Configuration system for a power meter

Information

  • Patent Grant
  • 10371721
  • Patent Number
    10,371,721
  • Date Filed
    Friday, June 17, 2016
    8 years ago
  • Date Issued
    Tuesday, August 6, 2019
    5 years ago
Abstract
A system for configuration of power meters.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a configuration system for a power meter.


The total power consumption of a building or other facility is monitored by the electric utility with a power meter located between the utility's distribution transformer and the facility's power distribution panel. However, in many instances it is desirable to sub-meter or attribute the facility's power usage and cost to different occupancies, buildings, departments, or cost centers within the facility or to monitor the power consumption of individual loads or groups of loads, such as motors, lighting, heating units, cooling units, machinery, etc. These single phase or multi-phase electrical loads are typically connected to one or more of the branch circuits that extend from the facility's power distribution panel. While a power meter may be installed at any location between a load and the distribution panel, it is often advantageous to install a power meter capable of monitoring a plurality of circuits proximate the power distribution panel to provide centralized monitoring of the various loads powered from the panel.


Digital branch current monitors may incorporate data processing systems that can monitor a plurality of circuits and determine a number of parameters related to electricity consumption by the individual branch circuits or groups of circuits. A branch current monitor for measuring electricity consumption by respective branch circuits comprises a plurality of voltage and current transducers that are periodically read by the monitor's data processing unit which, in a typical branch current monitor, comprises one or more microprocessors or digital signal processors (DSP). For example, a branch current monitor from Veris Industries, Inc. enables up to ninety circuits to be monitored with a single meter and utilizes the MODBUS® RTU network communication interface to enable remote monitoring as part of a building or facility management system. The data processing unit periodically reads and stores the outputs of the transducers quantifying the magnitudes of current and voltage samples and, using that data, calculates the current, voltage, power, and other electrical parameters, such as active power, apparent power and reactive power that quantify the distribution and consumption of electricity. The calculated parameters are typically output to a display for immediate viewing or transmitted from the meter's communication interface to another data processing system, such as a building management computer for remote display or further processing, for example formulating instructions to the facility's automated equipment.


The voltage transducers of digital branch current monitors commonly comprise a voltage divider network that is connected to a conductor in which the voltage will be measured. The power distribution panel provides a convenient location for connecting the voltage transducers because typically each phase of the electricity is delivered to the power distribution panel on a separate bus bar and the voltage and phase is the same for all loads attached to the respective bus bar. Interconnection of a voltage transducer and the facility's wiring is facilitated by wiring connections in the power distribution panel, however, the voltage transducer(s) can be connected anywhere in the wiring that connects the supply and a load, including at the load's terminals.


The current transducers of digital power meters typically comprise current transformers that encircle each of the power cables that connect each branch circuit to the bus bar(s) of the distribution panel. Bowman et al., U.S. Pat. No. 6,937,003 B2, discloses a branch current monitoring system that includes a plurality of current transformers mounted on a common support facilitating installation of a branch current monitor in a power distribution panel. Installation of current transformers in electrical distribution panels is simplified by including a plurality of current transformers on a single supporting strip which can be mounted adjacent to the lines of circuit breakers in the panel. The aforementioned branch current monitor from Veris Industries, Inc. is commonly used to monitor up to four strips of current sensors; each comprising 21 current transformers on a common support. In addition, the branch current monitor provides for eight auxiliary current transformer inputs for sensing the current flow in two 3-phase mains with two neutrals and six voltage connections enabling voltage sensing in six bus bars of two 3-phase mains.


While such power metering devices tend to be effective at providing useful measurements, they often tend to require lengthy and complicated configuration.


What is desired, therefore, is a power metering system that is readily configurable.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an exemplary branch current monitor.



FIG. 2 is a perspective view of a current transformer strip for a branch current monitor.



FIG. 3 is a top view of the current transformer strip of FIG. 2.



FIG. 4 is a front view of an exemplary electrical distribution panel and branch current monitor.



FIG. 5 illustrates a perspective view of another current transformer strip for a branch current monitor.



FIG. 6 illustrates a view of a connector board for a branch current monitor.



FIG. 7 illustrates an exemplary embodiment of a power meter.



FIG. 8 illustrates a circuit board included within the power meter of FIG. 7.



FIG. 9 illustrates another exemplary embodiment of a power meter.



FIG. 10 illustrates one manner of wiring a power meter for sensing voltage and current.



FIGS. 11A-B illustrate a Modbus point map.



FIGS. 12A-E illustrate another Modbus point map.



FIGS. 13A-B illustrate another Modbus point map.



FIGS. 14A-C illustrate another Modbus point map.



FIG. 15 illustrates a system for the selection of Modbus registers among a set of configuration data sets.



FIG. 16A-D illustrate a system for the selection of Modbus registers among a set of configuration data sets for selected circuits of a branch current power meter.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to FIG. 1, a branch current monitor 20 arranged to monitor the voltage and current in a plurality of branch circuits comprises, generally, a data processing module 22, a current module 24 and a voltage module 26. The branch current monitor 20 is preferably housed in a housing and/or the data processing module 22 is preferably housed in a housing and/or the current module 24 is preferably housed in a housing and/or the voltage module is preferably housed in a housing. In some embodiments, the branch current monitor and/or the data processing module and/or the current module and/or the voltage module includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the branch current monitor and/or the data processing module and/or the current module and/or the voltage module. The data processing module 22 comprises a data processing unit 30 which, typically, comprises at least one microprocessor or digital signal processor (DSP). The data processing unit 30 reads and stores data received periodically from the voltage module and the current module, and uses that data to calculate the current, voltage, power and other electrical parameters that are the meter's output. The resulting electrical parameters may be output to a display 32 for viewing at the meter or output to a communications interface 34 for transmission to another data processing system, such as a building management computer, for remote display or use in automating or managing facility functions. The data processing module may also include a memory 36 in which the programming instructions for the data processing unit and the data manipulated by the data processing unit may be stored. In addition, the branch current monitor typically includes a power supply 38 to provide power to the data processing unit and to the voltage and current modules.


The voltage module 26 includes one or more voltage transducers 42 each typically comprising a resistor network, a voltage sampling unit 48 to sample the output of the voltage transducers and convert the analog measurements to digital data suitable for use by the data processing unit and a multiplexer 44 that periodically connects the voltage sampling unit to selected ones of the voltage transducers enabling periodic sampling of the magnitude of the voltage at each of the voltage transducers. Typically, each phase of the electricity supplied to a distribution panel is connected to a bus bar 23 to which are connected the circuit breakers 16 that provide a conductive interconnection to each of the respective loads, by way of examples, a single-phase load 21A and a three-phase load 21B. Since the voltage and phase supplied to all commonly connected loads is the same, a meter for measuring three-phase power typically includes three voltage transducers 42A, 42B, 42C each connected to a respective bus bar 23A, 23B, 23C. A clock 40, which may be included in the data processing unit, provides periodic timing signals to trigger sampling of the outputs of the voltage transducers by the voltage sampling unit. The voltage module may also include a voltage sensor memory 46 in which voltage sensor characterization data, including relevant specifications and error correction data for the voltage transducers are stored. If a portion of the voltage module requires replacement, a new voltage module comprising a voltage sensor memory containing sensor characterization data for the transducers of the new module can be connected to the data processing unit. The data processing unit reads the data contained in the voltage sensor memory and applies the sensor characterization data when calculating the voltage from the transducer data output by the replacement voltage module.


