cloud-based collaborative environment.


One embodiment of the metadata service engine 500 includes the metadata event generation engine 530, the metadata chance detection engine 540, and the metadata monitoring engine 550. The metadata monitoring engine 550 monitors actions, events, jobs, job requests, etc. to identify changes to metadata occurring to work items within the collaborative cloud-based environment. The metadata change detection engine 540 detects these changes to the metadata and the metadata event generation engine 530 responsively generates the metadata events.


One embodiment of the metadata service engine 500 includes the metadata search engine 560. The metadata search engine 560 is configured to facilitate searching of the metadata in the collaborative cloud-based environment. In some embodiments, the metadata search engine 560 can index the metadata. For example, the metadata search engine 560 collects, parses, and stores data to facilitate fast and accurate metadata information retrieval.


One embodiment of the metadata service engine 500 includes the metadata rules interface 570. The metadata rules interface 570 is configured to interact with the rules engine to, for example, automatically provide rules to be generated based on configurations/customizations of metadata templates.



FIG. 6 depicts a diagram illustrating example event-based automation engine 600 including a rule-based engine and a computing platform. The event-based automation engine 600 can be the event-based automation engine 430 of FIG. 4, although alternative configurations are possible. As shown in the example of FIG. 6, the rules-based engine includes an action log 605, an administrator interface 610, a rule manger 620, and a rule database 625. The computing platform includes a direction application program interface (API) 630, a jobs manager 620, multiple storage databases 645 and 646, and multiple workers 650A-N.


The rule manager 620 can include any system and/or service that is configured to receive incoming ALF events and/or metadata events and apply rules (or metadata rules) to the events to automatically generate corresponding job requests and send the job requests to the jobs manager 640. The administrator interface 610 allows administrative users to generate (or set) rules or metadata rules which are then stored, by the rule manager 620, in the rules database 625. An example rules manager is discussed in greater detail with reference to FIG. 7.


The jobs manager 640 can, among other functions, receive job requests from the rule manager, generate jobs corresponding to job requests, determine relevant queues for jobs, route jobs to relevant queues for performance by workers, and track and/or otherwise monitor the status of each of the jobs. In addition to supporting content workflow, the job manager is also intended to be a general-purpose job system that can provide asynchronous job execution for other services. An example jobs manager is discussed in greater detail with reference to FIG. 8. The workers 650A-N can comprise distributed machines or computers in one or more computer clusters.



FIG. 7 depicts a block diagram illustrating example components of a rule manager 700 of a rule-based engine. The rule manager 700 can be configured to automatically translate ALF events into one or more job requests based on user (or administrator) specified rules. The rule manager 700 can be, for example, rule manager 620 of FIG. 6, although alternative configurations are possible.


The rule manager 700 can include an administrator interface 705, a rule generation/definition engine 710, an action/event interface 715, a metadata event interface 716, a parsing engine 720, a rule matching/section engine 730, and a job request generation engine 740. The parsing engine 720 can include an event type parser 622, an enterprise identifier (ID) parser 624, and a metadata identification module 726. As shown in the example of FIG. 7, the rule manager 700 also includes a rules database (DB) 750 and a metadata rules database (DB) 755.


Additional or fewer components/modules/engines can be included in the rule manager 700 and/or in each illustrated component/module/engine. Further, although illustrated as included as part of the rule manager 700, the components/modules/engines and/or the rules database 750 and/or the metadata rules database 755 can be physically and/or functionally distributed.


One embodiment of the rule manager 700 includes the administrator interface 705. The administrator interface 705 can comprise any interface configured to facilitate setting and/or generation of the user-defined rules by an administer. For example, the administrator interface 705 can include a network interface having a networking module that enables the rule manager 700 to mediate data in a network with an entity that is external to the rule manager 700, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.,), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.


One embodiment of the rule manager 700 includes the rule generation/definition engine 710. The rule generation/definition engine 710 facilitates rule generation/definition by users or administrators. For example, users can define rules in a rule descriptive language (RDL) that can be automatically triggered and executed by the rule manager. The users or administrators can also define metadata rules in a similar matter. Alternatively or additionally, metadata rules can be automatically generated and input into the system based on user-generated or pre-existing metadata templates defined by the metadata service engine 500.


Each rule can include one or more conditions that can be determined by the user and/or automatically by the system. Each condition is associated with a job. In operation, when a condition is evaluated to be true, the associated job is triggered and/or otherwise generated. Metadata rules can be defined in a similar fashion. Alternatively or additionally, metadata rules can be defined based on keys of key value pairs. In some embodiments, threshold or defined values for the metadata key-value pairs can be set that trigger the rule. For example, if the metadata template defines a contract, then one metadata attribute may be the value of the contract. A rule can be set that triggered a particular action or job in the event that the value of the contract exceeds a particular preset value. For instance, one or more notifications may be sent to particular individuals for review. Similarly, a metadata attribute of a contract template could include a status attribute that causes a particular action or job to be performed when the value of the key-value pair change from ‘PENDING’ to ‘APPROVED’. In this manner, metadata or changes to metadata can trigger job requests (e.g., events or actions).


One embodiment of the rule manager 700 includes the action/event interface 715. The action/event interface 715 can receive events including ALF events. For example, the action/event interface 715 can receive events from an action log dispatcher (ALD) (also referred to as a dispatcher or an event manager dispatcher herein). In one embodiment, the ALD accumulates and distributes actions taken and logged by collaborators in the collaboration environment. The distributed events can be, for example, ALF events that indicate the user actions taken on content items in the web applications. The ALD can accumulate and distribute and/or otherwise provide sets of ALF events (e.g., multiple events) to the rule manager simultaneously. For example, in one embodiment, the ALF events can be distributed via an action such as, for example, action log 605 of FIG. 6.


One embodiment of the rule manager 700 includes the metadata event interface 716. The metadata event interface 716 can receive metadata events. For example, the metadata event interface 716 can receive metadata events from a metadata service engine such as, for example, metadata service engine 500 of FIG. 5. The metadata events can identify a change in a metadata key-value pair associated with a particular work item in the collaborative cloud-based environment. For example, a contract (work item) can include a metadata key-value pair including a key: value of contract and a value of that key: monetary value.


One embodiment of the rule manager 700 includes the parsing engine 720. The parsing engine 720 parses each of the events to identify event criteria associated with the event such as, for example, an action type and/or an enterprise identifier (ID). The parsing engine 720 can also parse and/or otherwise process the metadata events and identify the relevant information such as, for example, the associated key-value pair.


The example rule manger 700 of FIG. 7 is shown including an event type parser 722, an enterprise ID parser 724, and a metadata identification module 726; however, it is appreciated that other (any) criteria can be parsed from the event (or metadata events) via the parsing engine 720.


One embodiment of the rule manager 700 includes the rule matching/selection engine 730. The rule matching/selection engine 730 is configured to access pre-defined rules from the rules database 750, and scan the pre-defined rules to select pre-defined rules that match particular event criteria. For example, the rule manger 700 can utilize filters (or criteria) to select or match ALF events with rules. Example filters include, but are not limited to, enterprise_id, all_enterprises, all_users, and event type. Additionally, the rule matching/selection engine 730 can parse the metadata rules to select pre-defined rules that match a particular key and/or value of a key value pair associated with a particular metadata event.


In one embodiment, the rule matching/selection engine 730 includes a rule parser 732, a metadata rules parser 734, and a classification module 736. The rule parser 732 is configured to parse the rules to identify one or more conditions associated with the rule and the corresponding job descriptions (also referred to herein as job templates) that are triggered if the condition occurs. The job descriptions are embedded in the rules and define the job to be performed. For example, each job indicates a process or type of work that is to be performed by one of the workers (e.g., distributed processing machines).


The metadata rule parser 734 is configured to parse the metadata rules to identify one or more keys and or values that match the key-value pair associated with the metadata event. For example, the metadata rule parser 734 can determine a pre-defined metadata rule that matches the key of the key-value pair.


One embodiment of the rule manager 700 includes the job request generation engine 740. The job request generation engine 740 is configured to generate one or more job requests for each rule. For example, in one embodiment, the job request generation engine 740 generates a job request based on each job description (or job template) corresponding to each rule condition. As discussed above, the jobs indicate work to be performed by workers (e.g., workers 650 of FIG. 6). The job request generation engine 740 is also configured to process key-value pairs associated with the metadata events to conditionally generate job requests (e.g., if the rule is triggered). For example, the job request generation engine 740 can determine a value of the metadata key-value pair associated with a particular work item, process the first pre-defined metadata rule that matches the key of the key-value pair, identify a threshold value associated with the first pre-defined metadata rule and compare the value of the metadata key-value pair with the threshold value. The job request can then be generated if the rule is triggered. That is, the job request can be conditionally generated based on the comparison.



FIG. 8 depicts a block diagram illustrating example components of a job manager 800 of a computing platform for generating, queuing, and ensuring job execution. The job manager 800 can, among other functions, route jobs to relevant queues 860 for performance by workers and track and/or otherwise monitor the status of each of the jobs. The job manager 800 can be, for example, job manager 640 of FIG. 6, although alternative configurations are possible.


The job manager 800 can include an administrator interface 805, a jobs interface 810, a leader election engine 815, an error detection engine 820, a status engine 825, a retry engine 830, a replication engine 840, a job scheduler 850, and various queues 860. As shown in the example of FIG. 8, the job manager 800 also includes storage databases 842 and 844, although these database can be considered as distinct in some embodiments. Additional or fewer components/modules/engines can be included in the rule manager 800 and/or in each illustrated component/module/engine. Further, although illustrated as included as part of the jobs manager 800, the components/modules/engines and/or the storage databases 842 and 844 can be physically and/or functionally distributed.


One embodiment of the jobs manager 800 includes the administrator interface 805. The administrator interface 805 can comprise any interface (e.g., a web interface) configured to facilitate direct administrator access for job submission, job status, or killing of jobs. In one embodiment, the administrator interface 805 can include a network interface having a networking module that enables the jobs manager 800 to mediate data in a network with an entity that is external to the jobs manager 800, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface can include one or more of a network adaptor card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of mobile communication standards including but not limited to 1G, 2G, 3G, 3.5G, 4G, LTE, etc.,), Bluetooth, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.


One embodiment of the jobs manager 800 includes the jobs interface 810. The jobs interface 810 can receive jobs including batched jobs. As discussed above, the jobs indicate work to be performed by workers (e.g., workers 650 of FIG. 6).


One embodiment of the jobs manager 800 includes the jobs interface leader election engine 815. As described herein, multiple instances of the job manager can be utilized in a distributed environment to prevent data loss and facilitate scalability. The leader election engine 815 can be used to guarantee that only one instance of the job manager 800 is performing operations so that the operations are not duplicated. For example, in one embodiment, the leader election engine 815 is utilized to ensure that only one service in each cluster is retrying and/or replicating jobs.


