In 1984, the United States, under the auspices of the Federal Communications Commission, adopted a standard for the transmission and reception of stereo audio for television. This standard is codified in the FCC's Bulletin OET-60, and is often called the BTSC system after the Broadcast Television Systems Committee that proposed it, or the MTS (Multi-channel Television Sound) system.
Prior to the BTSC system, broadcast television audio was monophonic, consisting of a single “channel” or signal of audio content. Stereo audio typically requires the transmission of two independent audio channels, and receivers capable of detecting and recovering both channels. In order to meet the FCC's requirement that the new transmission standard be ‘compatible’ with existing monophonic television sets (i.e., that mono receivers be capable of reproducing an appropriate audio signal from the new type of stereo broadcast), the Broadcast Television Systems Committee adopted an approach similar to FM radio systems: stereo Left and Right audio signals are combined to form two new signals, a Sum signal and a Difference signal.
Monophonic television receivers detect and demodulate only the Sum signal, consisting of the addition of the Left and Right stereo signals. Stereo-capable receivers receive both the Sum and the Difference signals, recombining the signals to extract the original stereo Left and Right signals.
For transmission, the Sum signal directly modulates the aural FM carrier just as would a monophonic audio signal. The Difference channel, however, is first modulated onto an AM subcarrier located 31.768 kHz above the aural carrier's center frequency. The nature of FM modulation is such that background noise increases by 3 decibel (dB) per octave, and as a result, because the new subcarrier is located further from the aural carrier's center frequency than the Sum or mono signal, additional noise is introduced into the Difference channel, and hence into the recovered stereo signal. In many circumstances, in fact, this rising noise characteristic renders the stereo signal too noisy to meet the requirements imposed by the FCC, and so the BTSC system mandates a noise reduction system in the Difference channel signal path.
This system, sometimes referred to as dbx noise reduction (after the company that developed the technique) is of the companding type, comprising an encoder and decoder. The encoder adaptively filters the Difference signal prior to transmission such that amplitude and frequency content, upon decoding, hide (“mask”) noise picked up during the transmission process. The decoder completes the process by restoring the Difference signal to original form and thereby ensuring that noise is audibly masked by the signal content.
The dbx noise reduction system is also used to encode and decode Secondary Audio Programming (SAP) signals, which is defined in the BTSC standard as an additional information channel and is often used to e.g., carry programming in an alternative language, reading services for the blind, or other services.
Cost is, of course, of prime concern to television manufacturers. As a result of intense competition and consumer expectations, profit margins on consumer electronics products, especially television products, can be vanishingly small. Because the dbx decoder is located in the television receiver, manufacturers are sensitive to the cost of the decoder, and reducing the cost of the decoder is a necessary and worthwhile goal. While the encoder is not located in a television receiver and is not as sensitive from a profit standpoint, any development which will decrease manufacturing costs of the encoder also provides a benefit.
In accordance with an aspect of the disclosure, a television audio signal encoder includes a device that sums a left channel audio signal and a right channel audio signal to produce a sum signal. The matrix also subtracts one of the left and right audio signals from the other to produce a difference signal. The encoder also includes a configurable infinite impulse response digital filter that selectively uses one or more sets of filter coefficients to filter the difference signal. The set of filter coefficients is applied to the difference signal by a single multiplier in a recursive manner to prepare the difference signal for transmission.
In one embodiment, the configurable infinite impulse response digital filter may include a feedback path to apply the set of filter coefficients to the difference signal in a recursive manner. This feedback path may include a shift register to delay digital signals associated with the difference signal. The configurable infinite impulse response digital filter may multiple a signal associated with the difference signal and provide an output of this multiplication. The configurable infinite impulse response digital filter may include a selector that selects a digital input signal or selects one of the filter coefficients. In some arrangements the selector may include a multiplexer. The infinite impulse response digital filter may be configured to provide various filtering functions such as a low pass filter. The configurable infinite impulse response digital filter may also include a single adder for applying the filter coefficients to the difference signal in a recursive manner. The television audio signal may comply to the Broadcast Television System Committee (BTSC) standard, the Near Instantaneously Companded Audio Muliplex (NICAM) standard, the A2/Zweiton standard, the EIA—J standard, or other similar audio standard. The configurable infinite impulse response digital filter may be implemented in an integrated circuit.