The current module 24 typically comprises a current sampling unit 50, a multiplexer 52 and a plurality of current transducers 54 communicatively connected to respective sensor positions 55 of the current module. The multiplexer 52 sequentially connects the sampling unit to the respective sensor positions enabling the sampling unit to periodically sample the output of each of the current transducers 54. The current sampling unit comprises an analog-to-digital converter to convert the analog sample at the output of a current transducer selected by the multiplexer, to a digital signal for acquisition by the data processing unit. The clock 40 also provides the periodic timing signal that triggers sampling of the current transducer outputs by the current sampling unit. The current module may also include a current sensor memory 56 in which are stored characterization data for the current transducers comprising the module. The characterization data may include transducer identities; relevant specifications, such as turns ratio; and error correction factors, for examples equations or tables enabling the phase and ratio errors to be related to a current permitting correction for magnetization induced errors. The characterization data may also include the type of transducers, the number of transducers, the arrangement of transducers and the order of the transducers' attachment to the respective sensor positions of the current module. At start up, the data processing unit queries the current sensor memory to obtain characterization data including error correction factors and relevant specifications that are used by the data processing unit in determining the monitor's output.


Referring also to FIGS. 2, 3, and 4, monitoring current in a plurality of branch circuits requires a plurality of current transducers, each one encircling one of the branch power cable(s) 88 that connect the power distribution panel to the load(s) of the respective branch circuit. Current sensing may be performed by an individual current sensor, such as the current transformer 54D, which is connected to the current module. On the other hand, a branch current monitor may comprise one or more sensor strips 80 each comprising a plurality of current sensors attached to a common support, such as sensors 54A, 54B, 54C. The sensors 54 are preferably current transformers but other types of sensors may be used, inclusive of split-core transformers. Each current transformer comprises a coil of wire wound on the cross-section of a toroidal metallic or non-metallic core. The toroidal core is typically enclosed in a plastic housing that includes an aperture 82 enabling the power cable 88 to be extended through the central aperture of the core. The openings 82 defined by the toroidal cores of the transformers are preferably oriented substantially parallel to each other and oriented substantially perpendicular to the longitudinal axis 90 of the support 86. To provide a more compact arrangement of sensors, the sensors 54 may be arranged in substantially parallel rows on the support and the housings of the sensors in adjacent rows may be arranged to partially overlap in the direction of the longitudinal axis of the support. To facilitate routing the power cables of the branch circuits through the cores of the current transformers, the common support maintains the current transformers in a fixed spatial relationship that preferably aligns the apertures of the toroidal coils directly opposite the connections of the power cables 88 and their respective circuit breakers 16 when the strip is installed in a distribution panel 100. For protection from electrical shock, a transient voltage suppressor 94 may be connected in parallel across the output terminals of each sensor to limit the voltage build up at the terminals when the terminals are open circuited.


The transducer strip 80 may include the current sensor memory 56 containing characterization data for the current transformers mounted on the support 86. The current sensor memory may also include characterization data for the transducer strip enabling the data processing unit to determine whether a transducer strip is compatible with the remainder of the meter and whether the strip is properly connected to the data processing module. Improper connection or installation of an incompatible transducer strip may cause illumination of signaling lights or a warning message on the meter's display. In addition. the transducer strip 80 may comprise a current module of the power meter with one or more current transformers 54, the multiplexer 52, the current sampling unit 50 and the current sensor memory all mounted on the support 86. A connector 98 provides a terminus for a communication link 102 connecting the current transducer strip (current module) to the data processing module 22.


The branch current monitor may also include one or more errant current alarms to signal an operator or data processing system that manages the facility or one or more of its operations of an errant current flow in one of the monitored branch circuits. When a current having a magnitude greater or lesser than a respective alarm current limit is detected in one of the branch circuits an alarm annunciator is activated to notify the operator or another data processing system of the errant current flow. An alarm condition may be announced in one or more ways, including, without limitation, periodic or steady illumination of a light 71, sounding of an audible alarm 73, display of a message on the meter's display 32 or transmission of a signal from the communications interface 34 to a remote computer or operator.


A commercial power distribution panel commonly supplies a substantial number of branch circuits and a branch current monitor for a distribution panel typically includes at least an equal number of current transformers. Referring to FIG. 4, an exemplary electrical distribution panel includes two three-phase mains 104A, 104B which respectively are connected to main circuit breakers 106A, 106B. Each of the phases of each main is connected to a bus bar 23A, 23B, 23C. The three bus bars extend behind each of two rows of branch circuit breakers 16 that respectively conductively connect one of the bus bars to a conductor 54 that conducts current to the branch circuit's load(s). A single phase load is connected to single bus bar, a two-phase load is typically connected to two adjacent circuit breakers which are connected to respective bus bars and a three-phase load is typically connected to three adjacent circuit breakers which are each connected to one of the three bus bars. Typically, a two-phase load or three phase load is connected to the appropriate number of adjacent circuit breakers in the same row. The exemplary distribution panel has connections for 84 branch circuit conductors which can be monitored by a branch current monitor produced by Veris Industries, Inc. The branch current monitor monitors the current, voltage and energy consumption of each circuit of the distribution panel, including the mains. The accumulated information can be transmitted to a remote consumer through a communications interface or viewed locally on a local display. Data updates occur approximately every two seconds and as a circuit approaches user configured thresholds, alarms are triggered by the monitor.


As illustrated in FIG. 4, the main acquisition circuit board 108 of the branch current monitor 20 is connectable to as many as four current transformer strips or support units 80A, 80B, 80C, 80D each supporting 21 current transformers. The transformers of the support units are connectable to the data processing unit of the branch current monitor by communication links 102 comprising multi-conductor cables. In addition, the branch current monitor includes connections for six auxiliary current transformers 114 which are typically used to monitor the current in the mains. Since the voltage and phase are common for all loads connected to a bus bar, the branch current monitor also includes six voltage connections 116. A data channel 120 connected to the communications interface enables transmission of data captured by the branch current monitor to other data processing devices that are part of a building management system or other network. The main acquisition circuit board 108 is preferably housed in a housing. In some embodiments, the main acquisition circuit board 108 includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed. The strips or support units may be housed in a housing, in whole or in part. In some embodiments, the strips or support units includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed.


