The present invention relates to a configuration system for a power meter.
The total power consumption of a building or other facility is monitored by the electric utility with a power meter located between the utility's distribution transformer and the facility's power distribution panel. However, in many instances it is desirable to sub-meter or attribute the facility's power usage and cost to different occupancies, buildings, departments, or cost centers within the facility or to monitor the power consumption of individual loads or groups of loads, such as motors, lighting, heating units, cooling units, machinery, etc. These single phase or multi-phase electrical loads are typically connected to one or more of the branch circuits that extend from the facility's power distribution panel. While a power meter may be installed at any location between a load and the distribution panel, it is often advantageous to install a power meter capable of monitoring a plurality of circuits proximate the power distribution panel to provide centralized monitoring of the various loads powered from the panel.
Digital branch current monitors may incorporate data processing systems that can monitor a plurality of circuits and determine a number of parameters related to electricity consumption by the individual branch circuits or groups of circuits. A branch current monitor for measuring electricity consumption by respective branch circuits comprises a plurality of voltage and current transducers that are periodically read by the monitor's data processing unit which, in a typical branch current monitor, comprises one or more microprocessors or digital signal processors (DSP). For example, a branch current monitor from Veris Industries, Inc. enables up to ninety circuits to be monitored with a single meter and utilizes the MODBUS® RTU network communication interface to enable remote monitoring as part of a building or facility management system. The data processing unit periodically reads and stores the outputs of the transducers quantifying the magnitudes of current and voltage samples and, using that data, calculates the current, voltage, power, and other electrical parameters, such as active power, apparent power and reactive power that quantify the distribution and consumption of electricity. The calculated parameters are typically output to a display for immediate viewing or transmitted from the meter's communication interface to another data processing system, such as a building management computer for remote display or further processing, for example formulating instructions to the facility's automated equipment.
The voltage transducers of digital branch current monitors commonly comprise a voltage divider network that is connected to a conductor in which the voltage will be measured. The power distribution panel provides a convenient location for connecting the voltage transducers because typically each phase of the electricity is delivered to the power distribution panel on a separate bus bar and the voltage and phase is the same for all loads attached to the respective bus bar. Interconnection of a voltage transducer and the facility's wiring is facilitated by wiring connections in the power distribution panel, however, the voltage transducer(s) can be connected anywhere in the wiring that connects the supply and a load, including at the load's terminals.
The current transducers of digital power meters typically comprise current transformers that encircle each of the power cables that connect each branch circuit to the bus bar(s) of the distribution panel. Bowman et al., U.S. Pat. No. 6,937,003 B2, discloses a branch current monitoring system that includes a plurality of current transformers mounted on a common support facilitating installation of a branch current monitor in a power distribution panel. Installation of current transformers in electrical distribution panels is simplified by including a plurality of current transformers on a single supporting strip which can be mounted adjacent to the lines of circuit breakers in the panel. The aforementioned branch current monitor from Veris Industries, Inc. is commonly used to monitor up to four strips of current sensors; each comprising 21 current transformers on a common support. In addition, the branch current monitor provides for eight auxiliary current transformer inputs for sensing the current flow in two 3-phase mains with two neutrals and six voltage connections enabling voltage sensing in six bus bars of two 3-phase mains.
While such power metering devices tend to be effective at providing useful measurements, they often tend to require lengthy and complicated configuration.
What is desired, therefore, is a power metering system that is readily configurable.