In accordance with another aspect of the disclosure, a television audio signal decoder includes a configurable infinite impulse response digital filter that selectively uses one or more sets of filter coefficients to filter a difference signal. The difference signal is produced by subtracting one of a left channel and a right channel audio signal from the other audio signal. The set of filter coefficients is applied to the difference signal by a single multiplier in a recursive manner to prepare the difference signal for separating the left channel and right channel audio signals. The decoder also includes a device that separates the left channel and right channel audio signals from the difference signal and a sum signal. The sum signal includes the sum the left channel audio signal and the right channel audio signal.
In one embodiment, the configurable infinite impulse response digital filter may include a feedback path to apply the set of filter coefficients to the difference signal in a recursive manner. This feedback path may include a shift register to delay digital signals associated with the difference signal. The configurable infinite impulse response digital filter may multiple a signal associated with the difference signal and provide an output of this multiplication. The configurable infinite impulse response digital filter may include a selector that selects a digital input signal or selects one of the filter coefficients. In some arrangements the selector may include a multiplexer. The infinite impulse response digital filter may be configured to provide various filtering functions such as a low pass filter. The configurable infinite impulse response digital filter may also include a single adder for applying the filter coefficients to the difference signal in a recursive manner. The television audio signal may comply to the Broadcast Television System Committee (BTSC) standard, the Near Instantaneously Companded Audio Muliplex (NICAM) standard, the A2/Zweiton standard, the EIA—J standard, or other similar audio standard. The configurable infinite impulse response digital filter may be implemented in an integrated circuit.
Additional advantages and aspects of the present disclosure will become readily apparent to those skilled in the art from the following detailed description, wherein embodiments of the present invention are shown and described, simply by way of illustration of the best mode contemplated for practicing the present invention. As will be described, the present disclosure is capable of other and different embodiments, and its several details are susceptible of modification in various obvious respects, all without departing from the spirit of the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as limitative.
Referring to
The difference signal (i.e., L−R) is provided to a BTSC compressor 30 that adaptively filters the signal prior to transmission such that when decoded, the signal amplitude and frequency content suppress noise imposed during transmission. Similar to the difference signal, the SAP signal is provided to a BTSC compressor 32. An audio modulator stage 34 receives the processed sum signal, difference signal, and SAP signal. Additionally, signals from the professional channel are provided to audio modulator stage 34. The four signals are modulated by audio modulator stage 34 and provided to transmitter 22. Along with the video signals provided by the video channel, the four audio signals are conditioned for transmission and provided to an antenna 36 (or an antenna system). Various signal transmitting techniques known to one skilled in the art of television systems and telecommunications may be implemented by transmitter 22 and antenna 36. For example, transmitter 22 may be incorporated into a cable television system, a broadcast television system, or other similar television system.
Referring to
The BTSC standard rigorously defines the desired operation of BTSC encoder 24 and BTSC compressors 30 and 32. Specifically, the BTSC standard provides transfer functions and/or guidelines for the operation of each component included e.g., in BTSC compressor 30 and the transfer functions are described in terms of mathematical representations of idealized analog filters. Upon receiving the difference signal (i.e., L−R) from matrix 26, the signal may be provided to an interpolation and fixed pre-emphasis stage 38. In some digital BTSC encoders, the interpolation is set for twice the sample rate and the interpolation may be accomplished by linear interpolation, parabolic interpolation, or a filter (e.g., a finite impulse response (FIR) filter, an infinite impulse response (IIR) filter, etc.) of n-th order. The interpolation and fixed pre-emphasis stage 38 also provides pre-emphasis. After interpolation and pre-emphasis, the difference signal is provided to a divider 40 that divides the difference signal by a quantity determined from the difference signal and described in detail below.
The output of divider 40 is provided to a spectral compression unit 42 that performs emphasis filtering of the difference signal. In general, spectral compression unit 42 “compresses”, or reduces the dynamic range, of the difference signal by amplifying signals having relatively low amplitudes and attenuating signals having relatively large amplitudes. In some arrangements spectral compression unit 42 produces an internal control signal from the difference signal that controls the pre-emphasis/de-emphasis that is applied. Typically, spectral compression unit 42 dynamically compresses high frequency portions of the difference signal by an amount determined by the energy level in the high frequency portions of the encoded difference signal. Spectral compression unit 42 thus provides additional signal compression toward the higher frequency portions of the difference signal. This is done because the difference signal tends to be noisier in the higher frequency portion of the spectrum. When the encoded difference signal is decoded with a spectral expander in a decoder, respectively in a complementary manner to the spectral compression unit of the encoder, the signal-to-noise ratio of the L−R signal is substantially preserved.