The branch current monitor is installed in the distribution panel by mounting the current transformer strips to the panel adjacent to the rows of circuit breakers and by passing each of the branch circuit conductors 88 through a central aperture in one of the toroidal current transformers and connecting the conductors to the respective circuit breakers. The main acquisition board 108 is attached to the electrical panel and the multi-conductor cables 102 are connected to the board. The main acquisition board 108 is preferably housed in a housing. The mains conductors are passed through the apertures in the auxiliary current transformers and the auxiliary current transformers are connected to the main acquisition board. The voltage taps are connected to respective bus bars and to the main acquisition board. The data channel 120 is connected and the branch current monitor is ready for configuration.


Referring to FIG. 5, in another embodiment, the strip unit may include a set of connectors at each general location a current sensor is desired. A current transformer may be included with a flexible wire within a connector at the end thereof and a connector on the strip unit. The current transformer is then detachably connectable to the connector of the strip unit. The current transformer may include a solid core or a split core, which is more readily interconnected to existing installed wires. If desired, the strip unit may include one or more power calculation circuits supported thereon. For example, the data from the current transformers may be provided to the one or more power calculation circuits supported thereon together with the sensed voltage being provided by a connector from a separate voltage sensor or otherwise voltage sensed by wires interconnected to the strip unit or signal provided thereto. As a result of this configuration, the connector may provide voltage, current, power, and other parameters to the circuit board. All or a portion of the strip unit is preferably housed in a housing. The strips unit may be housed in a housing, in whole or in part. In some embodiments, the strip unit includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the strip unit.


Referring to FIG. 6, another embodiment includes a set of one or more connector boards 600 in addition to or as an alternative to the strip units. Each of the connector boards may include a set of connectors 610 that may be used to interconnect a current transformer thereto. Each of the connector boards may include a connector 620 that interconnects the connector board to the circuit board 108. Each of the connector boards may be labeled with numbering, such as 1 through 14 or 1 through 42, and 15 through 28 or 42 through 84. Often groups of three connectors are grouped together as a three phase circuit, thus connectors 1 through 42 may be 14 three phase circuits. For example, the connector board with the number of 1 through 14 may be intended to be connected to connector A. For example, the connector board with the numbers of 15 through 28 may be intended to be connected to connector B. All or a portion of the connector board is preferably housed in a housing. In some embodiments, the connector board includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the connector board.


Referring to FIG. 7, another embodiment of a power meter 200 is housed in a housing 211 formed by a front bezel 212 and a back cover 213 that snap together. The front bezel 212 may be bonded to a user-interface panel 214 that contains four manually operable pushbuttons 215a-215d and a central window 216 for viewing a display 217, such as an LCD, attached to the bezel 212. Behind the display 217 is a printed circuit board 218 (see FIG. 8) that has multiple terminal blocks 219a-219e and associated circuitry 220 mounted on one or both sides of the board 218. The terminal blocks 219a and 219b are used to connect the circuitry 220 to a control power supply and voltage input lines, respectively. For example, the voltage lines may be from the power panel or from the wire to the load(s). In addition the same voltage lines, for example from the power panel or the wire to the load, may further be extended to pass through a respective current transformer to sense the current therein. Also, a respective current sensor of a set of one or more current transformers may encircle a respective wire to a load, where the wires from the respective current transformer being interconnected to suitable terminals of one or more of the terminal blocks. In this manner, the power meter is capable of sensing or otherwise receiving signals representative of the voltage and current in the wires to the load(s). Terminal block 219c may be used to connect digital outputs of the circuitry 220, such as demand sync signals, alarm signals or external control signals, to relays, motors, meters or other devices. Terminal block 129d may be an RS485 port used for communicating with a monitoring and control system and can be daisy chained to multiple devices. Terminal block 219e may be used to receive digital inputs for determining circuit breaker status, counting pulses, counting motor starts, accepting demand sync pulses, and/or input metering. The terminal blocks 219a-219e and the circuitry 220 (simplified for purposes of illustration) may be used to monitor either a single-phase, a two-phase, and/or a three-phase electrical power distribution system. Typically the meter is used to measure currents and voltages and report in real time their root-mean-square values, which includes values for all three phases and neutral in the case of a three-phase power distribution system. The meter also typically calculates power factor, real power, reactive power and other electrical parameters. In some embodiments, the housing 211 includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed.


Referring to FIG. 9, another embodiment of a power meter 300 housed within a housing suitable to be mounted to a standard 35 mm DIN rail or screw-mounted to the interior surface of an enclosure. The power meter 300 may include an alphanumeric display 302 to display information, such as power usage and the type thereof. The power meter 300 may include an alarm light 304 when an alarm condition occurs. The power meter 300 may include a set of configuration buttons 306. The power meter may include a set of voltage inputs, such as voltage A 308A, voltage B 308B, voltage C 308C, and voltage neutral 308D. The power meter 300 may also include an earth ground 310A and control power 310B. The power meter 300 may sense the current by using current transformers that are respectively interconnected to current sensor input phase A 312A, current sensor input phase B 312B, and/or current sensor input phase C 312C. The power meter 300 may have a set of outputs, such as a normally closed phase loss alarm 314A, a normally open pulse output representative of energy usage 314B, and other outputs 314C. In some embodiments, the power meter 300 includes one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the current and/or voltage being sensed.


Referring to FIG. 10, an exemplary wiring diagram for a 3-phase 3-wire current transformer with a neural is illustrated. By way of example, the power meter may determine one or more of the following electrical parameters for one or more phases of the input, such as real energy, total instantaneous real power, total instantaneous reactive power, total instantaneous apparent power, total power factor, voltage L-L, voltage average, voltage L-N, current, real power, power factor, voltage phases A-B/B-C/A-C/A-N/B-N/C-N, instantaneous current, frequency, apparent energy consumption, reactive energy consumption, apparent power, reactive power, total real power, total reactive power, total apparent power, etc.


In some embodiments, the power meter may be electrically connected in series with the loads, if desired. As illustrated in FIG. 1 through FIG. 10, the power meter may be in many different configurations and form factors. All or portions of the power meter is preferably housed in a housing. Whether housed in a housing or not housed in a housing, all or portions of the power meter preferably include one or more connectors suitable to detachably connect a separate power meter to sense electrical properties of the power meter, such as the voltage and/or current so that the additional power meter may determine power measurements.


Instantaneous values of the sinusoidal analog voltage and current waveforms are digitally captured by periodically, sampling the amplitudes of the outputs of respective voltage and current transducers. The data processing unit calculates the current in the power cable monitored by a current transducer from the characteristics of the transducer and a plurality of sample outputs of the transducer accumulated over a period of time. The “effective,” “real” or “active” power is approximated by averaging the sum of the products of temporally corresponding instantaneous samples of the voltage and current for each of the plurality of sampling intervals, such as, at least one cycle of the sinusoidal waveform.