One embodiment of the jobs manager 800 includes the error detection engine 820. For example, the error detection engine 820 can provide infinite loop detection. That is, in some cases, users/admins can generate rules that create an infinite loop such as, for example:


Rule 1: Condition/Job

    • If a file is uploaded/moved to folder A/move file to folder B;


Rule 2: Condition/Job

    • If a file is moved to folder B/move file to folder A.


In one embodiment, the error detection engine 820 prevents such scenarios by injecting a unique token into the worker initiated API requests. The token flows through the API and web app and back into the ALF stream with the associated event. The rule manager can then pass the token along to the job manager where the job manager prevents jobs from being queued if the token had been seen too many times. Otherwise, the token would be added to the new job and the workers would need to reuse the token when executing the job.


One embodiment of the jobs manager 800 includes the status engine 825. The status engine 825 can track and/or otherwise monitor the status of jobs submitted to the queues. The status engine 825 ensures that jobs are executed. In one embodiment, jobs and status updates (started, completed, failed) are persisted in a local database (e.g., the local HBase cluster). The status engine 825 also responds to status queries received at the administrator interface (or web interface).


In one embodiment, status or progress cache is maintained by the job manager. The status or progress cache can provide status and/or progress updates (i.e., 10%, 20%, etc.) of jobs completed to interested clients (administrators). Additionally, as discussed above, the job manager supports an API or administer interface for receiving these updates from the workers and then providing the details to clients via a job status query response. In one embodiment, because of the temporary nature of the updates, rather than storing the updates in HBase, the job manager will store them in memcache.


One embodiment of the jobs manager 800 includes the replication engine 840. The replication engine 840 can save or store the jobs to first and second databases 842 and 844. Each database can comprise an HBase at geographically remote data centers. As described in more detail below, once the job is stored in multiple data centers, the job manager 800 can then respond to the rule manager (e.g., acknowledge the reception of the jobs).


One embodiment of the jobs manager 800 includes the job scheduler 850. The job scheduler 850 can generate jobs based on the job requests and determine the appropriate queues 860 for the jobs and distributes the jobs to the appropriate queues. In one embodiment, the appropriate queues 860 are selected based on the type of job. That is, particular queues can be designed for and serviced by workers that are specifically configured to perform those jobs. By way of example and not limitation, the system can designate dedicated queues for the following jobs: preview jobs, video conversion jobs, text extraction jobs, virus scan jobs, thumbnail creation jobs, data loss prevention (DLP) jobs, etc. Alternatively or additionally, one or more general purpose queues could be utilized by one or more general purpose workers (i.e., workers configured to perform a variety of different types of jobs).



FIG. 9 depicts a data flow diagram illustrating an example process 900 for generation of a metadata event, according to an embodiment. A metadata service engine such as, for example, the metadata data service engine 500 of FIG. 5 can, among other functions, perform the example process 900. The metadata service engine may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the metadata service engine can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 910, the metadata service engine monitors changes in metadata. For example, the metadata service engine can monitor job requests, changed work items, events, actions, etc. in order to identify changes or potential changes to metadata within the collaborative cloud-based environment. In process 912, the metadata service engine determines if a change in the metadata is detected. The change in the metadata can be, for example a change in a metadata key-value pair.


If a change is detected in process 912, the metadata service engine optionally, in process 914, determines if the metadata is associated with a predetermined metadata template. For example, in some instances, the metadata service engine only monitors a subset of the metadata (e.g., metadata for which rules have been established and/or metadata associated with a defined metadata template). In process 916, the metadata service engine generates the metadata event. In some embodiments, the metadata event can be optionally generated based on whether the metadata or changed metadata is associated with a defined metadata template.



FIG. 10 depicts a data flow diagram illustrating an example process 1000 for automatically translating metadata events into one or more job requests based on user (or administrator) specified metadata rules, according to an embodiment. A rule manager such as, for example, rule manager 700 of FIG. 7, can, among other functions, perform the example process 1000. The rule manager may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the rule manager can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 1010, the rule manager receives a metadata event and, in process 1012, processes the metadata event to identify or capture an associated key-value pair. As discussed above, the metadata event can be an event that is initiated by a metadata service engine responsive to monitoring changes in metadata in content items in the collaborative cloud-based environment.


In process 1014, the rule manager scans the metadata rules based on the metadata key and, at decision process 1016, determines if the metadata key matches a metadata rule. In one embodiment, the rule manger can also scan the metadata rules for other conditions or values that are compared to the value of the key-value to make a determination about whether a metadata rule is triggered or if a metadata event matches a rule.


In process 1018, the rule manager selects a metadata rule that matches the metadata event, if one exists. Next, in process 1020, the rule manager identifies a job description associated with the selected metadata rule. For example, the job description can indicate the type of job that is to be performed when the rule is triggered. Lastly, in process 1022, the rule manager generates a new job request based on the job description. As discussed herein, the rule manager distributes the batched jobs to the jobs manager. In some embodiments, load balancers may be used to distribute events to multiple instances of the rule manager and jobs to multiple instances of the job manager, respectively. Additionally, the instances referred to herein are referring to additional distributed hardware resources.



FIG. 11 depicts a data flow diagram illustrating an example process 1100 for automatically translating events into one or more job requests in one or more back-end systems based on user (or administrator) specified rules, according to an embodiment. A rule manager such as, for example, rule manager 700 of FIG. 7, can, among other functions, perform the example process 1100. The rule manager may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the rule manager can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 1110, the rule manager receives an event and, in process 1112, parses the event to identify event criteria. As discussed above, the event can be an ALF event that is initiated by a web application (e.g., front-end system) responsive to an action taken on a content item in the collaborative cloud-based environment.


In process 1112, the rule manager parses the event to identify event criteria. For example, the event criteria can include an action type (i.e., type of action performed that triggered the event, e.g., upload) or an enterprise identifier.


In process 1114, the rule manager scans the rules based on the event criteria and, at decision process 1116, determines if the event matches a rule. In one embodiment, the rule manger can also scan the rules for conditions that are compared to the event criteria to determine if an event matches a rule. In process 1118, the rule manager selects a rule that matches the event criteria, if one exists. Next, in process 1120, the rule manger identifies a job description associated with the selected rule. For example, the job description can indicate the type of job that is to be performed.


In process 1122, the rule manager generates a new job request based on the job description and, in process 1124, waits for additional new jobs to be generated to batch multiple job requests. Lastly, in process 1126, the rule manager distributes the batched jobs to the jobs manager. As discussed below with reference to FIG. 11, in some embodiments, load balancers may be used to distribute events to multiple instances of the rule manager and jobs to multiple instances of the job manager, respectively. Additionally, the instances referred to herein are referring to additional distributed hardware resources.



FIG. 12 depicts a flow diagram illustrating an example process 1200 for generating and storing a user-defined rule, according to an embodiment. A rule manager such as, for example, rule manager 700 of FIG. 7, can, among other functions, perform the example process 1200. The rule manager may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the rule manager can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 1210, the rule manager receives information from an administer for defining a new rule. In one embodiment, the information includes a user defined condition and a corresponding job definition. For example, the condition “on file upload into folder A” can be received from the administrator with a corresponding job “move the file into folder B.” As discussed above, the user-defined (or pre-defined) rules can be applied to incoming events (e.g., ALF events) to automatically generate jobs to be performed by workers in a computing platform.


In one embodiment, the rule manager can extract various additional conditions and/or job descriptions based on, for example, the type of condition. This is referred to herein as a complex rule. For example, if the condition “on file upload” is received with the job description “scan file,” then the system can extract various jobs to perform in sequence: extract text, scan file for keyword, and quarantine file if keyword found.


In process 1212, the rule manager generates the rule by associating condition(s) with the corresponding job description(s) and, lastly, in process 1214, the rule is stored in a rule database.



FIG. 13 depicts a flow diagram illustrating an example process 1300 for generating and storing a metadata rule, according to an embodiment. A rule manager such as, for example, rule manager 700 of FIG. 7, can, among other functions, perform the example process 1300. The rule manager may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the rule manager can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 1310, the rule manager receives information from an administrator for defining a new metadata rule. In one embodiment, the information identifies an associated template and/or a key value for metadata. Additionally, the information can also include a threshold value for the key that causes the rule to be triggered. For example, if the metadata template defines a contract, then one metadata attribute or key may be the value of the contract. A rule can be set that triggered a particular action or job in the event that the value of the contract exceeds a particular preset value. For instance, one or more notifications may be sent to particular individuals for review. Similarly, a metadata attribute of a contract template could include a status attribute that causes a particular action or job to be performed when the value of the key-value pair change from ‘PENDING’ to ‘APPROVED’. In this manner, metadata or changes to metadata can trigger job requests (e.g., events or actions).


In process 1312, the rule manager generates the metadata rule by associating the metadata key with additional information (e.g., template and/or threshold value) and with one or more corresponding job description(s) and, lastly, in process 1314, the metadata rule is stored in a rule database.



FIG. 14 depicts a flow diagram illustrating an example process 1400 for queuing jobs and ensuring job execution, according to an embodiment. A jobs manager such as, for example, jobs manager 800 of FIG. 8, can, among other functions, perform the example process 1400. The jobs manager may be embodied as hardware and/or software, including combinations and/or variations thereof. In addition, in some embodiments, the rule manager can include instructions, wherein the instructions, when executed by one or more processors, cause the one or more processors to perform one or more processes including the following processes.


To begin, in process 1410, the jobs manager receives a job initiated by the rule manager and, in process 1412, stores the job persistently in one or more data centers. In one embodiment, the jobs manager stores the job in multiple remote data centers at least one of which is geographically remote.


In process 1413, the jobs manager generates jobs responsive to the job requests and, in process 1414, the jobs manager determines an appropriate queue for the job. In one embodiment, the appropriate queues are selected based on the type of job. That is, particular queues can be designed for and serviced by workers that are specifically configured to perform those jobs. By way of example and not limitation, the system can designate dedicated queues for the following jobs: preview jobs, video conversion jobs, text extraction jobs, virus scan jobs, thumbnail creation jobs, data loss prevention (DLP) jobs, etc. Alternatively or additionally, one or more general purpose queues could be utilized by one or more general purpose workers (i.e., workers configured to perform a variety of different types of jobs).


In process 1416, the jobs manager distributes the job to the appropriate queue and, lastly, in process 1418, the jobs manager maintains the current status of the job. As described in more detail with reference to FIG. 15, status updates (e.g., started, completed, failed) can be persisted to the local HBase cluster.