Referring in detail to the drawings where similar parts are identified by like reference numerals, and, more particularly to
The voltage module 26 includes one or more voltage transducers 42 each typically comprising a resistor network, a voltage sampling unit 48 to sample the output of the voltage transducers and convert the analog measurements to digital data suitable for use by the data processing unit and a multiplexer 44 that periodically connects the voltage sampling unit to selected ones of the voltage transducers enabling periodic sampling of the magnitude of the voltage at each of the voltage transducers. Typically, each phase of the electricity supplied to a distribution panel is connected to a bus bar 23 to which are connected the circuit breakers 16 that provide a conductive interconnection to each of the respective loads, by way of examples, a single-phase load 21A and a three-phase load 21B. Since the voltage and phase supplied to all commonly connected loads is the same, a meter for measuring three-phase power typically includes three voltage transducers 42A, 42B, 42C each connected to a respective bus bar 23A, 23B, 23C. A clock 40, which may be included in the data processing unit, provides periodic timing signals to trigger sampling of the outputs of the voltage transducers by the voltage sampling unit. The voltage module may also include a voltage sensor memory 46 in which voltage sensor characterization data, including relevant specifications and error correction data for the voltage transducers are stored. If a portion of the voltage module requires replacement, a new voltage module comprising a voltage sensor memory containing sensor characterization data for the transducers of the new module can be connected to the data processing unit. The data processing unit reads the data contained in the voltage sensor memory and applies the sensor characterization data when calculating the voltage from the transducer data output by the replacement voltage module.
The current module 24 typically comprises a current sampling unit 50, a multiplexer 52 and a plurality of current transducers 54 communicatively connected to respective sensor positions 55 of the current module. The multiplexer 52 sequentially connects the sampling unit to the respective sensor positions enabling the sampling unit to periodically sample the output of each of the current transducers 54. The current sampling unit comprises an analog-to-digital converter to convert the analog sample at the output of a current transducer selected by the multiplexer, to a digital signal for acquisition by the data processing unit. The clock 40 also provides the periodic timing signal that triggers sampling of the current transducer outputs by the current sampling unit. The current module may also include a current sensor memory 56 in which are stored characterization data for the current transducers comprising the module. The characterization data may include transducer identities; relevant specifications, such as turns ratio; and error correction factors, for examples equations or tables enabling the phase and ratio errors to be related to a current permitting correction for magnetization induced errors. The characterization data may also include the type of transducers, the number of transducers, the arrangement of transducers and the order of the transducers' attachment to the respective sensor positions of the current module. At start up, the data processing unit queries the current sensor memory to obtain characterization data including error correction factors and relevant specifications that are used by the data processing unit in determining the monitor's output.
Referring also to
The transducer strip 80 may include the current sensor memory 56 containing characterization data for the current transformers mounted on the support 86. The current sensor memory may also include characterization data for the transducer strip enabling the data processing unit to determine whether a transducer strip is compatible with the remainder of the meter and whether the strip is properly connected to the data processing module. Improper connection or installation of an incompatible transducer strip may cause illumination of signaling lights or a warning message on the meter's display. In addition. the transducer strip 80 may comprise a current module of the power meter with one or more current transformers 54, the multiplexer 52, the current sampling unit 50 and the current sensor memory all mounted on the support 86. A connector 98 provides a terminus for a communication link 102 connecting the current transducer strip (current module) to the data processing module 22.
The branch current monitor may also include one or more errant current alarms to signal an operator or data processing system that manages the facility or one or more of its operations of an errant current flow in one of the monitored branch circuits. When a current having a magnitude greater or lesser than a respective alarm current limit is detected in one of the branch circuits an alarm annunciator is activated to notify the operator or another data processing system of the errant current flow. An alarm condition may be announced in one or more ways, including, without limitation, periodic or steady illumination of a light 71, sounding of an audible alarm 73, display of a message on the meter's display 32 or transmission of a signal from the communications interface 34 to a remote computer or operator.
A commercial power distribution panel commonly supplies a substantial number of branch circuits and a branch current monitor for a distribution panel typically includes at least an equal number of current transformers. Referring to
As illustrated in
The branch current monitor is installed in the distribution panel by mounting the current transformer strips to the panel adjacent to the rows of circuit breakers and by passing each of the branch circuit conductors 88 through a central aperture in one of the toroidal current transformers and connecting the conductors to the respective circuit breakers. The main acquisition board 108 is attached to the electrical panel and the multi-conductor cables 102 are connected to the board. The main acquisition board 108 is preferably housed in a housing. The mains conductors are passed through the apertures in the auxiliary current transformers and the auxiliary current transformers are connected to the main acquisition board. The voltage taps are connected to respective bus bars and to the main acquisition board. The data channel 120 is connected and the branch current monitor is ready for configuration.