Users of branch circuit monitors are often interested in a number of parameters related to electricity distribution in addition to the voltage, current and effective power for the facility and each of its branch circuits. For example, the reactive power, the portion of the total power that is temporarily stored in the form of electric and magnetic fields due to inductive and capacitive elements in a circuit, influences the voltage levels in a transmission network and are controlled along with the voltage to allow an electrical power system to be operated within acceptable limits. The power factor of an alternating current (AC) circuit is the ratio of real power, the capacity of a circuit to do work, flowing to the load and the apparent power, the product of the voltage and current in the circuit. Non-linear loads such as rectifiers; are discharge devices, such as fluorescent lighting or electric welders, and switched-mode power supplies reduce the power factor and increase the number volt-amperes that must be supplied for a given amount of work. Many users desire that the data processing unit of the branch circuit monitor compute a number of these electrical parameters in addition to determining the voltage, current and effective power and transmit this information to other networked data processing devices utilizing the MODBUS® communication protocol.


The MODBUS communication protocol was developed and published in 1979 for use with Modicon® programmable logic controllers (PLCs). MODBUS is an open serial communication protocol and has become a standard communication protocol for connecting industrial electronic devices. The MODBUS protocol is commonly used to transmit signals from control devices and instrumentation, such as a branch circuit monitor, to a main controller and/or a data aggregating system. The device requesting information or writing information is called the MODBUS master and the devices supplying or reading the information are known as MODBUS slaves. In a standard MODBUS network there is at least one master and up to 247 slaves, each with a unique address. Masters can broadcast a message, known as a query, to all slaves or it can address a query to an individual slave. When the master requests or writes data to a slave, the first byte of the message is the address of the intended slave. A slave only responds to queries containing its address and does not respond to queries directed to other addressees or to broadcast queries.


In a MODBUS slave device, information is stored in four tables, each having 9999 entries. Two tables, one a read-only table and one a write only table, store discrete on/off values, referred to as “coils.” Similarly, a read-only table and a write-only table store numerical values in data spaces known as “registers.” Referring to FIGS. 11A and 11B, a MODBUS point map 500 for a standard MODBUS slave device lists the register numbers 502 and a description 504 of the data stored in the respective registers. In addition, the point map may list the data type and the source of the data, in the case of a branch circuit monitor, the channel or meter number corresponding to a particular circuit monitored by the meter.


Some MODBUS devices can utilize extended register addressing to increase the addressable memory of the device. The output registers of a standard MODBUS device have addresses ranging from 0000 to 270E (hexadecimal), but up to 65,500 registers can be addressed by extending register addressing with addresses from 207F to FFFF. However, all devices in a MODBUS network must utilize the same register addressing and many software drivers for MODBUS master computers and many slave devices do not support extended register addressing. Many MODBUS devices use a MODBUS point map which lists the address assigned to each data point. For example, registers are read with the most significant byte (MSB) first with 32 bit floating point values encoded per IEEE Standard 754. For floating point format variables, each data point appears twice because two 16-bit addresses are used to hold a 32 bit float value. The 16 bit most significant word (MSW) may be in the lower address of the register pair, while the list significant word (LSW) may be in the upper address. It is to be understood that other protocols and techniques other than MODBUS may be used, if desired. For example, N2 and LonWorks may be used.


For a particular power meter, there are numerous registers that are programmed by the power meter, and thus require selection of which registers to use together with what parameter values to store in those registers, and computational resources to regularly compute and update the values for such registers. For example, a power meter may compute (1) the energy consumption least significant word and most significant word; (2) the real power consumed; (3) the reactive power consumed; (4) the apparent power; (5) the power factor; (6) the voltage line to line; (7) voltage line to neutral; (8) the current; (9) real power on phase A; (10) real power on phase B; (11) real power on phase C; (12) power factor on phase A; (13) power factor on phase B; (14) power factor on phase C; (15) voltage phase A-B; (16) voltage phase B-C; (17) voltage phase A-C; (18) voltage phase A-N; (19) voltage phase B-N; (20) voltage phase C-N; (21) current phase A; (22) current phase B; (23) current phase C; (24) average real power; (25) minimum real power; (26) maximum real power; (27) energy consumption for the least and most significant word; (28) real power for the least and most significant word; (29) the reactive power consumed for the least and most significant word; (30) the apparent power for the least and most significant word; (31) the power factor for the least and most significant word; (32) the voltage line to line for the least and most significant word; (33) voltage line to neutral for the least and most significant word; (34) the current for the least and most significant word; (35) real power on phase A for the least and most significant word; (36) real power on phase B for the least and most significant word; (37) real power on phase C for the least and most significant word; (38) power factor on phase A for the least and most significant word; (39) power factor on phase B for the least and most significant word; (40) power factor on phase C for the least and most significant word; (41) voltage phase A-B for the least and most significant word; (42) voltage phase B-C for the least and most significant word; (43) voltage phase A-C for the least and most significant word; (44) voltage phase A-N for the least and most significant word; (45) voltage phase B-N for the least and most significant word; (46) voltage phase C-N for the least and most significant word; (47) current phase A for the least and most significant word; (48) current phase B for the least and most significant word; (49) current phase C for the least and most significant word; (50) average real power for the least and most significant word; (51) minimum real power for the least and most significant word; and (52) maximum real power for the least and most significant word. In many cases, a single command may be used to read all of the data available from the power meter. Other electrical parameters may likewise be determined. Also, parameters may be determined for single and dual phase circuits. The selection of the registers and the values therein becomes even more complicated when there are many three phase power circuits interconnected within the same power meter using the same MODBUS set of registers. Further, the selection of registers becomes even more complicated and computationally demanding when there are one or more single phase power circuits, one or more two phase power circuits, and/or one or more three phase power circuits within the same panel or configuration using the MODBUS registers of the single slave device. The programming of the power meter for this multitude of potential configurations is a time consuming task. Furthermore, the likelihood that particular current transformers are improperly interconnected with different phases or to the wrong load is highly likely, making it difficult to trouble shoot the system to determine the actual configuration, so that accurate data may be obtained.


Accordingly, there are a number of potentially different configurations of the power monitor and as a result there are a number of different configurations of the registers therein. Furthermore, with a plurality of different types of power meters, each of which may have a different configuration of the registers, the selection of the appropriate registers is problematic. For example, register A may be the three phase power for a first type of power meter, but register A may be a single phase power for a second type of power meter. Without discrimination between the different power meters there is a strong likelihood that the inappropriate data will be obtained.


Referring to FIG. 12A to FIG. 12E another Modbus Point Map suitable for a three phase power meter is illustrated. As illustrated, the point map includes three phase summary information, per phase information, accumulated energy information, per phase power information, demand information, usage time information, total harmonic distortion information, configuration information, floating point information regarding the same, firmware related information, etc. As it may be observed, there are a significant number of registers that may be configured by the user and the mapping thereof is known to the controller obtaining the data therefrom.