FIG. 15 depicts a diagram illustrating another example event-based automation engine 1500 including a rule-based engine and a computing platform. As shown in the example of FIG. 15, the rule based engine includes an event manager dispatcher, an event load balancer, multiple rule managers, a job load balancer, multiple job managers, multiple rabbitMQ queues, and multiple workers. Additionally, a MySQL database is shown in communication with the multiple rule managers for storing the rules, a zookeeper distributed services system is shown in communication with the rule managers and the job managers as part of the distributed system to help coordinate various different services including coordination and distribution of new rules. Further, an HBase storage database is shown at a local data center and a second HBase storage database is replicated at a remote data center (i.e., remote from the first data center).


The rule manager is responsible for translating events it receives from the Action Log Dispatcher (ALD) (or Event Manager Dispatcher) into job requests depending on a set of customer specified rules. For example, if a file is uploaded to a certain folder, a task could be automatically created and assigned to a user for that file. More specifically, the rule manager generates jobs for content workflow based on the ALF stream. Importantly, incoming events are not acknowledged until jobs are persisted to Hbase and, thus, the rule matching and job generation step has low latency. In addition, the rules are user-defined and, thus, any number of rules can be defined. The rule manager can scale (i.e., with additional instances) with the increasing number of rules.


In one embodiment, events are distributed from an ALF system via the ALD service. The ALD can send a request containing a set of events to the rule manager. Each event can be described as an action log. Thus, for each action log, the rule manager can parse out the action_type and enterprise_id and then scan for rules matching the action_type and enterprise_id against its local cache.


In one embodiment, the rules are defined using a Rule Description Language (RDL) which can be parsed by the rule manager to extract the filters and job template. For example, rules can have an optional set of simple conditional filters such as, for example, “=” by which to filter out jobs to avoid the need to send no-op jobs to the job manager. The filters work by comparing data extracted from the action log against predefined static values. For job creation, rules can include a template job description that the rule manager can populate using data from the action log. The filled out template is essentially a serialized job body.


Once the events in the current request from the ALD are evaluated, the rule manager can forward the generated jobs to the job manager. The rule manager will receive an acknowledgement from the job manager and send an acknowledgement back to the ALD. If no jobs are created from a request from the ALD, then the rule manager will simply acknowledge the request immediately.


The job manager is a component of content workflow that receives job requests from the rule manager. In addition to supporting content workflow, the job manager is also intended to be a general-purpose job system that can provide asynchronous job execution for other services. The job manager is generally responsible for creating new jobs and monitoring the status of jobs. The job manager essentially ensures that a job will be executed. As discussed above, new jobs and status updates (e.g., started, completed, failed) can be persisted to the local HBase cluster.


In one embodiment, when the job manager receives a new job request, it first persistently stores the job to HBase. Once the job has been saved to HBase, the job manager will acknowledge the job request and thereby guarantee the execution of the job. After the job manager has acknowledged the job request, the job manager will then queue the job in RabbitMQ for execution. Workers actively pick up jobs off the queue and execute these jobs.


In one embodiment, prior to queuing the job, the job manager can inject callbacks into the job description to be notified by a worker before it begins executing a job, after it finishes executing a job, and/or if an error occurs during execution. To handle temporary errors, the job manager uses an actor to periodically re-queue jobs that have not been started or completed after a configurable amount of time. The job manager also has an actor that is dedicated to replicating to the remote HBase cluster on a configurable interval.


As illustrated in the example of FIG. 15, in one embodiment, the job managers receive requests from behind the job load balancer, which distributes requests between multiple job manager instances. In one embodiment, each instance runs a Jetty Web Server and Scalatra that are bundled in box-common. These services are used to handle communication to the job manager including receiving requests for new jobs and also for status updates from workers.


In one embodiment, each request to the rule manager can contain a batch of requests. The jobs (job requests) sent from the rule manager to the job manager can also be batched. In some embodiments, a single request from the rule manager will contain all the jobs that should be generated for a request from the action log dispatcher (ALD). A single event from the dispatcher and, thus, spawn a group of jobs (e.g., FILE_UPLOAD) could trigger virus scanning and text extraction jobs. The job manager responds to a request by indicating, for each group of jobs, whether the entire group of jobs is guaranteed to be run. When an incoming job request is written to HBase, it is at that point “guaranteed” by the job manager. This guarantee will be reflected in the response. Additionally, the web interface scales horizontally by deploying additional servers with the job manager service.


In one embodiment, rule updates are performed through the rule manager web application. For example, the web application can perform CRUD operations on rules using the DB_Model framework. For the rule manager to keep its internal cache (or database) of rules in sync with the web application rule changes, the web application can insert an event into the ALF stream for every change to the rules. The rule manager processes all ALF events at least once, and thus, the rule manager identifies the rule update event and can responsively update the version in Zookeeper to notify all subscribing rule manager instances to update their local caches (rule databases).


In one embodiment, the rule manager utilizes RDL to describe rules. The RDL includes syntax for facilitating translation of an action to a job. In one embodiment, each rule has a rule description defined using RDL. The following snippet illustrates the basic structure of an RDL rule:














{









“rdl_version”: <int> // what version of the RDL are we using



“rule_id”: <int> // id of the rule. Useful for reporting/debugging



“action_log_version”: <int> // what version of the action was this







written against









“job”: {









/**



* Template of the job body that would be forwarded to the job







manager.









* See jobs for more



**/









}



“filter”: {









// filters we need to apply before job creation. see filters for



more









}







}









In one embodiment, rules are stored in a MySQL database. However, an additional index table can allow the rule manager to quickly filter rules by enterprise id and action type. An example Rules Search Index Table Schema and the associated Rules Table Schema follow.


Rules Search Index Table Schema:

    • rule_search_index_id—primary id
    • rule_id—foreign key to g_box_content_workflow_rules
    • action_type_id—id of the type of action that occurred
    • enterprise_id—id of the enterprise for which to apply this rule
    • (this field is set to 0 if there is no such specific enterprise)
    • all_enterprises—boolean of whether the rule applies to all enterprise users. If this is true, enterprise_id is set to 0.
    • all_users—boolean of whether the rule applies to all users. If this is true, enterprise_id is set to 0.
    • created—timestamp of when the rule_search_index was created
    • updated—timestamp of when the rule_search_index was updated
    • deleted—timestamp of when the rule_search_index was deleted


And an example Rules Table Schema:

    • rule_id—primary id
    • description—description of the rule specified in RDL
    • created—timestamp of when the rule was created
    • updated—timestamp of when the rule was updated
    • deleted—timestamp of when the rule was deleted


To prevent conflicts of fields used to filter rules aside from action_type_id, only one field from the set of these “filter fields” (enterprise_id, allEnterprises, allUsers) is used. Examples of valid values for the “filter fields” include, but are not limited to:

    • Rule applies to all enterprise actions:
      • enterprise_id=0;allEnterprises=true;allUsers=false
    • Rule applies to actions from enterprise 32:
      • enterprise_id=32;allEnterprises=false;allUsers=false
    • Rule applies to all users (free+enterprise):
      • enterprise_id=0;allEnterprises=false;allUsers=true


In one embodiment, the rule manager also supports a ruleset. For example, rules that form part of a logical workflow can be grouped together into a ruleset. In this case, a ruleset_id is included with the Rules Template Table Schema. Users can interact with this feature from the UI.


In one embodiment, rules are cached in-memory of the rule manager instance. As discussed above, these local caches of all rule manager instances are synchronized via versioning in Zookeeper.


In one embodiment, the rule manager supports the following basic analysis of rules:

    • 1. Given an event, find all rules that will be applied;
    • 2. Given an event, list all jobs generated;


The service can also be set up with a secondary index that will allow aggregation counts of the kinds of rules or jobs present in the system.


In one embodiment, the rule manager supports templating. Templating includes the process of allowing the rule manager to populate fields from the action log into a given field or position in the job template. The fields can reference any field in the API event object.


In one embodiment, the rule manager supports versioning. Versioning allows the rule manager to check the action log version and the RDL version to determine if an incoming action log data can be successfully applied. For user-defined filters, only fields in the official Events API can be referenced. The rule manager is responsible for ensuring fields in the Events API are correctly extracted from action log data. This means that the rule manager is responsible for maintaining backwards compatibility.


In one embodiment, the rule manager supports permission control. That is, requests to the rule manager must be authenticated.



FIG. 16 illustrates a diagrammatic representation of a machine 1600 in the example form of a computer system within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, may be executed.


In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.


The machine may be a server computer, a client computer, a personal computer (PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone, a web appliance, a network router, a switch or bridge, a console, a hand-held console, a (hand-held) gaming device, a music player, any portable, mobile, hand-held device, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.


While the machine-readable medium or machine-readable storage medium is shown in an exemplary embodiment to be a single medium, the term “machine-readable medium” and “machine-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “machine-readable medium” and “machine-readable storage medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the presently disclosed technique and innovation.


In general, the routines executed to implement the embodiments of the disclosure, may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions referred to as “computer programs.” The computer programs typically comprise one or more instructions set at various times in various memory and storage devices in a computer, and that, when read and executed by one or more processing units or processors in a computer, cause the computer to perform operations to execute elements involving the various aspects of the disclosure.


Moreover, while embodiments have been described in the context of fully functioning computers and computer systems, those skilled in the art will appreciate that the various embodiments are capable of being distributed as a program product in a variety of forms, and that the disclosure applies equally regardless of the particular type of machine or computer-readable media used to actually effect the distribution.


Further examples of machine-readable storage media, machine-readable media, or computer-readable (storage) media include, but are not limited to, recordable type media such as volatile and non-volatile memory devices, floppy and other removable disks, hard disks, optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks, (DVDs), etc.), among others, and transmission type media such as digital and analog communication links.


The network interface device enables the machine 1600 to mediate data in a network with an entity that is external to the host server, through any known and/or convenient communications protocol supported by the host and the external entity. The network interface device can include one or more of a network adaptor card, a wireless network interface card, a router, an access point, a wireless router, a switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver, and/or a repeater.


The network interface device can include a firewall which can, in some embodiments, govern and/or manage permission to access/proxy data in a computer network, and track varying levels of trust between different machines and/or applications. The firewall can be any number of modules having any combination of hardware and/or software components able to enforce a predetermined set of access rights between a particular set of machines and applications, machines and machines, and/or applications and applications, for example, to regulate the flow of traffic and resource sharing between these varying entities. The firewall may additionally manage and/or have access to an access control list which details permissions including, for example, the access and operation rights of an object by an individual, a machine, and/or an application, and the circumstances under which the permission rights stand.


Other network security functions can be performed or included in the functions of the firewall, can be, for example, but are not limited to, intrusion-prevention, intrusion detection, next-generation firewall, personal firewall, etc. without deviating from the novel art of this disclosure.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof, means any connection or coupling, either direct or indirect, between two or more elements; the coupling of connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or,” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.