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, the power meter may be electrically connected in series with the loads, if desired. As illustrated in
Instantaneous values of the sinusoidal analog voltage and current waveforms are digitally captured by periodically, sampling the amplitudes of the outputs of respective voltage and current transducers. The data processing unit calculates the current in the power cable monitored by a current transducer from the characteristics of the transducer and a plurality of sample outputs of the transducer accumulated over a period of time. The “effective,” “real” or “active” power is approximated by averaging the sum of the products of temporally corresponding instantaneous samples of the voltage and current for each of the plurality of sampling intervals, such as, at least one cycle of the sinusoidal waveform.
Users of branch circuit monitors are often interested in a number of parameters related to electricity distribution in addition to the voltage, current and effective power for the facility and each of its branch circuits. For example, the reactive power, the portion of the total power that is temporarily stored in the form of electric and magnetic fields due to inductive and capacitive elements in a circuit, influences the voltage levels in a transmission network and are controlled along with the voltage to allow an electrical power system to be operated within acceptable limits. The power factor of an alternating current (AC) circuit is the ratio of real power, the capacity of a circuit to do work, flowing to the load and the apparent power, the product of the voltage and current in the circuit. Non-linear loads such as rectifiers; are discharge devices, such as fluorescent lighting or electric welders, and switched-mode power supplies reduce the power factor and increase the number volt-amperes that must be supplied for a given amount of work. Many users desire that the data processing unit of the branch circuit monitor compute a number of these electrical parameters in addition to determining the voltage, current and effective power and transmit this information to other networked data processing devices utilizing the MODBUS® communication protocol.
The MODBUS communication protocol was developed and published in 1979 for use with Modicon® programmable logic controllers (PLCs). MODBUS is an open serial communication protocol and has become a standard communication protocol for connecting industrial electronic devices. The MODBUS protocol is commonly used to transmit signals from control devices and instrumentation, such as a branch circuit monitor, to a main controller and/or a data aggregating system. The device requesting information or writing information is called the MODBUS master and the devices supplying or reading the information are known as MODBUS slaves. In a standard MODBUS network there is at least one master and up to 247 slaves, each with a unique address. Masters can broadcast a message, known as a query, to all slaves or it can address a query to an individual slave. When the master requests or writes data to a slave, the first byte of the message is the address of the intended slave. A slave only responds to queries containing its address and does not respond to queries directed to other addressees or to broadcast queries.
In a MODBUS slave device, information is stored in four tables, each having 9999 entries. Two tables, one a read-only table and one a write only table, store discrete on/off values, referred to as “coils.” Similarly, a read-only table and a write-only table store numerical values in data spaces known as “registers.” Referring to
Some MODBUS devices can utilize extended register addressing to increase the addressable memory of the device. The output registers of a standard MODBUS device have addresses ranging from 0000 to 270E (hexadecimal), but up to 65,500 registers can be addressed by extending register addressing with addresses from 207F to FFFF. However, all devices in a MODBUS network must utilize the same register addressing and many software drivers for MODBUS master computers and many slave devices do not support extended register addressing. Many MODBUS devices use a MODBUS point map which lists the address assigned to each data point. For example, registers are read with the most significant byte (MSB) first with 32 bit floating point values encoded per IEEE Standard 754. For floating point format variables, each data point appears twice because two 16-bit addresses are used to hold a 32 bit float value. The 16 bit most significant word (MSW) may be in the lower address of the register pair, while the list significant word (LSW) may be in the upper address. It is to be understood that other protocols and techniques other than MODBUS may be used, if desired. For example, N2 and LonWorks may be used.
