The presently disclosed technology relates to a light fixture, and more particularly to an overhead LED light fixture in which the light pattern can be adjusted according to the needs at a particular site.
A problem with current lighting strategies is that the typical lighting fixture sends light out in a generally symmetrical pattern. This can result in areas being illuminated which should not be illuminated, such as vehicular roadways where the light can distract drivers. Light is often wasted as it is mistakenly directed upward into the night sky. This costs money, and needlessly contributes to light pollution in a city. A lighted area can also have a border along its edge that does not need to be lighted, and is detrimental to drivers or pedestrians if it is lighted. If the spread of light could be accurately controlled, savings in energy would be achieved, and only those areas selected to be lighted would receive light. If the configurable light is also an LED fixture, further savings could be achieved.
The purpose of the Summary is to enable the public, and especially the scientists, engineers, and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection, the nature and essence of the technical disclosure of the application. The Summary is neither intended to define the inventive concept(s) of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the inventive concept(s) in any way.
Disclosed is a configurable overhead light fixture, meaning that the output of the light can be adjusted to fit the requirements of a particular site, before or after the light is installed. The overhead light is made up of a heat sink and initial LEDs which are typically installed first. The heat sink is planar, and has a first and a second surface. It has LED lights attached to the first surface, which would typically be the surface which faces down, so that an area where people may be present is illuminated from above. The heat sink has a second surface, to which are attached a plurality of heat radiating fins. The heat sink and fins could be an extruded piece, comb line in cross section, and as long as the user desires.
The lighting pattern selected can be asymmetrical, oblong, circular, squarish, or other shapes, with the lighting pattern determined by the LED covers that are selected. The LEDs are connected to the heat sink and to a power source outside the heat sink. The LEDs in the heat sink would be chosen for a lumen output from 1000 to 10,000 lumens, and color temperature range typically from 2700K to 5600K. The selection of specific LEDs would depend on the location and desired light pattern of a particular installation.
The overhead light could be over a parking lot, over a sidewalk, over an entry to a building, in a hallway or warehouse, etc. It would typically be installed in an area where it is desirable to have a weather resistant light, and weather resistance is a feature of the light. The lenses can also be selected to minimize light going up into the night sky, to reduce light pollution in a city and also get the most usable light out of any amount of power.
After the heat sink is installed with LEDs of the desired characteristic, lenses are attached directly to the heat sink. The surface of the heat sink has grooves, typically circular, which correspond to the rim (circumferential edge) of the generally curvilinear dome shaped lenses. The term curvilinear dome shaped includes hemispherical shapes, bulbous shapes, columnar shapes with curved tops, flat domes, tall domes, sections of a sphere, and similar bulbous, protruding and rounded shapes.
The lens grooves are incised into the heat sink surface, and would typically be 1.75″ in diameter, and 0.050″ deep in the heat sink material. The heat sink may have multiple LEDs on its surface, each with a groove for the lens. Each lens groove may also surround multiple LEDs. Lenses are selected for the spread of light which is desired, and for this a wide selection of lenses are possible. Some lenses which can be selected include:
The lenses may be attached to the heat sink by placing an adhesive in the lens grooves, and then placing the base of the lenses in the lens groove. The adhesive may be silicone, epoxy, or other waterproof materials. This method also provides a weather tight seal for the LED light.
Another option for attaching the lenses to the heat sink is cutting screw threads in the outside edge of each groove and using matching screw threads on the base of each lens with a rubber or other flexible weather tight gasket in the base of each groove. This method also provides a weather tight seal for the LED light.
Another attachment method can be to install an o-ring in the sidewalls of the lens groove, which would form a seal as the lens is pressed or screwed in place. This method also provides a weather tight seal for the LED light.
The disclosed technology also includes a method of retrofitting a configurable LED light into an existing overhead light. The method is made up of the following steps:
The method also includes the step of shaping the light pattern as the light is mounted in a fixture, by use of one or more of these options: The spread of the light field can be adjusted during or after installation of the light body. This can be done is several ways.
Still other features and advantages of the presently disclosed and claimed inventive concept(s) will become readily apparent to those skilled in this art from the following detailed description describing preferred embodiments of the inventive concept(s), simply by way of illustration of the best mode contemplated by carrying out the inventive concept(s). As will be realized, the inventive concept(s) is capable of modification in various obvious respects all without departing from the inventive concept(s). Accordingly, the drawings and description of the preferred embodiments are to be regarded as illustrative in nature, and not as restrictive in nature.
While the presently disclosed inventive concept(s) is susceptible of various modifications and alternative constructions, certain illustrated embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the inventive concept(s) to the specific form disclosed, but, on the contrary, the presently disclosed and claimed inventive concept(s) is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the inventive concept(s) as defined in the claims.
The size of the heat sink can vary based on the particular application, but a typical size is 4″ by 4″, and 3/16″ thick, made of aluminum. The size of the heat sink would be based on approximately 6 square inches per watt of heat sink surface area. The heat radiating fins would typically be aluminum, approximately 2″×4″, and 2″ long. The entire unit of the heat sink and fins could be extruded as one piece. The lenses can also be different diameters and shapes, with a typical diameter of the lens being about 1¾″. The lenses are preferably made of plastic, with polycarbonate being a preferred material. A suitable LED is made by Bridgelux, such as the BXRC-50C1000 model.
The two principle light concentrations are in opposite directions in the roadway. This type is generally applicable to illuminate locations near the center of the roadway where the mounting height is approximately equal to the roadway width.
TYPE II light distributions have a preferred lateral width of 25 degrees. They are generally applicable to luminaries located at or near the side of a relatively narrow roadway where the width of the roadway does not exceed 1.75 times the designed mounting height.
TYPE III light distributions have the preferred lateral width of 40 degrees. This distribution is intended for luminaries mounted at or near the side of medium width roadways or areas, where the width of the roadways or area, does not exceed 2.75 times the mounting height.
The spread of the light field can be adjusted during or after installation of the light body. This can be done is several ways.
For example, in
While certain preferred embodiments are shown in the figures and described in this disclosure, it is to be distinctly understood that the presently disclosed inventive concept(s) is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined by the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/146,121 filed Apr. 10, 2015, the disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
8047674 | Liu | Nov 2011 | B2 |
9535264 | Gupta | Jan 2017 | B2 |
20110235186 | Blum | Sep 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20160298820 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62146121 | Apr 2015 | US |