As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,” or an “engine” includes a general purpose, dedicated or shared processor and, typically, firmware or software modules that are executed by the processor. Depending upon implementation-specific or other considerations, the module, manager, handler, or engine can be centralized or its functionality distributed. The module, manager, handler, or engine can include general or special purpose hardware, firmware, or software embodied in a computer-readable (storage) medium for execution by the processor. As used herein, a computer-readable medium or computer-readable storage medium is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C. § 101), and to specifically exclude all mediums that are non-statutory in nature to the extent that the exclusion is necessary for a claim that includes the computer-readable (storage) medium to be valid. Known statutory computer-readable mediums include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not be limited to hardware.


The above detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of, and examples for, the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times. Further, any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.


The teachings of the disclosure provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various embodiments described above can be combined to provide further embodiments.


Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further embodiments of the disclosure.


These and other changes can be made to the disclosure in light of the above Detailed Description. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.


While certain aspects of the disclosure are presented below in certain claim forms, the inventors contemplate the various aspects of the disclosure in any number of claim forms. For example, while only one aspect of the disclosure is recited as a means-plus-function claim under 35 U.S.C. § 112, ¶6, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. § 112, ¶6 will begin with the words “means for”.) Accordingly, the applicant reserves the right to add additional claims after filing the application to pursue such additional claim forms for other aspects of the disclosure.

Claims
  • 1. A method for processing a metadata event in a collaborative cloud-based environment, the method comprising: monitoring, by a server of the collaborative cloud-based environment, metadata associated with each of a plurality of work items in a work space of the collaborative cloud-based environment;detecting, by the server of the collaborative cloud-based environment, a change in the metadata associated with a particular work item in the collaborative cloud-based environment based on the monitoring of metadata associated with each of the plurality of work items, the change in the metadata resulting from an action performed on the particular work item by a collaborator of the collaborative cloud-based environment;generating, by the server of the collaborative cloud-based environment, a workflow comprising a plurality of jobs and including a set of parameters describing work to be executed in the collaborative cloud-based environment by each job with respect to the particular work item based on the detected change in the metadata associated with the particular work item; anddistributing, by the server of the collaborative cloud-based environment, each job of the generated workflow into a particular job queue to be processed by one or more worker machines in a distributed computing cluster associated with the collaborative cloud-based environment, the particular job queue comprising one of a plurality of job queues.
  • 2. The method of claim 1, further comprising selecting, by the server of the collaborative cloud-based environment, the particular job queue based on a type of each job of the plurality of jobs in the generated workflow, wherein the jobs of the generated workflow comprise a plurality of different types of jobs.
  • 3. The method of claim 2, wherein the particular job queue is designated for jobs of a particular job type, and wherein the particular job queue is serviced by one or more worker machines configured to process the particular job type.
  • 4. The method of claim 1, wherein each job is performed by the one or more worker machines processing the job.
  • 5. The method of claim 1, further comprising injecting, by the server of the collaborative cloud-based environment, callback information into one or more jobs of the generated workflow prior to distributing the job into the particular job queue, the callback information configured to cause a worker machine to transmit notifications to the job manager system while processing the job.
  • 6. The method of claim 1, further comprising injecting, by the server of the collaborative cloud-based environment, a token into one or more jobs of the workflow before distributing the jobs to the particular job queue, wherein the token is used by the one or more worker machines when processing the job and follows any additional job requests initiated by the one or more worker machines, and wherein additional job requests received by the job manager system are not generated into jobs or distributed to job queues if the token has been received by the job manager more than a threshold number of times.
  • 7. A system comprising: a processor; anda memory coupled with and readable by the processor and storing therein a set of instructions which, when executed by the processor, causes the processor to process a metadata event in a collaborative cloud-based environment by: monitoring metadata associated with each of a plurality of work items in a work space of the collaborative cloud-based environment;detecting a change in the metadata associated with a particular work item in the collaborative cloud-based environment based on the monitoring of metadata associated with each of the plurality of work items, the change in the metadata resulting from an action performed on the particular work item by a collaborator of the collaborative cloud-based environment;generating a workflow comprising a plurality of jobs and including a set of parameters describing work to be executed in the collaborative cloud-based environment by each job with respect to the particular work item based on the detected change in the metadata associated with the particular work item; anddistributing each job of the generated workflow into a particular job queue to be processed by one or more worker machines in a distributed computing cluster associated with the collaborative cloud-based environment, the particular job queue comprising one of a plurality of job queues.
  • 8. The system of claim 7, wherein the instructions further cause the processor to select the particular job queue based on a type of each job of the plurality of jobs in the generated workflow, wherein the jobs of the generated workflow comprise a plurality of different types of jobs.
  • 9. The system of claim 8, wherein the particular job queue is designated for jobs of a particular job type, and wherein the particular job queue is serviced by one or more worker machines configured to process the particular job type.
  • 10. The system of claim 7, wherein the one or more worker machines perform processing of each job.
  • 11. The system of claim 7, the instructions further cause the processor to inject callback information into one or more jobs of the generated workflow prior to distributing the job into the particular job queue, the callback information configured to cause a worker machine to transmit notifications to the job manager system while processing the job.
  • 12. The system of claim 7, the instructions further cause the processor to inject a token into one or more jobs of the workflow before distributing the jobs to the particular job queue, wherein the token is used by the one or more worker machines when processing the job and follows any additional job requests initiated by the one or more worker machines, and wherein additional job requests received by the job manager system are not generated into jobs or distributed to job queues if the token has been received by the job manager more than a threshold number of times.
  • 13. A non-transitory, computer-readable medium comprising a set of instructions stored therein which, when executed by a processor, causes the processor to process a metadata event in a collaborative cloud-based environment by: monitoring metadata associated with each of a plurality of work items in a work space of the collaborative cloud-based environment;detecting a change in the metadata associated with a particular work item in the collaborative cloud-based environment based on the monitoring of metadata associated with each of the plurality of work items, the change in the metadata resulting from an action performed on the particular work item by a collaborator of the collaborative cloud-based environment;generating a workflow comprising a plurality of jobs and including a set of parameters describing work to be executed in the collaborative cloud-based environment by each job with respect to the particular work item based on the detected change in the metadata associated with the particular work item; anddistributing each job of the generated workflow into a particular job queue to be processed by one or more worker machines in a distributed computing cluster associated with the collaborative cloud-based environment, the particular job queue comprising one of a plurality of job queues.
  • 14. The non-transitory, computer-readable medium of claim 13, wherein the instructions further cause the processor to select the particular job queue based on a type of each job of the plurality of jobs in the generated workflow, wherein the jobs of the generated workflow comprise a plurality of different types of jobs.
  • 15. The non-transitory, computer-readable medium of claim 14, wherein the particular job queue is designated for jobs of a particular job type, and wherein the particular job queue is serviced by one or more worker machines configured to process the particular job type.
  • 16. The non-transitory, computer-readable medium of claim 13, wherein the one or more worker machines perform processing of each job.
  • 17. The non-transitory, computer-readable medium of claim 13, the instructions further cause the processor to inject callback information into one or more jobs of the generated workflow prior to distributing the job into the particular job queue, the callback information configured to cause a worker machine to transmit notifications to the job manager system while processing the job.
  • 18. The non-transitory, computer-readable medium of claim 13, the instructions further cause the processor to inject a token into one or more jobs of the workflow before distributing the jobs to the particular job queue, wherein the token is used by the one or more worker machines when processing the job and follows any additional job requests initiated by the one or more worker machines, and wherein additional job requests received by the job manager system are not generated into jobs or distributed to job queues if the token has been received by the job manager more than a threshold number of times.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This present application is a continuation of U.S. patent application Ser. No. 15/679,532, filed on Aug. 17, 2017, titled CONFIGURABLE METADATA-BASED AUTOMATION AND CONTENT CLASSIFICATION ARCHITECTURE FOR CLOUD-BASED COLLABORATION PLATFORMS,” which is a continuation of U.S. patent application Ser. No. 14/474,008, filed on Aug. 29, 2014, titled “CONFIGURABLE METADATA-BASED AUTOMATION AND CONTENT CLASSIFICATION ARCHITECTURE FOR CLOUD-BASED COLLABORATION PLATFORMS,” which is related to U.S. patent application Ser. No. 14/056,899 titled “CONFIGURABLE EVENT-BASED AUTOMATION ARCHITECTURE FOR CLOUD-BASED COLLABORATION PLATFORMS,” filed on Sep. 13, 2013, the contents of which are incorporated by reference in their entireties.