Referring to FIG. 13A to FIG. 13B another Modbus Point Map suitable for a three phase power meter is illustrated. As illustrated, the point map includes energy consumption information, real power information, reactive power information, apparent power information, power factor information, voltage line to line information, voltage line to neutral information, current information, per phase factors information, average real power information, minimum real power information, maximum real power information, etc., for both integer based values and floating point values. The configuration of the modbus registers of FIG. 13A to FIG. 13B are generally less complex than those illustrated in FIG. 12A to FIG. 12E. As it may be observed, there are a significant number of registers that may be configured by the user and the mapping thereof is known to the controller obtaining the data therefrom.


Referring to FIG. 14A to FIG. 14C another Modbus Point Map suitable for a three phase power meter is illustrated. As illustrated, the point map includes energy consumption information, real power information, reactive power information, apparent power information, power factor information, voltage line to line information, voltage line to neutral information, current information, frequency information, current neutral information, per phase factors information, average real power information, minimum real power information, maximum real power information, current transformer scale information, alarm threshold information, phase loss threshold information, meter alarm status information, meter name information, board name information, firmware revision information, serial number information, error register information, over voltage information, under voltage set counter information, phase loss information over current information, over power set information, Modbus address information, baud rate information, meter enable register information, critical alarm register information, etc. The configuration of the modbus registers of FIG. 14A to FIG. 14C are generally rather complex. As it may be observed, there are a significant number of registers that may be configured by the user and the mapping thereof is known to the controller obtaining the data therefrom.


It is to be understood that single phase and two phase Modbus Point Maps may be, for example, a subset of those illustrated.


The branch current power meter may include a plurality of Modbus configuration data sets, such as configuration 0, configuration 1, configuration 2, and configuration 3 all of which are simultaneously pre-stored on the branch circuit power meter. There may be separate sets of configuration data, suitable for single phase, two phase, and three phase circuits. In addition, a default configuration data set maybe stored in the power meter for each circuit, generally referred to as configuration 0 for each of single phase, two phase, and three phase. By way of example, the user may identify 48 different three phase circuits of the single branch current power meter. For each identified circuit of the single branch current power meter the default configuration 0 may be selected, so that each circuit has a data set where each of the data sets is preferably offset in its register values that that they are non-overlapping.


Through an interface on the branch current power meter or a selection that may be programmatically determined or a value written to a register, the user may select one of the configurations that they want the power meter to use for a particular circuit (e.g., load) that has a selected number of phases. If the particular circuit is a three phase circuit, then configuration data sets suitable for three phase circuits are provided. If the particular circuit is a two phase circuit, then configuration data sets suitable for two phase circuits are provided. If the particular circuit is a single phase circuit, then configuration data sets suitable for a single phase circuit is provided. Based upon the selected Modbus configuration data set, for the particular number of phases of the circuit, the power meter may replace the current Modbus configuration data set with the selected Modbus configuration data set for the selected circuit. Further, upon selection of the desired replacement Modbus configuration data set, the power meter modifies its determination of the appropriate parameters to match that of the replacement Modbus configuration data set. By way of example, if a particular manufacturer has 4 different power meters each of which has a different default Modbus configuration data set, then by including the other three Modbus configuration data sets the registers of the Modbus may be modified to operate in a manner consistent with that of the other one of the 3 different power meters of the particular manufacturer. For those registers that are not suitable for a particular power meter, such as determining the frequency if the particular power meter cannot determine the frequency, the power meter may still load the selected Modbus configuration data while leaving the register associated with that which the power meter cannot determine undefined (or zero).


While a three phase power meter may include a significant variety of Modbus register configurations, when the Modbus register configurations are extended to a significant number of circuits, such as 24-48 different circuits the Modbus register configuration becomes increasingly complicated. An example of such a significant number of Modbus registers would be suitable for the power meter illustrated in FIG. 4. For example, each one phase, two phase, and/or three phase circuits may include a large set of Modbus registers. In addition, Modbus registers related to combinations of the one phase, two phase, and/or three phase circuits add an even more complicated set of Modbus registers. As it may be observed, there are a significant number of registers that may be configured by the user and the mapping thereof is known to the controller obtaining the data therefrom.


Referring to FIG. 15, the power meter typically comes with a preconfigured default Modbus register configuration. The power meter may include other Modbus configuration data sets, such as configuration 0, configuration 1, configuration 2, and configuration 3 all of which are simultaneously pre-stored on the power meter. Additional or fewer sets of Modbus configuration data sets may be included, as desired. In addition, the default configuration data set is stored in the power meter, generally referred to as configuration 0. Though an interface on the power meter, the user may select one of the configurations that they want the power meter to use. Based upon the selected Modbus configuration data set, the power meter may replace the current Modbus configuration data set with the selected Modbus configuration data set. Further, upon selection of the desired replacement Modbus configuration data set, the power meter modifies its determination of the appropriate parameters to match that of the replacement Modbus configuration data set. By way of example, if a particular manufacturer has 4 different power meters each of which has a different default Modbus configuration data set, then by including the other three Modbus configuration data sets the registers of the Modbus may be modified to operate in a manner consistent with that of the other one of the 3 different power meters of the particular manufacturer.


While the configuration of a three phase power meter having three conductors is relatively complex, it is considerably more complicated to configuration a branch current power meter that has a large set of separate loads. Referring to FIG. 16A, to configure a branch current power meter it is desirable to identify each of the different circuits (e.g., loads, whether they be single phase, two phases, or three phases). If the identified circuit is a three phase circuit then a selection process is illustrated in FIG. 16D. If the identified circuit is a two phase circuit then a selection process is illustrated in FIG. 16C. If the identified circuit is a single phase circuit then a selection process is illustrated in FIG. 16B. The process of identify circuits is preferably repeated until all of the desired circuits are identified.


Referring to FIG. 16B, the device may determine if the user selected configuration 0. If the user has selected configuration 0, the device may load the Modbus register configuration 0 for a 1 phase circuit. If the user did not select configuration 0, the device may determine if the user selected configuration 1. If the user has selected configuration 1, the device may load the Modbus register configuration 1 for a 1 phase circuit. If the user did not select configuration 1, the device may determine if the user selected configuration 2. If the user has selected configuration 2, the device may load the Modbus register configuration 2 for a 1 phase circuit. If the user did not select configuration 2, the device may determine if the user selected configuration 3. If the user has selected configuration 3, the device may load the Modbus register configuration 3 for a 1 phase circuit. If the user did not select any of configuration 0, 1, 2, or 3 then the user then identifies a branch circuit (see FIG. 16A). The selected and loaded Modbus register configuration is then used to set the Modbus registers associated with the selected circuit and configure the device. After the selection and configuration the user then identifies a branch circuit (see FIG. 16A).