Once processed by spectral compression unit 42, the difference signal is provided to an over-modulation protection unit 44 and band-limiting unit 46. Similar to the other components, the BTSC standard provides suggested guidelines for the operation of over-modulation protection unit 44 and band-limiting unit 46. Generally, band-limiting unit 46 and a portion of over-modulation protection unit 44 may be implemented as low pass filters. Over-modulation protection unit 44 also performs as a threshold device that limits the amplitude of the encoded difference signal to full modulation, where full modulation is the maximum permissible deviation level for modulating an audio subcarrier in a television signal.
Two feedback paths 48 and 50 are included in BTSC compressor 30. Feedback path 50 includes a spectral control bandpass filter 52 that typically has a relatively narrow pass band that is weighted towards higher audio frequencies to provide a control signal for spectral compression unit 42. To condition the control signal produced by spectral control bandpass filter 52, feedback path 50 also includes a multiplier 54 (configured to square the signal provided by spectral control bandpass filter 52), an integrator 56, and a square root device that provides the control signal to spectral compression unit 42. Feedback path 48 also includes a bandpass filter (i.e., gain control bandpass filter 60) that filters the output signal from band-limiting unit 46 to set the gain applied to the output signal of interpolation and fixed pre-emphasis stage 38 via divider 40. Similar to feedback path 50, feedback path 48 also includes a multiplier 62, an integrator 64, and a square root device 66 to condition the signal that is provided to divider 40.
Referring to
Upon receiving the television signals, receiver 72 conditions (e.g., amplifies, filters, frequency scales, etc.) the signals and separates the video signals and the audio signals out of the transmission signals. The video content is provided to a video processing system 74 that prepares the video content contained in the video signals for presentation on a screen (e.g., a cathode ray tube, etc.) associated with the television receiver system 68. Signals containing the separate audio content are provided to a demodulator stage 76 that e.g., removes the modulation applied to the audio signals at television transmission system 10. The demodulated audio signals (e.g., the SAP channel, the professional channel, the sum signal, the difference signal) are provided to a BTSC decoder 78 that appropriately decodes each signal. The SAP channel is provided a SAP channel decoder 80 and the professional channel is provided to a professional channel decoder 82. After separating the SAP channel and the professional channel, a demodulated sum signal (i.e., L+R signal) is provided to a de-emphasis unit 84 that processes the sum signal in a substantially complementary fashion in comparison to pre-emphasis unit 28 (shown in
The difference signal (i.e., L−R) is also demodulated by demodulation stage 76 and is provided to a BTSC expander 86 included in BTSC decoder 78. BTSC expander 86 complies with the BTSC standard, and as described in detail below, conditions the difference signal. Matrix 88 receives the difference signal from BTSC expander 86 and with the sum signal, separates the right and left audio channels into independent signals (identified in
Referring to
Both BTSC encoder 24 and BTSC decoder 78 include multiple filters that adjust the amplitude of audio signals as a function of frequency. In some prior art television transmission systems and reception systems, each of the filters are implemented with discrete analog components. However, with advancements in digital signal processing, some BTSC encoders and BTSC decoders may be implemented in the digital domain with one or more integrated circuits (ICs). Furthermore, multiple digital BTSC encoders and/or decoders may implemented on a single IC. For example, encoders and decoders may be incorporated into a single IC as a portion of a very large scale integration (VLSI) system.
A significant portion of the cost of an IC is directly proportional to the physical size of the chip, particularly the size of its ‘die’, or the active, non-packaging part of the chip. In some arrangements filtering operations performed in digital BTSC encoders and decoders may be executed using general purpose digital signal processors that are designed to execute a range of DSP functions and operations. These DSP engines tend to have relatively large die areas, and are thereby costly to use for implementing BTSC encoders and decoders. Additionally the DSP may be dedicated to executing other functions and operations. By sharing this resource, the processing performed by the DSP may overload and interfere with the processing of the BTSC encoder and decoder functions and operations.
In some arrangements, BTSC encoders and decoders may incorporate groups of basic components to reduce cost. For example, groups of multipliers, adders, and multiplexers may be incorporated to produce the BTSC encoder and decoder functions. However, while the groups of nearly identical components may be easily fabricated, the components represent significant die area and add to the total cost of the IC. Thus, a need exists to reduce the number of duplicated circuits components used to implement a digital BTSC encoder and/or decoder.