US Referenced Citations (586)
Number Name Date Kind
858619 O'Farrell Jul 1907 A
5748735 Ganesan May 1998 A
5787175 Carter Jul 1998 A
5799320 Klug Aug 1998 A
5848415 Guck Dec 1998 A
5864870 Guck Jan 1999 A
5978480 Fong et al. Nov 1999 A
5987480 Donohue Nov 1999 A
5999908 Abelow Dec 1999 A
6016467 Newsted et al. Jan 2000 A
6034621 Kaufman Mar 2000 A
6055543 Christensen et al. Apr 2000 A
6057841 Thurlow et al. May 2000 A
6073161 DeBoskey et al. Jun 2000 A
6098078 Gehani et al. Aug 2000 A
6226618 Downs et al. May 2001 B1
6226630 Billmers May 2001 B1
6233600 Salas et al. May 2001 B1
6260040 Kauffman et al. Jul 2001 B1
6289345 Yasue Sep 2001 B1
6292803 Richardson et al. Sep 2001 B1
6336124 Alam et al. Jan 2002 B1
6342906 Kumar et al. Jan 2002 B1
6345386 Delo et al. Feb 2002 B1
6370543 Hoffert et al. Apr 2002 B2
6374260 Hoffert et al. Apr 2002 B1
6385606 Inohara et al. May 2002 B2
6396593 Laverty et al. May 2002 B1
6441641 Pang et al. Aug 2002 B1
6515681 Knight Feb 2003 B1
6539381 Prasad et al. Mar 2003 B1
6584466 Serbinis et al. Jun 2003 B1
6636872 Heath et al. Oct 2003 B1
6636897 Sherman et al. Oct 2003 B1
6654737 Nunez Nov 2003 B1
6662186 Esquibel et al. Dec 2003 B1
6687878 Eintracht et al. Feb 2004 B1
6714968 Prust Mar 2004 B1
6735623 Prust May 2004 B1
6742181 Koike et al. May 2004 B1
6760721 Chasen et al. Jul 2004 B1
6947162 Rosenberg et al. Sep 2005 B2
6952724 Prust Oct 2005 B2
6996768 Elo et al. Feb 2006 B1
7003667 Slick et al. Feb 2006 B1
7010752 Ly Mar 2006 B2
7020697 Goodman et al. Mar 2006 B1
7039806 Friedman et al. May 2006 B1
7069393 Miyata et al. Jun 2006 B2
7130831 Howard et al. Oct 2006 B2
7133834 Abelow Nov 2006 B1
7143136 Drenan et al. Nov 2006 B1
7149787 Mutalik et al. Dec 2006 B1
7152182 Ji et al. Dec 2006 B2
7155483 Friend et al. Dec 2006 B1
7165107 Pouyoul et al. Jan 2007 B2
7178021 Hanna et al. Feb 2007 B1
7222078 Abelow May 2007 B2
7275244 Bell et al. Sep 2007 B1
7296025 Kung et al. Nov 2007 B2
7346778 Guiter et al. Mar 2008 B1
7353252 Yang et al. Apr 2008 B1
7362868 Madoukh et al. Apr 2008 B2
7363330 Ellman et al. Apr 2008 B1
7370269 Prabhu et al. May 2008 B1
7386535 Kalucha et al. Jun 2008 B1
7401117 Dan et al. Jul 2008 B2
7543000 Castro et al. Jun 2009 B2
7581221 Lai et al. Aug 2009 B2
7620565 Abelow Nov 2009 B2
7647559 Yozell-Epstein et al. Jan 2010 B2
7650367 Arruza Jan 2010 B2
7661088 Burke Feb 2010 B2
7665093 Maybee et al. Feb 2010 B2
7676542 Moser et al. Mar 2010 B2
7698363 Dan et al. Apr 2010 B2
7734600 Wise et al. Jun 2010 B1
7756843 Palmer Jul 2010 B1
7774412 Schnepel Aug 2010 B1
7814426 Huesken et al. Oct 2010 B2
7886287 Davda Feb 2011 B1
7886295 Burger et al. Feb 2011 B2
7890964 Voaler-Ivashchanka et al. Feb 2011 B2
7937663 Parker et al. May 2011 B2
7958353 Matsuzaki et al. Jun 2011 B2
7958453 Taing Jun 2011 B1
7979296 Kruse et al. Jul 2011 B2
7996374 Jones et al. Aug 2011 B1
8027976 Ding et al. Sep 2011 B1
RE42904 Stephens, Jr. Nov 2011 E
8065739 Bruening et al. Nov 2011 B1
8090361 Hagan Jan 2012 B2
8103662 Eaaan et al. Jan 2012 B2
8117261 Briere et al. Feb 2012 B2
8140513 Ghods et al. Mar 2012 B2
8151183 Chen et al. Apr 2012 B2
8185830 Saha et al. May 2012 B2
8200582 Zhu Jun 2012 B1
8214747 Yankovich et al. Jul 2012 B1
8230348 Peters et al. Jul 2012 B2
8239918 Cohen Aug 2012 B1
8326814 Ghods et al. Dec 2012 B2
8347276 Schadow Jan 2013 B2
8358701 Chou et al. Jan 2013 B2
8370803 Holler et al. Feb 2013 B1
8429540 Yankovich et al. Apr 2013 B1
8464161 Giles et al. Jun 2013 B2
8515902 Savage Aug 2013 B2
8527549 Cidon Sep 2013 B2
8549066 Donahue et al. Oct 2013 B1
8549511 Seki et al. Oct 2013 B2
8582777 Urivskiv et al. Nov 2013 B2
8583619 Ghods et al. Nov 2013 B2
8607306 Bridge et al. Dec 2013 B1
8650498 Mihovilovic Feb 2014 B1
8719445 Ko May 2014 B2
8745267 Luecke et al. Jun 2014 B2
8825597 Houston et al. Sep 2014 B1
8849955 Prahlad et al. Sep 2014 B2
8868574 Kiang et al. Oct 2014 B2
8892679 Destagnol et al. Nov 2014 B1
8914856 Velummvlum et al. Dec 2014 B1
8914900 Smith et al. Dec 2014 B2
8918387 Sokolov Dec 2014 B1
8930475 North et al. Jan 2015 B1
8949939 Peddada Feb 2015 B2
8959579 Barton et al. Feb 2015 B2
8966062 Giese et al. Feb 2015 B1
8990955 Hymel et al. Mar 2015 B2
9535909 Masse et al. Jan 2017 B2
9894119 Pearl et al. Feb 2018 B2
9904435 Savage Feb 2018 B2
10708321 Pearl et al. Jul 2020 B2
20010027492 Gupta Oct 2001 A1
20020029218 Bentley et al. Mar 2002 A1
20020091738 Rohrabaugh et al. Jul 2002 A1
20020099772 Deshbande et al. Jul 2002 A1
20020116544 Barnard et al. Aug 2002 A1
20020133509 Johnston et al. Sep 2002 A1
20020147770 Tang Oct 2002 A1
20020188753 Tang et al. Dec 2002 A1
20020194177 Sherman et al. Dec 2002 A1
20030041095 Konda et al. Feb 2003 A1
20030084306 Abburi et al. May 2003 A1
20030093404 Bader et al. May 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110264 Whidby et al. Jun 2003 A1
20030115326 Verma et al. Jun 2003 A1
20030135536 Lyons Jul 2003 A1
20030135565 Estrada Jul 2003 A1
20030154306 Perry Aug 2003 A1
20030204490 Kasriel Oct 2003 A1
20030217171 Von Stuermer et al. Nov 2003 A1
20030228015 Futa et al. Dec 2003 A1
20040021686 Barberis Feb 2004 A1
20040088647 Miller et al. May 2004 A1
20040098361 Peng May 2004 A1
20040103147 Flesher et al. May 2004 A1
20040111415 Scardino et al. Jun 2004 A1
20040117436 Considine et al. Jun 2004 A1
20040122949 Zmudzinski et al. Jun 2004 A1
20040128359 Horvitz et al. Jul 2004 A1
20040177138 Salle et al. Sep 2004 A1
20040181579 Huck et al. Sep 2004 A1
20040196307 Zak et al. Oct 2004 A1
20040201604 Kraenzel et al. Oct 2004 A1
20040218214 Kihara et al. Nov 2004 A1
20040230624 Frolund et al. Nov 2004 A1
20040246532 Inada Dec 2004 A1
20040267836 Armangau et al. Dec 2004 A1
20050005276 Morgan Jan 2005 A1
20050010860 Weiss et al. Jan 2005 A1
20050022229 Gabriel et al. Jan 2005 A1
20050028006 Leser et al. Feb 2005 A1
20050038997 Kojima et al. Feb 2005 A1
20050044250 Gay et al. Feb 2005 A1
20050050228 Perham et al. Mar 2005 A1
20050063083 Dart et al. Mar 2005 A1
20050097225 Glatt et al. May 2005 A1
20050102328 Ring et al. May 2005 A1
20050114378 Elien et al. May 2005 A1
20050198406 Lee et al. May 2005 A1
20050138118 Banatwala et al. Jun 2005 A1
20050182966 Pham et al. Aug 2005 A1
20050198299 Beck et al. Sep 2005 A1
20050198452 Watanabe Sep 2005 A1
20050234864 Shapiro Oct 2005 A1
20050234943 Clarke Oct 2005 A1
20050261933 Magnuson Nov 2005 A1
20060005163 Huesken et al. Jan 2006 A1
20060026502 Dutta Feb 2006 A1
20060026635 Hotelling et al. Feb 2006 A1
20060036568 Moore et al. Feb 2006 A1
20060041603 Paterson et al. Feb 2006 A1
20060041752 Tuyell et al. Feb 2006 A1
20060047804 Fredricksen et al. Mar 2006 A1
20060053088 Ali et al. Mar 2006 A1
20060053380 Spataro et al. Mar 2006 A1
20060070083 Brunswig et al. Mar 2006 A1
20060075071 Gillette Apr 2006 A1
20060101328 Albornoz et al. May 2006 A1
20060114305 Haynes et al. Jun 2006 A1
20060117247 Fite et al. Jun 2006 A1
20060123062 Bobbitt et al. Jun 2006 A1
20060133340 Rybak et al. Jun 2006 A1
20060168550 Muller et al. Jul 2006 A1
20060174051 Lordi et al. Aug 2006 A1
20060174054 Matsuki Aug 2006 A1
20060179070 George et al. Aug 2006 A1
20060179309 Cross et al. Aug 2006 A1
20060242204 Karas et al. Oct 2006 A1
20060242206 Brezak et al. Oct 2006 A1
20060259524 Horton Nov 2006 A1
20060265489 Moore Nov 2006 A1
20060265719 Astl et al. Nov 2006 A1
20060271510 Harward et al. Nov 2006 A1
20060288043 Novak et al. Dec 2006 A1
20070016680 Burd et al. Jan 2007 A1
20070038934 Fellman Feb 2007 A1
20070061266 Moore et al. Mar 2007 A1
20070061393 Moore Mar 2007 A1
20070061487 Moore et al. Mar 2007 A1
20070067349 Jhaveri et al. Mar 2007 A1
20070079242 Jolley et al. Apr 2007 A1
20070100830 Beedubail et al. May 2007 A1
20070106536 Moore May 2007 A1
20070106537 Moore May 2007 A1
20070106750 Moore May 2007 A1
20070106751 Moore May 2007 A1
20070106752 Moore May 2007 A1
20070106753 Moore May 2007 A1
20070106754 Moore May 2007 A1
20070115845 Hochwarth et al. May 2007 A1
20070116036 Moore May 2007 A1
20070116037 Moore May 2007 A1
20070118598 Bedi et al. May 2007 A1
20070124460 McMullen et al. May 2007 A1
20070124737 Wensley et al. May 2007 A1
20070124781 Casey et al. May 2007 A1
20070126635 Houri Jun 2007 A1
20070130143 Zhang et al. Jun 2007 A1
20070130163 Perez et al. Jun 2007 A1
20070156630 Steinmaier et al. Jul 2007 A1
20070162610 Un et al. Jul 2007 A1
20070168461 Moore Jul 2007 A1
20070198609 Black et al. Aug 2007 A1
20070208878 Barnes-Leon et al. Sep 2007 A1
20070214180 Crawford Sep 2007 A1
20070220016 Estrada et al. Sep 2007 A1
20070220590 Rasmussen et al. Sep 2007 A1