For a particular power meter, there are numerous registers that are programmed by the power meter, and thus require selection of which registers to use together with what parameter values to store in those registers, and computational resources to regularly compute and update the values for such registers. For example, a power meter may compute (1) the energy consumption least significant word and most significant word; (2) the real power consumed; (3) the reactive power consumed; (4) the apparent power; (5) the power factor; (6) the voltage line to line; (7) voltage line to neutral; (8) the current; (9) real power on phase A; (10) real power on phase B; (11) real power on phase C; (12) power factor on phase A; (13) power factor on phase B; (14) power factor on phase C; (15) voltage phase A-B; (16) voltage phase B-C; (17) voltage phase A-C; (18) voltage phase A-N; (19) voltage phase B-N; (20) voltage phase C-N; (21) current phase A; (22) current phase B; (23) current phase C; (24) average real power; (25) minimum real power; (26) maximum real power; (27) energy consumption for the least and most significant word; (28) real power for the least and most significant word; (29) the reactive power consumed for the least and most significant word; (30) the apparent power for the least and most significant word; (31) the power factor for the least and most significant word; (32) the voltage line to line for the least and most significant word; (33) voltage line to neutral for the least and most significant word; (34) the current for the least and most significant word; (35) real power on phase A for the least and most significant word; (36) real power on phase B for the least and most significant word; (37) real power on phase C for the least and most significant word; (38) power factor on phase A for the least and most significant word; (39) power factor on phase B for the least and most significant word; (40) power factor on phase C for the least and most significant word; (41) voltage phase A-B for the least and most significant word; (42) voltage phase B-C for the least and most significant word; (43) voltage phase A-C for the least and most significant word; (44) voltage phase A-N for the least and most significant word; (45) voltage phase B-N for the least and most significant word; (46) voltage phase C-N for the least and most significant word; (47) current phase A for the least and most significant word; (48) current phase B for the least and most significant word; (49) current phase C for the least and most significant word; (50) average real power for the least and most significant word; (51) minimum real power for the least and most significant word; and (52) maximum real power for the least and most significant word. In many cases, a single command may be used to read all of the data available from the power meter. Other electrical parameters may likewise be determined. Also, parameters may be determined for single and dual phase circuits. The selection of the registers and the values therein becomes even more complicated when there are many three phase power circuits interconnected within the same power meter using the same MODBUS set of registers. Further, the selection of registers becomes even more complicated and computationally demanding when there are one or more single phase power circuits, one or more two phase power circuits, and/or one or more three phase power circuits within the same panel or configuration using the MODBUS registers of the single slave device. The programming of the power meter for this multitude of potential configurations is a time consuming task. Furthermore, the likelihood that particular current transformers are improperly interconnected with different phases or to the wrong load is highly likely, making it difficult to trouble shoot the system to determine the actual configuration, so that accurate data may be obtained.
Accordingly, there are a number of potentially different configurations of the power monitor and as a result there are a number of different configurations of the registers therein. Furthermore, with a plurality of different types of power meters, each of which may have a different configuration of the registers, the selection of the appropriate registers is problematic. For example, register A may be the three phase power for a first type of power meter, but register A may be a single phase power for a second type of power meter. Without discrimination between the different power meters there is a strong likelihood that the inappropriate data will be obtained.
Referring to
Referring to
Referring to
It is to be understood that single phase and two phase Modbus Point Maps may be, for example, a subset of those illustrated.
The branch current power meter may include a plurality of Modbus configuration data sets, such as configuration 0, configuration 1, configuration 2, and configuration 3 all of which are simultaneously pre-stored on the branch circuit power meter. There may be separate sets of configuration data, suitable for single phase, two phase, and three phase circuits. In addition, a default configuration data set maybe stored in the power meter for each circuit, generally referred to as configuration 0 for each of single phase, two phase, and three phase. By way of example, the user may identify 48 different three phase circuits of the single branch current power meter. For each identified circuit of the single branch current power meter the default configuration 0 may be selected, so that each circuit has a data set where each of the data sets is preferably offset in its register values that that they are non-overlapping.