Referring to
Along with using components for selecting filter coefficients, by using a recursive digital architecture, the number of components may be further reduced. In this exemplary design, configurable IIR filter 126 includes a feedback path 128 that passes digital signals from the output portion of the architecture to components for further processing. By passing processed digital signals through feedback path 128, various types of recursive processing may be provided by configurable IIR filter 126. For example, higher order filters (e.g., second-order or higher) may be realized by passing signals through feedback path 128.
In this implementation, various digital input signals are provided on inputs of a multiplexer 130 that functions as a selector. For example, signals may be input from various portions of a compressor such as BTSC compressor 30 (shown in
To provide the digital input signals for processing and recursive processing for previously processed signals, feedback path 128 provides the output of adder 136 to multiplier 138. In particular, the output of adder 136 is provided a multiplexer 148 that provides an output signal to a shift register 150. Either the output signal of adder 136 or a delayed version of a signal (output from shift register 150) is provided to the input of shift register 150. By including shift register 150 in feedback path 128, a time delay may be applied to a digital signal prior to processing by multiplier 138. For filtering applications, time delays introduced by shift register 150 may be used for implementing higher order filters (e.g., a second-order filter).
The output of shift register 150 is provided (as mentioned above) to the input of multiplexer 148. Feedback path 128 provides data to multiplier 138 through a multiplexer 152. In particular, digital signals may be feedback directly over conductor 154 from the output of adder 136. Signals may also be feedback as provided by the output of shift register 150 or a delayed version of the output of shift register 150 (via a register 156). External multiplicands may also be provided to the inputs of multiplexer 158. As shown in the figure, external data may be provided to one or more input lines 158 of multiplexer 152. A register 160 is provided an output signal from multiplexer 152 in preparation for multiplication by multiplier 138.
Data such as filter coefficients (with fixed or variable values) may be provided to configurable IIR filter 126 by a multiplexer 162. In particular, data representing filter coefficients may be provided to multiplexer 162 from input lines 164. External multiplicands may also be provided by input lines 164. Along with being supplied externally, coefficient or multiplicands may be provided to multiplexer 162 by a register 166. Similar to multiplexer 152, multiplexer 162 provides data to a register 168 in preparation for providing the data to multiplier 138.
Since feedback path 128 is included in configurable IIR filter 126, a single multiplier (i.e., multiplier 138) may be incorporated to provide the multiplication function within for implementing the filter. By implementing this single multiplier scheme, integrated circuit real estate may be conserved and used to provide other functionality. For example, a series of output registers may be implemented to directly provide the output of product register 140 to external devices and components. Additionally, due to feedback path 128, a single adder (i.e., adder 136) provides the addition functionality to implement various types of IIR filters. Again, by using a single component, in this case adder 136, additional chip real estate is conserved for other components. For example, a series of output registers 172 may be implemented for directing the output of adder 136 (via sum register 144) to external components or modules that are located on the same integrated circuit or on an external device.
In addition to providing a multiplication function (with outputs provided by output registers 170) and filtering functions (with outputs provided by output registers 172), configurable IIR filter 126 may also provide a time delay function. For example, the output of shift register 150 and/or the output of register 156 may be used to provide time-delayed version of one or more digital signals provided to the registers.
To allow configurable IIR filter 126 to perform multiple types of filtering operations, the multiplexer 130 controls which input provides an input signal. Referring briefly to
In order to perform multiple filtering operations e.g., for a BTSC compressor or a BTSC expander, configurable IIR filter 126 operates at a clock speed substantially faster than the other portions of the digital compressor or expander. By operating at a faster clock speed, configurable IIR filter 126 may perform one type of filtering without causing other operations of the digital compressor or expander to be delayed. For example, by operating configurable IIR filter 126 at a substantially fast clock speed, the architecture may first be configured to perform filtering for gain control bandpass filter 60 without substantially delaying the execution of the next filter configuration (e.g., filter operations for spectral control bandpass filter 52).