20070240057 Satterfield et al. Oct 2007 A1
20070250762 Mansfield Oct 2007 A1
20070256065 Heishi et al. Nov 2007 A1
20070266304 Fletcher et al. Nov 2007 A1
20070282848 Killerich et al. Dec 2007 A1
20070283443 McPherson Dec 2007 A1
20070288290 Motoyama et al. Dec 2007 A1
20080005135 Muthukrishnan et al. Jan 2008 A1
20080005195 Li Jan 2008 A1
20080016146 Gan et al. Jan 2008 A1
20080021959 Naghl et al. Jan 2008 A1
20080028323 Rosen et al. Jan 2008 A1
20080040151 Moore Feb 2008 A1
20080040173 Aleona et al. Feb 2008 A1
20080040503 Kieks et al. Feb 2008 A1
20080046828 Bibliowicz et al. Feb 2008 A1
20080059656 Saliba et al. Mar 2008 A1
20080063210 Goodman et al. Mar 2008 A1
20080065881 Dawson et al. Mar 2008 A1
20080077631 Petri Mar 2008 A1
20080091763 Devonshire et al. Apr 2008 A1
20080091790 Beck Apr 2008 A1
20080104277 Tian May 2008 A1
20080114720 Smith et al. May 2008 A1
20080133674 Knauerhase et al. Jun 2008 A1
20080140732 Wilson et al. Jun 2008 A1
20080147790 Malaney et al. Jun 2008 A1
20080151817 Fitchett et al. Jun 2008 A1
20080154873 Redlich et al. Jun 2008 A1
20080182628 Lee et al. Jul 2008 A1
20080183467 Yuan et al. Jul 2008 A1
20080184130 Tien et al. Jul 2008 A1
20080194239 Hagan Aug 2008 A1
20080215883 Fok et al. Sep 2008 A1
20080222654 Xu et al. Sep 2008 A1
20080243807 Gaucas et al. Oct 2008 A1
20080243855 Prahlad et al. Oct 2008 A1
20080250028 Ruthergien et al. Oct 2008 A1
20080250333 Reeves et al. Oct 2008 A1
20080250348 Alimpich et al. Oct 2008 A1
20080263099 Brady-Kalnay et al. Oct 2008 A1
20080271095 Shafton Oct 2008 A1
20080276158 Lim et al. Nov 2008 A1
20080294899 Gazzetta et al. Nov 2008 A1
20090015864 Hasegawa Jan 2009 A1
20090019093 Brodersen et al. Jan 2009 A1
20090019426 Baeumer et al. Jan 2009 A1
20090030710 Levine Jan 2009 A1
20090037520 Loffredo Feb 2009 A1
20090043848 Kordun Feb 2009 A1
20090044128 Baumgarten et al. Feb 2009 A1
20090049131 Lyle et al. Feb 2009 A1
20090119322 Mills et al. May 2009 A1
20090125469 McDonald et al. May 2009 A1
20090132651 Roger et al. May 2009 A1
20090138808 Moromisato et al. May 2009 A1
20090150417 Ghods et al. Jun 2009 A1
20090150627 Benhase et al. Jun 2009 A1
20090158142 Arthursson et al. Jun 2009 A1
20090164438 Delacruz Jun 2009 A1
20090171983 Samji et al. Jul 2009 A1
20090172773 Moore Jul 2009 A1
20090177754 Brezina et al. Jul 2009 A1
20090193107 Srinivasan et al. Jul 2009 A1
20090193345 Wensley et al. Jul 2009 A1
20090198772 Kim et al. Aug 2009 A1
20090210459 Nair et al. Aug 2009 A1
20090214115 Kimura et al. Aug 2009 A1
20090234850 Kocsis et al. Sep 2009 A1
20090235167 Boyer et al. Sep 2009 A1
20090235181 Saliba et al. Sep 2009 A1
20090235189 Aybes et al. Sep 2009 A1
20090249224 Davis et al. Oct 2009 A1
20090254589 Nair et al. Oct 2009 A1
20090259694 Hama Oct 2009 A1
20090260060 Smith et al. Oct 2009 A1
20090265430 Bechtel et al. Oct 2009 A1
20090271708 Peters et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090282212 Peterson Nov 2009 A1
20090282483 Bennett Nov 2009 A1
20090300356 Crandell Dec 2009 A1
20090300527 Malcolm et al. Dec 2009 A1
20090327358 Lukiyanov et al. Dec 2009 A1
20090327405 Fitzgerald et al. Dec 2009 A1
20090327961 De Vorchik et al. Dec 2009 A1
20100011292 Marinkovich et al. Jan 2010 A1
20100011447 Jothimani Jan 2010 A1
20100017262 Iyer et al. Jan 2010 A1
20100017619 Errico Jan 2010 A1
20100036929 Scherpa et al. Feb 2010 A1
20100042720 Stienhans et al. Feb 2010 A1
20100057560 Skudlark et al. Mar 2010 A1
20100057785 Khosravy et al. Mar 2010 A1
20100076946 Barker et al. Mar 2010 A1
20100082634 Leban Apr 2010 A1
20100083136 Komine et al. Apr 2010 A1
20100088150 Mazhar et al. Apr 2010 A1
20100092126 Kaliszek et al. Apr 2010 A1
20100093310 Gbadegesin et al. Apr 2010 A1
20100107225 Spencer et al. Apr 2010 A1
20100131868 Chawla et al. May 2010 A1
20100151431 Miller Jun 2010 A1
20100153835 Xiong et al. Jun 2010 A1
20100162365 Del Real Jun 2010 A1
20100162374 Nair Jun 2010 A1
20100179940 Gilder et al. Jul 2010 A1
20100185463 Noland et al. Jul 2010 A1
20100185932 Coffman et al. Jul 2010 A1
20100191689 Cortes et al. Jul 2010 A1
20100198783 Wana et al. Aug 2010 A1
20100198871 Stiegler et al. Aug 2010 A1
20100198944 Ho et al. Aug 2010 A1
20100205537 Knighton et al. Aug 2010 A1
20100218237 Ferris et al. Aug 2010 A1
20100223378 Wei Sep 2010 A1
20100229085 Nelson et al. Sep 2010 A1
20100235526 Carter et al. Sep 2010 A1
20100235539 Carter et al. Sep 2010 A1
20100241611 Zuber Sep 2010 A1
20100241972 Spataro et al. Sep 2010 A1
20100250120 Waupotitsch et al. Sep 2010 A1
20100251340 Martin et al. Sep 2010 A1
20100257457 De Goes Oct 2010 A1
20100262582 Garcia-Ascanio et al. Oct 2010 A1
20100267588 Nelson et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100274772 Samuels Oct 2010 A1
20100281118 Donahue et al. Nov 2010 A1
20100290623 Banks et al. Nov 2010 A1
20100306379 Ferris Dec 2010 A1
20100318893 Matthews et al. Dec 2010 A1
20100322252 Suganthi et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100325527 Estrada et al. Dec 2010 A1
20100325559 Westerinen et al. Dec 2010 A1
20100325655 Perez Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20100332962 Hammer et al. Dec 2010 A1
20100333116 Prahlad et al. Dec 2010 A1
20110001763 Murakami Jan 2011 A1
20110016409 Grosz et al. Jan 2011 A1
20110022559 Andersen et al. Jan 2011 A1
20110022642 deMilo et al. Jan 2011 A1
20110022812 van der Linden et al. Jan 2011 A1
20110029863 Lussier et al. Feb 2011 A1
20110040812 Phillips Feb 2011 A1
20110041083 Gabai et al. Feb 2011 A1
20110047413 McGill et al. Feb 2011 A1
20110047484 Mount et al. Feb 2011 A1
20110052155 Desmarais et al. Mar 2011 A1
20110054963 Galaviz Mar 2011 A1
20110055299 Phillips Mar 2011 A1
20110055721 Jain et al. Mar 2011 A1
20110061045 Phiilips Mar 2011 A1
20110061046 Phillips Mar 2011 A1
20110065082 Gal et al. Mar 2011 A1
20110066951 Ward-Karet et al. Mar 2011 A1
20110083167 Carpenter et al. Apr 2011 A1
20110093567 Jeon et al. Apr 2011 A1
20110099006 Sundararaman et al. Apr 2011 A1
20110107088 Eng et al. May 2011 A1
20110107205 Chow et al. May 2011 A1
20110113320 Neff et al. May 2011 A1
20110119313 Sung et al. May 2011 A1
20110125847 Cocheu et al. May 2011 A1
20110131299 Sardary Jun 2011 A1
20110137991 Russell Jun 2011 A1
20110142410 Ishii Jun 2011 A1
20110145589 Camenisch et al. Jun 2011 A1
20110145744 Haynes et al. Jun 2011 A1
20110154180 Evanitsky et al. Jun 2011 A1
20110161289 Pei et al. Jun 2011 A1
20110167125 Achlioptas Jul 2011 A1
20110167353 Grosz et al. Jul 2011 A1
20110167435 Fang Jul 2011 A1
20110185292 Chawla et al. Jul 2011 A1
20110202424 Chun et al. Aug 2011 A1
20110202599 Yuan et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110213765 Cui et al. Sep 2011 A1
20110219419 Reisman Sep 2011 A1
20110225417 Maharajh et al. Sep 2011 A1
20110236759 Spataro et al. Sep 2011 A1
20110238458 Purcell et al. Sep 2011 A1
20110238621 Agrawal Sep 2011 A1
20110239135 Spataro et al. Sep 2011 A1
20110246294 Robb et al. Oct 2011 A1
20110246950 Luna et al. Oct 2011 A1
20110252071 Cideon Oct 2011 A1
20110252320 Arrasvuori et al. Oct 2011 A1
20110252339 Lemonik et al. Oct 2011 A1
20110258461 Bates Oct 2011 A1
20110258561 Ladouceur et al. Oct 2011 A1
20110277027 Hayton et al. Nov 2011 A1
20110282710 Akkiraju et al. Nov 2011 A1
20110289433 Whalin et al. Nov 2011 A1
20110296022 Ferris et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110320197 Conejero et al. Dec 2011 A1
20120036370 Lim et al. Feb 2012 A1
20120057696 Chew Mar 2012 A1
20120064879 Panel Mar 2012 A1
20120072436 Pierre et al. Mar 2012 A1
20120079095 Evans et al. Mar 2012 A1
20120089659 Halevi et al. Apr 2012 A1
20120096521 Peddada Apr 2012 A1
20120110005 Kuo et al. May 2012 A1
20120110436 Adler, III et al. May 2012 A1
20120110443 Lemonik et al. May 2012 A1
20120117626 Yates et al. May 2012 A1
20120124306 Abercrombie et al. May 2012 A1
20120124547 Halbedel May 2012 A1
20120130900 Tana et al. May 2012 A1
20120134491 Liu May 2012 A1
20120136936 Quintuna May 2012 A1
20120144283 Hill et al. Jun 2012 A1
20120150888 Hyatt et al. Jun 2012 A1
20120151551 Readshaw et al. Jun 2012 A1
20120158908 Luna et al. Jun 2012 A1
20120159178 Lin et al. Jun 2012 A1
20120159310 Chang et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120173612 Veaesna-Venkata et al. Jul 2012 A1
20120173625 Berger Jul 2012 A1
20120179981 Whalin et al. Jul 2012 A1
20120185355 Kilroy Jul 2012 A1
20120185913 Martinez et al. Jul 2012 A1
20120192055 Antobi et al. Jul 2012 A1
20120192086 Ghods Jul 2012 A1
20120203670 Piersol Aug 2012 A1
20120203908 Beaty et al. Aug 2012 A1