Through an interface on the branch current power meter or a selection that may be programmatically determined or a value written to a register, the user may select one of the configurations that they want the power meter to use for a particular circuit (e.g., load) that has a selected number of phases. If the particular circuit is a three phase circuit, then configuration data sets suitable for three phase circuits are provided. If the particular circuit is a two phase circuit, then configuration data sets suitable for two phase circuits are provided. If the particular circuit is a single phase circuit, then configuration data sets suitable for a single phase circuit is provided. Based upon the selected Modbus configuration data set, for the particular number of phases of the circuit, the power meter may replace the current Modbus configuration data set with the selected Modbus configuration data set for the selected circuit. Further, upon selection of the desired replacement Modbus configuration data set, the power meter modifies its determination of the appropriate parameters to match that of the replacement Modbus configuration data set. By way of example, if a particular manufacturer has 4 different power meters each of which has a different default Modbus configuration data set, then by including the other three Modbus configuration data sets the registers of the Modbus may be modified to operate in a manner consistent with that of the other one of the 3 different power meters of the particular manufacturer. For those registers that are not suitable for a particular power meter, such as determining the frequency if the particular power meter cannot determine the frequency, the power meter may still load the selected Modbus configuration data while leaving the register associated with that which the power meter cannot determine undefined (or zero).
While a three phase power meter may include a significant variety of Modbus register configurations, when the Modbus register configurations are extended to a significant number of circuits, such as 24-48 different circuits the Modbus register configuration becomes increasingly complicated. An example of such a significant number of Modbus registers would be suitable for the power meter illustrated in
Referring to
While the configuration of a three phase power meter having three conductors is relatively complex, it is considerably more complicated to configuration a branch current power meter that has a large set of separate loads. Referring to
Referring to
Referring to
Referring to
If desired, the device could include a different Modbus address for one or more of the circuits that are identified. For example, if a different Modbus address is used for each circuit then the selected and configured Modbus registers for each circuit may be at the same overlapping register ranges. In this manner, the configuration of the branch current power metering device is simplified.
The detailed description, above, sets forth numerous specific details to provide a thorough understanding of the present invention. However, those skilled in the art will appreciate that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid obscuring the present invention.
All the references cited herein are incorporated by reference.
The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
This application claims the benefit of U.S. Provisional App. No. 62/271,421, filed Dec. 28, 2015.