Referring to FIG. 16C, the device may determine if the user selected configuration 0. If the user has selected configuration 0, the device may load the Modbus register configuration 0 for a 2 phase circuit. If the user did not select configuration 0, the device may determine if the user selected configuration 1. If the user has selected configuration 1, the device may load the Modbus register configuration 1 for a 2 phase circuit. If the user did not select configuration 1, the device may determine if the user selected configuration 2. If the user has selected configuration 2, the device may load the Modbus register configuration 2 for a 2 phase circuit. If the user did not select configuration 2, the device may determine if the user selected configuration 3. If the user has selected configuration 3, the device may load the Modbus register configuration 3 for a 2 phase circuit. If the user did not select any of configuration 0, 1, 2, or 3 then the user then identifies a branch circuit (see FIG. 16A). The selected and loaded Modbus register configuration is then used to set the Modbus registers associated with the selected circuit and configure the device. After the selection and configuration the user then identifies a branch circuit (see FIG. 16A).


Referring to FIG. 16D, the device may determine if the user selected configuration 0. If the user has selected configuration 0, the device may load the Modbus register configuration 0 for a 3 phase circuit. If the user did not select configuration 0, the device may determine if the user selected configuration 1. If the user has selected configuration 1, the device may load the Modbus register configuration 1 for a 3 phase circuit. If the user did not select configuration 1, the device may determine if the user selected configuration 2. If the user has selected configuration 2, the device may load the Modbus register configuration 2 for a 3 phase circuit. If the user did not select configuration 2, the device may determine if the user selected configuration 3. If the user has selected configuration 3, the device may load the Modbus register configuration 3 for a 3 phase circuit. If the user did not select any of configuration 0, 1, 2, or 3 then the user then identifies a branch circuit (see FIG. 16A). The selected and loaded Modbus register configuration is then used to set the Modbus registers associated with the selected circuit and configure the device. After the selection and configuration the user then identifies a branch circuit (see FIG. 16A).


If desired, the device could include a different Modbus address for one or more of the circuits that are identified. For example, if a different Modbus address is used for each circuit then the selected and configured Modbus registers for each circuit may be at the same overlapping register ranges. In this manner, the configuration of the branch current power metering device is simplified.


The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.


All the references cited herein are incorporated by reference.


The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.

Claims
  • 1. A method for configuring a power meter including registers comprising the steps of: (a) receiving by said power meter a plurality of current input signals representative of a current level in a respective conductor;(b) receiving by said power meter a plurality of voltage input signals representative of a voltage level in a respective said conductor;(c) configuring said power meter including a set of registers where said set of registers is configured with an initial configuration, where said power meter is configured to determine based upon said initial configuration a first value to include in a first of said set of registers based upon a combination of at least one of said plurality of current input signals and at least one of said plurality of voltage input signals, where said power meter is configured to determine based upon said initial configuration a second value to include in a second of said set of registers based upon a combination of at least one of said plurality of current input signals and at least one of said plurality of voltage input signals,(d) providing said power meter together with said initial configuration a first data set for a first configuration of said set of registers of said power meter where said first configuration is configured only when selected to determine based upon said first configuration a third value to include in one of said set of registers based upon a combination of at least one of said plurality of current input signals and at least one of said plurality of voltage input signals where said first data set is stored within said power meter at a location separate from said set of registers, a second data set for a second configuration of said set of registers of said power meter where said second configuration only when selected is configured to determine based upon said first configuration a fourth value to include in one of said set of registers based upon a combination of at least one of said plurality of current input signals and at least one of said plurality of voltage input signals where said second data set is stored within said power meter at a location separate from said set of registers, a third data set for a third configuration of said set of registers of said power meter where said third configuration is configured only when selected to determine based upon said first configuration a fifth value to include in one of said set of registers based upon a combination of at least one of said plurality of current input signals and at least one of said plurality of voltage input signals where said third data set is stored within said power meter at a location separate from said set of registers, wherein said first data set, said second data set, and said third data set are separate from one another, wherein said first data set, said second data set, and said third data set are non-overlapping with one another;(e) said power meter selecting with a selector a first selected data set that includes only one of a first one of said first data set, said second data set, and said third data set for a first load associated with at least one of said conductors for a first set of said set of registers, where said first selected data set configures said first set of said set of registers and overwrites at least a first portion of said initial configuration in such a manner that said first portion of said initial configuration is no longer present within said power meter separate from said registers, wherein the output of said first set of said set of registers based upon said initial configuration is different than the output of said first set of registers based upon said first selected data set;(f) said power meter selecting with said selector a second selected data set that includes only one of a second one of said first data set, said second data set, and said third data set that is different than said first selected data set for a second load associated with at least one of said conductors for a second set of said set of registers, where said first set of registers is different than said second set of registers, where said second selected data set configures said second set of said set of registers and overwrites at least a second portion of said initial configuration in such a manner that said second portion of said initial configuration is no longer present within said power meter separate from said registers, where said first portion and said second portion are different from one another, wherein the output of said second set of said set of registers based upon said initial configuration is different than the output of said second set of registers based upon said second selected data set;(g) wherein said first data set is a configuration suitable for a single phase circuit, said second data set is a configuration suitable for a two phase circuit, said second data set is a configuration suitable for a three phase circuit, and said first selected data set and said second selected data set are suitable for different ones of said single phase circuit, said two phase circuit, and said three phase circuit;(h) providing by said power meter data from said set of registers in accordance with said first portion and said second portion.
  • 2. The power meter of claim 1 wherein said selector said selects a first one of said first data set, said second data set, and said third data set for said first load associated with at least one of said conductors for said first set of said set of registers.
  • 3. The power meter of claim 2 wherein said selector said selects a second different one of said first data set, said second data set, and said third data set for said second load associated with at least one of said conductors for said second set of said set of registers.
  • 4. The power meter of claim 3 wherein said selector said selects a third different one of said first data set, said second data set, and said third data set for a third load associated with at least one of said conductors for a third set of said set of registers, where said third set is different than either of said first set and said second set.
  • 5. The power meter of claim 4 wherein said first load is a three phase load.
  • 6. The power meter of claim 5 wherein said second load is a single phase load.
  • 7. The power meter of claim 6 wherein said third load is a two phase load.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional App. No. 62/271,421, filed Dec. 28, 2015.