20120204032 Wilkins et al. Aug 2012 A1
20120214444 McBride et al. Aug 2012 A1
20120218885 Abel et al. Aug 2012 A1
20120221789 Felter Aug 2012 A1
20120222106 Kuehl Aug 2012 A1
20120224691 Purohit Sep 2012 A1
20120226767 Luna et al. Sep 2012 A1
20120233155 Gallmeler et al. Sep 2012 A1
20120233205 McDermott Sep 2012 A1
20120233543 Vagell et al. Sep 2012 A1
20120240061 Hillenius et al. Sep 2012 A1
20120240183 Sinha Sep 2012 A1
20120257249 Natarajan Oct 2012 A1
20120259964 Lin et al. Oct 2012 A1
20120263166 Cho et al. Oct 2012 A1
20120266203 Elhadad et al. Oct 2012 A1
20120284290 Keebler et al. Nov 2012 A1
20120284638 Cutler et al. Nov 2012 A1
20120284664 Zhao Nov 2012 A1
20120291011 Quire Nov 2012 A1
20120296790 Robb et al. Nov 2012 A1
20120309540 Holme et al. Dec 2012 A1
20120311157 Erickson et al. Dec 2012 A1
20120317239 Mulder et al. Dec 2012 A1
20120317487 Lieb et al. Dec 2012 A1
20120328259 Seibert, Jr. et al. Dec 2012 A1
20120331177 Jensen Dec 2012 A1
20120331441 Adamson Dec 2012 A1
20130007245 Malik et al. Jan 2013 A1
20130007471 Grab et al. Jan 2013 A1
20130007587 Marantz et al. Jan 2013 A1
20130007894 Dang et al. Jan 2013 A1
20130013560 Goldberg et al. Jan 2013 A1
20130014023 Lee et al. Jan 2013 A1
20130042106 Persaud et al. Feb 2013 A1
20130055127 Saito et al. Feb 2013 A1
20130067232 Cheung et al. Mar 2013 A1
20130073403 Tuchman et al. Mar 2013 A1
20130080919 Kiana et al. Mar 2013 A1
20130103677 Chakra et al. Apr 2013 A1
20130104251 Moore et al. Apr 2013 A1
20130110565 Means, Jr. et al. May 2013 A1
20130117337 Dunham May 2013 A1
20130117376 Filman et al. May 2013 A1
20130124638 Barreto et al. May 2013 A1
20130124984 Kuspa May 2013 A1
20130138608 Smith May 2013 A1
20130138615 Gupta et al. May 2013 A1
20130159411 Bowen Jun 2013 A1
20130163289 Kim et al. Jun 2013 A1
20130167253 Seleznev et al. Jun 2013 A1
20130212486 Joshi et al. Jun 2013 A1
20130179799 Savage Jul 2013 A1
20130185347 Romano Jul 2013 A1
20130185558 Seibert et al. Jul 2013 A1
20130191339 Haden et al. Jul 2013 A1
20130198600 Lockhart et al. Aug 2013 A1
20130212067 Piasecki et al. Aug 2013 A1
20130218978 Weinstein et al. Aug 2013 A1
20130239049 Perrodin et al. Sep 2013 A1
20130246901 Massand Sep 2013 A1
20130246932 Zaveri et al. Sep 2013 A1
20130262210 Savage et al. Oct 2013 A1
20130262556 Cong et al. Oct 2013 A1
20130262862 Hartley Oct 2013 A1
20130268480 Dorman Oct 2013 A1
20130268491 Chung et al. Oct 2013 A1
20130275398 Dorman et al. Oct 2013 A1
20130275429 York et al. Oct 2013 A1
20130275509 Micucci et al. Oct 2013 A1
20130282776 Durrant et al. Oct 2013 A1
20130282830 Besen et al. Oct 2013 A1
20130291060 Moore Oct 2013 A1
20130305039 Gauda Nov 2013 A1
20130326344 Masselle et al. Dec 2013 A1
20130346444 Kavuri et al. Dec 2013 A1
20140007205 Oikonomou Jan 2014 A1
20140013112 Cidon et al. Jan 2014 A1
20140019497 Cidon et al. Jan 2014 A1
20140019498 Cidon et al. Jan 2014 A1
20140032489 Hebbar et al. Jan 2014 A1
20140032616 Nack Jan 2014 A1
20140033277 Xiao et al. Jan 2014 A1
20140033291 Liu Jan 2014 A1
20140052939 Tseng et al. Feb 2014 A1
20140059217 Pizurica Feb 2014 A1
20140068589 Barak Mar 2014 A1
20140074629 Rathod Mar 2014 A1
20140150023 Gudorf et al. May 2014 A1
20140156373 Roberts et al. Jun 2014 A1
20140172595 Beddow et al. Jun 2014 A1
20140181968 Ge et al. Jun 2014 A1
20140208414 Brandwine Jul 2014 A1
20140213371 Jain Jul 2014 A1
20140281870 Vogel et al. Sep 2014 A1
20140344456 Buzbee et al. Nov 2014 A1
20140359286 Wen et al. Dec 2014 A1
20150019723 Kweon et al. Jan 2015 A1
20150056596 Bercovitz et al. Feb 2015 A1
20150081624 Masse et al. Mar 2015 A1
20150082197 Pearl et al. Mar 2015 A1
20160004820 Moore Jan 2016 A1
20160065627 Pearl et al. Mar 2016 A1
Foreign Referenced Citations (41)
Number Date Country
2724521 Nov 2009 CA
101997924 Mar 2011 CN
182264063 Nov 2011 CN
0921661 Jun 1999 EP
1349088 Oct 2003 EP
1528746 May 2005 EP
2372574 Oct 2011 EP
2610776 Jul 2013 EP
2453924 Apr 2009 GB
2471282 Dec 2010 GB
H09-101937 Apr 1997 JP
H11-025059 Jan 1999 JP
2003-273912 Sep 2003 JP
2004-310272 Nov 2004 JP
09-269925 Oct 2007 JP
2008-250944 Oct 2008 JP
10-2002-0017444 Mar 2002 KR
10-2004-0028036 Apr 2004 KR
10-2005-0017674 Feb 2005 KR
10-2006-0070306 Jun 2006 KR
10-2006-0114871 Nov 2006 KR
10-2007-0043353 Apr 2007 KR
10-2007-0100477 Oct 2007 KR
10-2010-0118836 Nov 2010 KR
10-2011-0074096 Jun 2011 KR
10-2011-0076831 Jul 2011 KR
WO 0007104 Feb 2000 WO
WO2002019128 Mar 2002 WO
WO 2004097681 Nov 2004 WO
WO 2006028850 Mar 2006 WO
WO 2007024438 Mar 2007 WO
WO 2007035637 Mar 2007 WO
WO 2007113573 Oct 2007 WO
WO 2008011142 Jan 2008 WO
WO 2008076520 Jun 2008 WO
WO 2011109416 Sep 2011 WO
WO 2012167272 Dec 2012 WO
WO 2013009328 Jan 2013 WO
WO 2013013217 Jan 2013 WO
WO 2013041763 Mar 2013 WO
WO 2013166520 Nov 2013 WO
Non-Patent Literature Citations (120)
Entry
“Agilewords—Features, Powerful Features Yet Simple,” Jun. 1, 2011, http://web.archive.org/web/20110601223756/http://agilewords.com/product/features, 3 pages.
“Agilewords—How to Request Approval” YouTube, Jan. 31, 2011, http://www.youtube.com/watch?v=3-Ov3DYNN3Q, 2 pages.
“Average Conversion Time for a D60 RAW file?” http://www.dpreview.com. Jul. 22, 2002, 4 pages.
“Conceptboard”, One-Step Solution for Online Collaboration, retrieved from website http://conceptboard.com and hftps://www.youtube.com/user/ConceptboardApp?feature=watch, printed on Jun. 13, 2013, 9 pages.
“Dropbox: Sync only specific folders,” posted on Feb. 9, 2012, available online at http://www.tech-recipes.com/rx/20865/dropbox-sync-only-specific-folders/, 4 pages.
“Google Does,” Wikipedia, Apr. 13, 2010, http://web.archive.org/web/20100413105758/http://en.wikipedia.org/wiki/Google docs, 6 pages.
“How-to Geek, How to Sync Specific Folders With Dropbox,” downloaded from the Internet http://www.howtogeek.com, Apr. 23, 2013, 5 pages.
“Internet Forums,” Wikipedia, May 30, 2010, http://web.archive.org/web/2010528195550/http://en.wikipedia.org/wiki/Internet_forums, 20 pages.
“Microsoft Office SharePoint 2007 User Guide,” Feb. 16, 2010, pp. 1-48.
“Microsoft Windows XP Professional Product Documentation: How Inheritance Affects File and Folder Permissions,” Apr. 11, 2014, 2 pages.
“PaperPort Professional 14,” PC Mag. Com review, published Feb. 2012, Ziff Davis, Inc., 8 pages.
“PaperPort,” Wikipedia article (old revision), published May 19, 2012, Wikipedia Foundation, 2 pages.
“Quickoffice Enhances Android Mobile office Application for Improved Productivity on latest Smartphone and Table Devices,” QuickOffice Press Release, Nov. 21, 2011, QuickOffice Inc., 2 pages.
“QuickOffice,” Wikipedia. Article (old revision), published May 9, 2012, Wikipedia Foundation, 2 pages.
“Revolving sync conflicts; frequently asked questions,” Microsoft Tech Support, Jul. 16, 2012, retrieved from the Internet: http://web.archive.org/web, 2 pages.
“Troubleshoot sync problems,” Microsoft Tech Support May 2, 2012, retrieved from the internet, http://web. Archive.org/web, 3 pages.
“Tulsa Tech Fest 2012—Agenda,” retrieved from the website, http://web.archive.org, Oct. 2, 2012, 2 pages.
“Understanding Metadata,” National Information Standards Organization, NISO Press, 2004, 20 pages.
“User's Guide for SMART Board Software for Windows,” published Dec. 2004, 90 pages.
“Wayback machine,” Wayback, Jun. 1, 2011, 1 page.
“Wiki,” Wikipedia, Feb. 13, 2010, http://web.archive.org/web/20100213004936/http://en.wikipedia.org/wiki/Wiki, 16 pages.
“Yahoo! Groups,” Wikipedia, Mar. 20, 2009, http://web.archive.org/web/20090320101529/http://en.wikipedia.org/wiki/Yahoo!_Groups, 6 pages.
Burney, “How to Move Document from Your Computer to Your iPad and Back Again,” May 31, 2011, 3 pages.
Burns, “Developing Secure Mobile Applications for Android,” Oct. 2008, Version 1.0, 28 pages.
Cisco, “FTP Load Balancing on ACE in Routed Mode Configuration Example,” DocWiki, Jun. 2011, 7 pages.
Cohen, “Debating the Definition of Cloud Computing Platforms,” retrieved from the Internet, http://forbes.com, Feb. 3, 2014, 7 pages.
Comes, “MediaXchange User's Manual,” Version 1.15.15, Feb. 1, 2009, 90 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 24 pages.
Conner, “Google Apps: The Missing Manual,” published by O'Reilly Media, May 27, 2008, 42 pages.
Delendik, “Evolving with Web Standards—The Story of PDF.JS,” retrieved from the internet, http://people.mozilla.org, Oct. 12, 2012, 36 pages.
Delendik, “My PDF.js talk slides from Tulsa TechFest,” retrieved from the internet, http://twitter.com, Oct. 12, 2012, 2 pages.