Number | Name | Date | Kind |
---|---|---|---|
1100171 | Brown | Jun 1914 | A |
1455263 | Oberfell | May 1923 | A |
1569723 | Dickinson | Jan 1926 | A |
1800474 | Scherer | Apr 1931 | A |
1830541 | Harris | Nov 1931 | A |
1871710 | Lenehan | Aug 1932 | A |
2059594 | Massa | Nov 1936 | A |
2412782 | Palmer | Dec 1946 | A |
2428613 | Boyajian | Oct 1947 | A |
2663190 | Ilgenfritz | Dec 1953 | A |
2746295 | Lubkin | May 1956 | A |
2802182 | Godshalk et al. | Aug 1957 | A |
2852739 | Hansen | Sep 1958 | A |
2943488 | Strobel et al. | Jul 1960 | A |
3190122 | Edwards | Jun 1965 | A |
3243674 | Gotthold | Mar 1966 | A |
3287974 | Ciemochowski | Nov 1966 | A |
3374434 | Perry | Mar 1968 | A |
3493760 | Hoadley | Feb 1970 | A |
3512045 | Tipton et al. | May 1970 | A |
3584294 | Siwko | Jun 1971 | A |
3593078 | Domshy et al. | Jul 1971 | A |
3696288 | Carman | Oct 1972 | A |
3728705 | Atkins | Apr 1973 | A |
3769548 | Pardue | Oct 1973 | A |
3772625 | Raupach | Nov 1973 | A |
3861411 | Mitchell et al. | Jan 1975 | A |
3955701 | Fisch | May 1976 | A |
4001647 | Klein et al. | Jan 1977 | A |
4001758 | Esper et al. | Jan 1977 | A |
4030058 | Riffe et al. | Jun 1977 | A |
4048605 | McCollum | Sep 1977 | A |
4096436 | Cook et al. | Jun 1978 | A |
4107519 | Bicek | Aug 1978 | A |
D249883 | Collins | Oct 1978 | S |
4151578 | Bell | Apr 1979 | A |
4158217 | Bell | Jun 1979 | A |
4158810 | Leskovar | Jun 1979 | A |
4177496 | Bell et al. | Dec 1979 | A |
4198595 | Milkovic | Apr 1980 | A |
4207604 | Bell | Jun 1980 | A |
4215278 | Barbier et al. | Jul 1980 | A |
4227419 | Park | Oct 1980 | A |
4241237 | Paraskevakos et al. | Dec 1980 | A |
4249264 | Crochet et al. | Feb 1981 | A |
4250449 | Shum | Feb 1981 | A |
4253336 | Pietzuch | Mar 1981 | A |
4258348 | Belfer et al. | Mar 1981 | A |
4297741 | Howell | Oct 1981 | A |
4328903 | Baars | May 1982 | A |
4354155 | Speidel et al. | Oct 1982 | A |
4359672 | Hart | Nov 1982 | A |
4362580 | Kane et al. | Dec 1982 | A |
4363061 | Vaerewyck et al. | Dec 1982 | A |
4371814 | Hannas | Feb 1983 | A |
4373392 | Nagamoto | Feb 1983 | A |
4384289 | Stillwell et al. | May 1983 | A |
4386280 | Ricaud et al. | May 1983 | A |
4388668 | Bell et al. | Jun 1983 | A |
4393714 | Schmidt | Jul 1983 | A |
4398426 | Park et al. | Aug 1983 | A |
4408175 | Nelson et al. | Oct 1983 | A |
4413193 | Crockett | Nov 1983 | A |
4413230 | Miller | Nov 1983 | A |
4426673 | Bell et al. | Jan 1984 | A |
4432238 | Tward | Feb 1984 | A |
4491790 | Miller | Jan 1985 | A |
4492919 | Milkovic | Jan 1985 | A |
4495463 | Milkovic | Jan 1985 | A |
4506199 | Asche | Mar 1985 | A |
4558310 | McAllise | Dec 1985 | A |
4558595 | Kompelien | Dec 1985 | A |
4574266 | Valentine | Mar 1986 | A |
4605883 | Cockroft | Aug 1986 | A |
4621532 | Takagi et al. | Nov 1986 | A |
4660407 | Takami et al. | Apr 1987 | A |
4709339 | Fernandes | Nov 1987 | A |
4739229 | Heiler, Jr. | Apr 1988 | A |
4746809 | Coleman et al. | May 1988 | A |
4754365 | Kazahaya | Jun 1988 | A |
4757416 | Wilkerson | Jul 1988 | A |
4758774 | Crawford et al. | Jul 1988 | A |
4758962 | Fernandes | Jul 1988 | A |
4783748 | Swarztrauber et al. | Nov 1988 | A |
4794327 | Fernandes | Dec 1988 | A |
4808910 | Kessi | Feb 1989 | A |
D301331 | Rhodin | May 1989 | S |
4851803 | Hahn | Jul 1989 | A |
4855671 | Fernandes | Aug 1989 | A |
4874904 | DeSanti | Oct 1989 | A |