In one arrangement, configurable IIR filter 126 may be implemented as a second-order IIR filter. Referring to
Each of the coefficients (i.e., b0, a0, b1, a1, b2, and a2) included in the transfer function may be assigned particular values to produce a desired type of filter. For example, particular values may be assigned to the coefficients to produce a low-pass filter, a high-pass filter, or a band-pass filter, etc. Thus, by providing the appropriate values for each coefficient, the type and characteristics (e.g., pass band, roll-off, etc) of the second-order filter may be configured and re-configured into another type of filter (dependent upon the application) with a different set of coefficients. While this example describes a second-order filter, in other arrangements an nth-order filter may be implemented. For example, higher order (e.g. third-order, fourth-order, etc.) filters or lower order (e.g., first-order filters) may be implemented. Furthermore, for some applications, the recursive digital architecture of configurable IIR filter 126 may be cascaded to produce nth-order filters.
Referring back to
In this example illustrated in
Various techniques and components known to one skilled in the art of electronics and filter design may be used to implement the multiplexers (e.g., multiplexer 130, 152, 162, etc.). For example, multiplexer 130 may be implemented by one or more multiplexers to select among the inputs. Besides multiplexers, or other types digital selection devices may be implemented to select appropriate filter coefficients. Various coefficient values may be used to configure IIR filter such as IIR filter 174. For example, coefficients described in U.S. Pat. No. 5,796,842 to Hanna, which is herein incorporated by reference, may be used by configurable IIR filter 126. In some arrangements, the filter coefficients are stored in a memory (not shown) associated with the BTSC encoder or decoder and are retrieved by the appropriate multiplexers at appropriate times. For example, the coefficients may be stored in a memory chip (e.g., random access memory (RAM), read-only memory (ROM), etc.) or another type of storage device (e.g., a hard-drive, CD-ROM, etc.) associated with the BTSC encoder or decoder. The coefficients may also be stored in various software structures such as a look-up table, or other similar structure.
Configurable IIR filter 126 also includes a single adder 136 along with the single multiplier 138. Various techniques and/or components known to one skilled in the art of electronic circuit design and digital design may be used to implement adder 136 and the multiplier 138 included in configurable IIR filter 126. For example, logic gates such as one or more “AND” gates may be implemented as each of the multipliers. To introduce time delays, various techniques and/or components known to one skilled in the art of electronic circuit design and digital design may be implemented to produce shift register 150 (shown in
In this example, configurable IIR filter 126 is implemented with hardware components, however, in some arrangements one or more operational portions of the architecture may be implemented in software. One exemplary listing of code that performs the operations of configurable IIR filter 126 is presented in appendix A. The exemplary code is provided in Verilog, which, in general, is a hardware description language that is used by electronic designers to describe and design chips and systems prior to fabrication. This code may be stored on and retrieved from a storage device (e.g., RAM, ROM, hard-drive, CD-ROM, etc.) and executed on one or more general purpose processors and/or specialized processors such as a dedicated DSP.
Referring to
Referring to
While the previous example described using configurable IIR filter 126 with BTSC encoders and BTSC decoders, encoders and decoders that comply with television audio standards may implement the configurable IIR filter. For example, encoders and/or decoders associated with the Near Instantaneously Companded Audio Multiplex (NICAM), which is used in Europe, may incorporate one or more configurable IIR filters such as IIR filter 126. Similarly, encoders and decoders implementing the A2/Zweiton television audio standard (currently used in parts of Europe and Asia) or the Electronics Industry Association of Japan (EIA—J) standard may incorporate one or more configurable IIR filters.
While the previous example described using configurable IIR filter 126 to encode and decoder a difference signal produced from right and left audio channel, the configurable IIR filter may be used to encode and decode other audio signals. For example, configurable IIR filter 126 may be used to encode and/or decode an SAP channel, a professional channel, a sum channel, or one or more other individual or combined types of television audio channels.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.
This application is related to the following U.S. application, of common assignee, from which priority is claimed, and the contents of which are incorporated herein in their entirety by reference: “Digital Architecture for a BTSC Encoder/Decoder with SAP,” U.S. Provisional Patent Application Ser. No. 60/602,169, filed Aug. 17, 2004. This disclosure relates to processing television audio signals and, more particularly, to a configurable architecture for use with encoding and decoding television audio signals.
Number | Name | Date | Kind |
---|---|---|---|
4747140 | Gibson | May 1988 | A |
6037993 | Easley | Mar 2000 | A |
6118879 | Hanna | Sep 2000 | A |
6259482 | Easley et al. | Jul 2001 | B1 |
6588867 | Darr | Jul 2003 | B1 |
7277860 | Srinivas et al. | Oct 2007 | B2 |
7532728 | Venkatesan et al. | May 2009 | B2 |
20030161477 | Wu et al. | Aug 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060056640 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60602169 | Aug 2004 | US |