Duffy, “The Best File-Syncing Services,” pcmag.com, retrieved from the internet: http://www.pcmag.com, Sep. 28, 2012, 7 pages.
Gedymin, “Cloud computing with an emphasis on Google App Engine,” Master Final Project, Sep. 2011, 146 pages.
John et al., “Always Sync Support Forums—View topic—Allway sync funny behavior,” Allway Sync Support Forum at http://sync-center.com, Mar. 28, 2011, XP055109680, 2 pages.
Langfield et al., “Microsoft SharePoint 2003 Unleashed,” Chapters 11 and 15, Jun. 2004, pp. 403-404, 557-561, 578-581.
Lars, “35 Very Useful Online Tools for Improving your project Management and Team Collaboration,” Apr. 31, 2010, tripwiremagazine.com, pp. 1-32.
Palmer, “Load Balancing FTP Servers,” BlogNav, Oct. 2008, 2 pages.
Parr, “Google Docs Improves Commenting, Adds E-mail Notifications,” Apr. 16, 2011, mashable.com, pp. 1-6.
Pyle et al., “How to enable Event logging for Offline Files (Client Side Caching) in Windows Vista,” Feb. 18, 2009, retrieved from the Internet: http://blogs.technet.com, 3 pages.
Rao, “Box Acquires Crocodoc to Add HTML5 Document Converter and Sleek Content Viewing Experience to Cloud Storage Platform,” retrieved from the internet, http://techcrunch.com, May 9, 2013, 8 pages.
Sommmerer, “Presentable Document Format: Improved On-demand PDF to HTML Conversion,” retrieved from the internet, http://research.microsoft.com, Nov. 2004, 8 pages.
Tulloch et al., “Windows Vista Resource Kit,” Apr. 8, 2007, Microsoft Press, XP055113067, 6 pages.
Walker, “PDF.js project meeting notes,” retrieved from the internet, http://groups.google.com, May 15, 2014, 1 page.
Exam Report for EP 13177108.1, Applicant: Box, Inc. dated Feb. 17, 2015, 8 pages.
Exam Report for EP 13185269.1, Applicant: Box, Inc., dated Feb. 13, 2015, 8 pages.
Exam Report for EP13158415.3, Applicant: Box, Inc, dated Jun. 4, 2013, 8 pages.
Exam Report for EP13168784.0, Applicant: Box, Inc. dated Nov. 21, 2013, 7 pages.
Exam Report for EP13177198.1, Applicant: Box, Inc. dated May 26, 2014, 6 pages.
Exam Report for EP13185269.1, Applicant: Box, Inc. dated Jan. 28, 7 pages.
Exam Report for GB1300188.8, Applicant: Box, Inc. dated May 31, 2013, 8 pages.
Exam Report for GB1306011.6, Applicant: Box, Inc. dated Apr. 18, 2013, 8 pages.
Exam Report for GB1308842.2, Applicant: Box, Inc. dated Mar. 10, 2014, 4 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. dated Jan. 19, 2015, 6 pages.
Exam Report for GB1309209.3 Applicant: Box, Inc. dated Oct. 7, 2014, 3 pages.
Exam Report for GB1309209.3, Applicant: Box, Inc. dated Oct. 30, 2013, 11 pages.
Exam Report for GB1310666.1, Applicant: Box, Inc. dated Aug. 30, 2013, 10 pages.
Exam Report for GB1311417.8 Applicant: Box, Inc. dated Nov. 7, 2014, 2 pages.
Exam Report for GB1311417.8, Applicant: Box, Inc. dated Dec. 23, 2013, 5 pages.
Exam Report for GB1311421.0 Applicant: Box, Inc. dated Nov. 7, 2014, 4 pages.
Exam Report for GB1312095.1 Applicant: Box, Inc. dated Nov. 19, 2014, 5 pages.
Exam Report for GB1312095.1, Applicant: Box, Inc. dated Dec. 12, 2013, 7 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. dated Jan. 30, 2015, 5 pages.
Exam Report for GB1312264.3, Applicant: Box, Inc. dated Mar. 24, 2014, 7 pages.
Exam Report for GB1312874.9 Applicant: Box, Inc. dated Sep. 26, 2014, 2 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. dated Dec. 20, 2013, 11 pages.
Exam Report for GB1312874.9, Applicant: Box, Inc. dated Feb. 10, 2015, 7 pages.
Exam Report for GB1313559.5 Applicant: Box, Inc. dated Nov. 4, 2014, 2 pages.
Exam Report for GB1313559.5, Applicant: Box, Inc., dated Aug. 22, 2013, 19 pages.
Exam Report for GB1314771.5, Applicant: Box, Inc. dated Feb. 17, 2014, 7 pages.
Exam Report for GB1315232.7 Applicant: Box, Inc. dated Oct. 9, 2014, 5 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc. dated Oct. 31, 2013, 10 pages.
Exam Report for GB1316532.9, Applicant: Box, Inc., dated Mar. 27, 2015, 6 pages.
Exam Report for GB1316533.7, Applicant: Box, Inc. dated Oct. 8, 2013, 9 pages.
Exam Report for GB1316682.2 Applicant: Box, Inc. dated Nov. 19, 2014, 6 pages.
Exam Report for GB1316685.5, Applicant: Box, Inc. dated Feb. 17, 2015, 5 pages.
Exam Report for GB1316971.9, Applicant: Box, Inc. dated Nov. 26, 2013, 10 pages.
Exam Report for GB1317393.5 Applicant: Box, Inc. dated Nov. 7, 2014, 6 pages.
Exam Report for GB1317600.3, Applicant: Box, Inc. dated Nov. 21, 2013, 8 pages.
Exam Report for GB1318373.6, Applicant: Box, Inc. dated Dec. 17, 2013, 4 pages.
Exam Report or GB1318789.3 Applicant: Box, Inc. dated Oct. 30, 2014, 6 pages.
Exam Report for GB1318792.7, Applicant: Box, Inc. dated May 22, 2014, 2 pages.
Exam Report for GB1320902.8, Applicant: Box, Inc. dated Dec. 20, 2013, 6 pages.
Exam Report for GB1410569.6 Applicant: Box, Inc. dated Jul. 11, 2014, 9 pages.
Exam Report for GB1415126.0 Applicant: Box, Inc. dated Oct. 2, 2014, 8 pages.
Exam Report for GB1415314.2 Applicant: Box, Inc. dated Oct. 7, 2014, 6 pages.
Extended European Search Report for EP131832800, Applicant: Box, Inc. dated Aug. 25, 2014, 7 pages.
Extended European Search Report for EP141509422, Applicant: Box, Inc. dated Aug. 26, 2014, 12 pages.
International Search Report and Written Opinion for PCT/US2008/012973 dated Apr. 30, 2009, 11 pages.
International Search Report and Written Opinion for PCT/US2011/039126 dated Oct. 6, 2011, 13 pages.
International Search Report and Written Opinion for PCT/US2011/041308 dated Jul. 2, 2012, 16 pages.
International Search Report and Written Opinion for PCT/US2011/047530, Applicant: Box, Inc., dated Mar. 22, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/056472 dated Jun. 22, 2012, 12 pages.
International Search Report and Written Opinion for PCT/US2011/057938, Applicant: Box, Inc., dated Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2011/060875 dated Oct. 30, 2012, 10 pages.
International Search Report and Written Opinion for PCT/US2012/056955, Applicant: Box, Inc., dated Mar. 27, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2012/063041, Applicant: Box, Inc., dated Mar. 29, 2013, 12 pages.
International Search Report and Written Opinion for PCT/US2012/065617, Applicant: Box, Inc., dated Mar. 29, 2013, 9 pages.
International Search Report and Written Opinion for PCT/US2012/067126, Applicant: Box, Inc., dated Mar. 29, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2012/070366 , Applicant: Box, Inc., dated Apr. 24, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/020267, Applicant: Box, Inc., dated May 7, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/023889, Applicant: Box, Inc., dated Jun. 24, 2013, 13 pages.
International Search Report and Written Opinion for PCT/US2013/029520, Applicant: Box, Inc., dated Jun. 26, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034662, Applicant: Box, Inc., dated May 31, 2013, 10 pages.
International Search Report and Written Opinion for PCT/US2013/034765, Applicant: Box, Inc., dated Jan. 20, 2014, 15 pages.
International Search Report and Written Opinion for PCT/US2013/035404, Applicant: Box, Inc., dated Jun. 26, 2013, 11 pages.
International Search Report and Written Opinion for PCT/US2013/039782, Applicant Box, Inc., dated Aug. 28, 2013, 15 pages.
Partial International Search Report for PCT/US2011 /041308 dated Feb. 27, 2012, 2 pages.
Partial Search Report for EP131832800, Applicant: Box, Inc, dated May 8, 2014, 5 pages.
Patent Court Document of Approved Judgment for GB0602349.3 and GB0623571.7; Mar. 3, 2009, 17 pages.
Search Report for EP 11729851.3, Applicant: Box, Inc. dated Feb. 7, 2014, 9 pages.
Search Report for EP 13189144.2 Applicant: Box, Inc. dated Sep. 1, 2014, 9 pages.
Search Report for EP13187217.8, Applicant: Box, Inc. dated Apr. 15, 2014, 12 pages.
Search Report for EP141509422, Applicant: Box, Inc. dated May 8, 2014, 7 pages.
Search Report for EP14151588.2, Applicant: Box, Inc. dated Apr. 15, 2014, 12 pages.
Search Report for EP14153783.7, Applicant: Box, Inc. dated Apr. 7, 2014, 6 pages.
Supplementary European Search Report European Application No. EP 08858563 dated Jun. 20, 2011, 15 pages.
Official Action for U.S. Appl. No. 14/474,008, dated Oct. 24, 2016, 21 pages.
Notice of Allowance for U.S. Appl. No. 14/474,008, dated Oct. 20, 2017, 8 pages.
Official Action for U.S. Appl. No. 15/679,532, dated Aug. 8, 2019, 21 pages.
Notice of Allowance for U.S. Appl. No. 15/679,532, dated Feb. 25, 2020, 21 pages.
Related Publications (1)
Number Date Country
20200287946 A1 Sep 2020 US
Continuations (2)
Number Date Country
Parent 15679532 Aug 2017 US
Child 16883645 US
Parent 14474008 Aug 2014 US
Child 15679532 US