US Referenced Citations (295)
Number Name Date Kind
1100171 Brown Jun 1914 A
1455263 Oberfell May 1923 A
1569723 Dickinson Jan 1926 A
1800474 Scherer Apr 1931 A
1830541 Harris Nov 1931 A
1871710 Lenehan Aug 1932 A
2059594 Massa Nov 1936 A
2412782 Palmer Dec 1946 A
2428613 Boyajian Oct 1947 A
2663190 Ilgenfritz Dec 1953 A
2746295 Lubkin May 1956 A
2802182 Godshalk et al. Aug 1957 A
2852739 Hansen Sep 1958 A
2943488 Strobel et al. Jul 1960 A
3190122 Edwards Jun 1965 A
3243674 Gotthold Mar 1966 A
3287974 Ciemochowski Nov 1966 A
3374434 Perry Mar 1968 A
3493760 Hoadley Feb 1970 A
3512045 Tipton et al. May 1970 A
3584294 Siwko Jun 1971 A
3593078 Domshy et al. Jul 1971 A
3696288 Carman Oct 1972 A
3728705 Atkins Apr 1973 A
3769548 Pardue Oct 1973 A
3772625 Raupach Nov 1973 A
3861411 Mitchell et al. Jan 1975 A
3955701 Fisch May 1976 A
4001647 Klein et al. Jan 1977 A
4001758 Esper et al. Jan 1977 A
4030058 Riffe et al. Jun 1977 A
4048605 McCollum Sep 1977 A
4096436 Cook et al. Jun 1978 A
4107519 Bicek Aug 1978 A
D249883 Collins Oct 1978 S
4151578 Bell Apr 1979 A
4158217 Bell Jun 1979 A
4158810 Leskovar Jun 1979 A
4177496 Bell et al. Dec 1979 A
4198595 Milkovic Apr 1980 A
4207604 Bell Jun 1980 A
4215278 Barbier et al. Jul 1980 A
4227419 Park Oct 1980 A
4241237 Paraskevakos et al. Dec 1980 A
4249264 Crochet et al. Feb 1981 A
4250449 Shum Feb 1981 A
4253336 Pietzuch Mar 1981 A
4258348 Belfer et al. Mar 1981 A
4297741 Howell Oct 1981 A
4328903 Baars May 1982 A
4354155 Speidel et al. Oct 1982 A
4359672 Hart Nov 1982 A
4362580 Kane et al. Dec 1982 A
4363061 Vaerewyck et al. Dec 1982 A
4371814 Hannas Feb 1983 A
4373392 Nagamoto Feb 1983 A
4384289 Stillwell et al. May 1983 A
4386280 Ricaud et al. May 1983 A
4388668 Bell et al. Jun 1983 A
4393714 Schmidt Jul 1983 A
4398426 Park et al. Aug 1983 A
4408175 Nelson et al. Oct 1983 A
4413193 Crockett Nov 1983 A
4413230 Miller Nov 1983 A
4426673 Bell et al. Jan 1984 A
4432238 Tward Feb 1984 A
4491790 Miller Jan 1985 A
4492919 Milkovic Jan 1985 A
4495463 Milkovic Jan 1985 A
4506199 Asche Mar 1985 A
4558310 McAllise Dec 1985 A
4558595 Kompelien Dec 1985 A
4574266 Valentine Mar 1986 A
4605883 Cockroft Aug 1986 A
4621532 Takagi et al. Nov 1986 A
4660407 Takami et al. Apr 1987 A
4709339 Fernandes Nov 1987 A
4739229 Heiler, Jr. Apr 1988 A
4746809 Coleman et al. May 1988 A
4754365 Kazahaya Jun 1988 A
4757416 Wilkerson Jul 1988 A
4758774 Crawford et al. Jul 1988 A
4758962 Fernandes Jul 1988 A
4783748 Swarztrauber et al. Nov 1988 A
4794327 Fernandes Dec 1988 A
4808910 Kessi Feb 1989 A
D301331 Rhodin May 1989 S
4851803 Hahn Jul 1989 A
4855671 Fernandes Aug 1989 A
4874904 DeSanti Oct 1989 A
4890318 Crane et al. Dec 1989 A
4926105 Mischenko May 1990 A
4939451 Baran et al. Jul 1990 A
4944187 Frick et al. Jul 1990 A
4956588 Ming Sep 1990 A
4970476 Kitagawa Nov 1990 A
4972167 Fujioka Nov 1990 A
4992709 Griffin Feb 1991 A
4999575 Germer Mar 1991 A
5003278 May Mar 1991 A
5006846 Granville Apr 1991 A
5014908 Cox May 1991 A
5039970 Cox Aug 1991 A
5051601 Atobe et al. Sep 1991 A
5066904 Bullock Nov 1991 A
5079510 Komatsu et al. Jan 1992 A
D323815 Bouteiller Feb 1992 S
5099193 Moseley et al. Mar 1992 A
5122735 Porter et al. Jun 1992 A
5148348 White Sep 1992 A
5181026 Granville Jan 1993 A
5196784 Estes, Jr. Mar 1993 A
D335488 Suzuki et al. May 1993 S
5223790 Baran et al. Jun 1993 A
5267122 Glover et al. Nov 1993 A
5296819 Kuroiwa et al. Mar 1994 A
5311138 Ott et al. May 1994 A
5317274 Nakagawa et al. May 1994 A
5323256 Banks Jun 1994 A
5337206 Kadah Aug 1994 A
5365462 McBean Nov 1994 A
D354945 Dellavecchia et al. Jan 1995 S
5384712 Oravetz et al. Jan 1995 A
5385060 Wang Jan 1995 A
5391983 Lusignan et al. Feb 1995 A
5397970 Rowlette et al. Mar 1995 A
5410920 Westwick May 1995 A
5426360 Maraio et al. Jun 1995 A
5430438 Joos et al. Jul 1995 A
5444183 Gehrs et al. Aug 1995 A
5450765 Stover Sep 1995 A
5467012 Nystrom Nov 1995 A
5471359 Simpson et al. Nov 1995 A
5473234 Richardson Dec 1995 A
5548209 Lusignan et al. Aug 1996 A
5563506 Fielden et al. Oct 1996 A
5572073 Burgess et al. Nov 1996 A
5578927 Saft Nov 1996 A
5592989 Lynn et al. Jan 1997 A
5596652 Piatek et al. Jan 1997 A
5604315 Briefer et al. Feb 1997 A
5612499 Andrew et al. Mar 1997 A
5677476 McCarthy et al. Oct 1997 A
5705989 Cota et al. Jan 1998 A
5712558 Saint-Cyr Jan 1998 A
5753983 Dickie et al. May 1998 A
5784249 Pouliot Jul 1998 A
5808846 Holce et al. Sep 1998 A
5844138 Cota Dec 1998 A
5861683 Engel et al. Jan 1999 A
5880677 Lestician Mar 1999 A
5880918 Horbelt et al. Mar 1999 A
5905439 McIntyre May 1999 A
5909087 Bryde et al. Jun 1999 A
5920190 Peterson et al. Jul 1999 A
5920191 Maniero et al. Jul 1999 A
5922939 Cota Jul 1999 A
5994892 Turino et al. Nov 1999 A
5995911 Hart Nov 1999 A
D419964 Holce et al. Feb 2000 S
6020702 Farr Feb 2000 A
6029524 Klauder et al. Feb 2000 A
6044430 MacDonald Mar 2000 A
6046550 Ference et al. Apr 2000 A
6064192 Redmyer May 2000 A
6091023 O'Donnell Jul 2000 A
6122972 Crider Sep 2000 A
6124791 Wolf Sep 2000 A
D431534 Holce et al. Oct 2000 S
6133709 Puchianu Oct 2000 A
6133723 Feight Oct 2000 A
6137418 Zuercher et al. Oct 2000 A
6146109 Davis et al. Nov 2000 A
6236949 Hart May 2001 B1
6269317 Schachner et al. Jul 2001 B1
6308140 Dowling et al. Oct 2001 B1
6330516 Kammeter Dec 2001 B1
6331821 Holce et al. Dec 2001 B1
6344951 Sato et al. Feb 2002 B1
6351206 Schweiger et al. Feb 2002 B1
6373238 Lewis et al. Apr 2002 B2
6377430 Holce et al. Apr 2002 B2
6380696 Sembhi et al. Apr 2002 B1
6384946 Pitsch et al. May 2002 B1
6404166 Puchianu Jun 2002 B1
6414241 O'Donnell Jul 2002 B1
D466078 Bowman Nov 2002 S
6496378 Holce et al. Dec 2002 B2
6504357 Hemminger et al. Jan 2003 B1
6504695 Holce et al. Jan 2003 B1
6549859 Ward Apr 2003 B1
6591482 Fleege et al. Jul 2003 B1
D478313 Bowman Aug 2003 S
6615147 Jonker et al. Sep 2003 B1
6636028 Lavoie et al. Oct 2003 B2
6657424 Voisine et al. Dec 2003 B1
6737854 Bruno et al. May 2004 B2
6756776 Perkinson et al. Jun 2004 B2
6774803 Tiffin Aug 2004 B1
6809509 Bruno et al. Oct 2004 B2
6815942 Randall et al. Nov 2004 B2
6825771 Bruno et al. Nov 2004 B2
6856515 Holce et al. Feb 2005 B2
6861683 Rissing et al. Mar 2005 B2
6871827 Petak et al. Mar 2005 B2
6888712 Holce et al. May 2005 B2
6889271 Germer et al. May 2005 B1
6937003 Bowman et al. Aug 2005 B2
6950292 Holce et al. Sep 2005 B2
6988043 Randall Jan 2006 B1
7006934 Jonker et al. Feb 2006 B2
7053497 Sodemann et al. May 2006 B2
7157899 Bruno Jan 2007 B2
7161345 Bruno Jan 2007 B2
7193428 Baron et al. Mar 2007 B1
7212930 Bruno May 2007 B2
7221145 Bowman et al. May 2007 B2
7230414 Bruno Jun 2007 B2
7239810 Seely et al. Jul 2007 B2
7274187 Loy Sep 2007 B2
7282889 Freed et al. Oct 2007 B2
7310049 Bowman Dec 2007 B2
7312686 Bruno Dec 2007 B2
7312964 Tchernobrivets Dec 2007 B2
7330022 Bowman et al. Feb 2008 B2
7333345 Holce et al. Feb 2008 B2
7352287 Rupert Apr 2008 B2
7359809 Bruno Apr 2008 B2
7447603 Bruno Nov 2008 B2
7453267 Westbrock, Jr. et al. Nov 2008 B2
7474088 Bowman et al. Jan 2009 B2
7652871 Caggiano et al. Jan 2010 B2
8085055 Rupert Dec 2011 B2
8160824 Spanier Apr 2012 B2
8193803 Bose et al. Jun 2012 B2
8212548 Parker et al. Jul 2012 B2
8212549 McNulty et al. Jul 2012 B2
8294453 Bowman Oct 2012 B2
8405383 Agrawal et al. Mar 2013 B2
8421443 Bitsch et al. Apr 2013 B2
8610438 Sykora et al. Dec 2013 B1
8612792 Fu et al. Dec 2013 B2
8837118 McGrail Sep 2014 B2
8878475 Bonvin et al. Nov 2014 B2
8964360 Trout Feb 2015 B2
8988062 Sykora et al. Mar 2015 B2
9146264 Cook Sep 2015 B2
9329659 Cook May 2016 B2
9395344 Sheley Jul 2016 B2
9424975 Cook et al. Aug 2016 B2
9577443 Gach et al. Feb 2017 B2
9588148 Cook et al. Mar 2017 B2
9607749 Cook et al. Mar 2017 B2
20010040446 Lapinksi Nov 2001 A1
20040227503 Bowman Nov 2004 A1
20050240362 Randall Oct 2005 A1
20060085144 Slota et al. Apr 2006 A1
20060103548 Borkowski et al. May 2006 A1
20060164096 Kwon Jul 2006 A1
20060181242 Freed Aug 2006 A1
20060238932 Westbrock Oct 2006 A1
20070153438 Caggiano et al. Jul 2007 A1
20080303511 Grno Dec 2008 A1
20080313006 Witter Dec 2008 A1
20090115400 Hunter May 2009 A1
20090115620 Hunter May 2009 A1
20090295370 Parker Jun 2009 A1
20090237212 Hyde Sep 2009 A1
20100117626 Wertz et al. May 2010 A1
20100176960 Bitsch Jul 2010 A1
20100207604 Bitsch Aug 2010 A1
20100235122 McCrea Sep 2010 A1
20100308792 Rupert Dec 2010 A1
20110098985 Lawson Apr 2011 A1
20110181124 Uesaka Jul 2011 A1
20120004780 Miller Jan 2012 A1
20120112681 Bonvin May 2012 A1
20120126790 Sobotka May 2012 A1
20120217954 Cook Aug 2012 A1
20120221278 Cook Aug 2012 A1
20120235667 Agrawal et al. Sep 2012 A1
20130024714 Fu et al. Jan 2013 A1
20130027818 McGrail Jan 2013 A1
20130144545 Fu et al. Jun 2013 A1
20130201031 Yang Aug 2013 A1
20130294014 Irons Nov 2013 A1
20130335062 de Buda Dec 2013 A1
20140184198 Cook Jul 2014 A1
20140239964 Gach et al. Aug 2014 A1
20140340236 Rhoads Nov 2014 A1
20150028848 Lynch et al. Jan 2015 A1
20150200713 Hui Jul 2015 A1
20150241490 Kitajima Aug 2015 A1
20150276890 Turner Oct 2015 A1
20150293549 Lal et al. Oct 2015 A1
Foreign Referenced Citations (2)
Number Date Country
1531334 May 2005 EP
2016176315 Nov 2016 WO
Related Publications (1)
Number Date Country
20170184641 A1 Jun 2017 US
Provisional Applications (1)
Number Date Country
62271421 Dec 2015 US