4890318 | Crane et al. | Dec 1989 | A |
4926105 | Mischenko | May 1990 | A |
4939451 | Baran et al. | Jul 1990 | A |
4944187 | Frick et al. | Jul 1990 | A |
4956588 | Ming | Sep 1990 | A |
4970476 | Kitagawa | Nov 1990 | A |
4972167 | Fujioka | Nov 1990 | A |
4992709 | Griffin | Feb 1991 | A |
4999575 | Germer | Mar 1991 | A |
5003278 | May | Mar 1991 | A |
5006846 | Granville | Apr 1991 | A |
5014908 | Cox | May 1991 | A |
5039970 | Cox | Aug 1991 | A |
5051601 | Atobe et al. | Sep 1991 | A |
5066904 | Bullock | Nov 1991 | A |
5079510 | Komatsu et al. | Jan 1992 | A |
D323815 | Bouteiller | Feb 1992 | S |
5099193 | Moseley et al. | Mar 1992 | A |
5122735 | Porter et al. | Jun 1992 | A |
5148348 | White | Sep 1992 | A |
5181026 | Granville | Jan 1993 | A |
5196784 | Estes, Jr. | Mar 1993 | A |
D335488 | Suzuki et al. | May 1993 | S |
5223790 | Baran et al. | Jun 1993 | A |
5267122 | Glover et al. | Nov 1993 | A |
5296819 | Kuroiwa et al. | Mar 1994 | A |
5311138 | Ott et al. | May 1994 | A |
5317274 | Nakagawa et al. | May 1994 | A |
5323256 | Banks | Jun 1994 | A |
5337206 | Kadah | Aug 1994 | A |
5365462 | McBean | Nov 1994 | A |
D354945 | Dellavecchia et al. | Jan 1995 | S |
5384712 | Oravetz et al. | Jan 1995 | A |
5385060 | Wang | Jan 1995 | A |
5391983 | Lusignan et al. | Feb 1995 | A |
5397970 | Rowlette et al. | Mar 1995 | A |
5410920 | Westwick | May 1995 | A |
5426360 | Maraio et al. | Jun 1995 | A |
5430438 | Joos et al. | Jul 1995 | A |
5444183 | Gehrs et al. | Aug 1995 | A |
5450765 | Stover | Sep 1995 | A |
5467012 | Nystrom | Nov 1995 | A |
5471359 | Simpson et al. | Nov 1995 | A |
5473234 | Richardson | Dec 1995 | A |
5548209 | Lusignan et al. | Aug 1996 | A |
5563506 | Fielden et al. | Oct 1996 | A |
5572073 | Burgess et al. | Nov 1996 | A |
5578927 | Saft | Nov 1996 | A |
5592989 | Lynn et al. | Jan 1997 | A |
5596652 | Piatek et al. | Jan 1997 | A |
5604315 | Briefer et al. | Feb 1997 | A |
5612499 | Andrew et al. | Mar 1997 | A |
5677476 | McCarthy et al. | Oct 1997 | A |
5705989 | Cota et al. | Jan 1998 | A |
5712558 | Saint-Cyr | Jan 1998 | A |
5753983 | Dickie et al. | May 1998 | A |
5784249 | Pouliot | Jul 1998 | A |
5808846 | Holce et al. | Sep 1998 | A |
5844138 | Cota | Dec 1998 | A |
5861683 | Engel et al. | Jan 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5880918 | Horbelt et al. | Mar 1999 | A |
5905439 | McIntyre | May 1999 | A |
5909087 | Bryde et al. | Jun 1999 | A |
5920190 | Peterson et al. | Jul 1999 | A |
5920191 | Maniero et al. | Jul 1999 | A |
5922939 | Cota | Jul 1999 | A |
5994892 | Turino et al. | Nov 1999 | A |
5995911 | Hart | Nov 1999 | A |
D419964 | Holce et al. | Feb 2000 | S |
6020702 | Farr | Feb 2000 | A |
6029524 | Klauder et al. | Feb 2000 | A |
6044430 | MacDonald | Mar 2000 | A |
6046550 | Ference et al. | Apr 2000 | A |
6064192 | Redmyer | May 2000 | A |
6091023 | O'Donnell | Jul 2000 | A |
6122972 | Crider | Sep 2000 | A |
6124791 | Wolf | Sep 2000 | A |
D431534 | Holce et al. | Oct 2000 | S |
6133709 | Puchianu | Oct 2000 | A |
6133723 | Feight | Oct 2000 | A |
6137418 | Zuercher et al. | Oct 2000 | A |
6146109 | Davis et al. | Nov 2000 | A |
6236949 | Hart | May 2001 | B1 |
6269317 | Schachner et al. | Jul 2001 | B1 |
6308140 | Dowling et al. | Oct 2001 | B1 |
6330516 | Kammeter | Dec 2001 | B1 |
6331821 | Holce et al. | Dec 2001 | B1 |
6344951 | Sato et al. | Feb 2002 | B1 |
6351206 | Schweiger et al. | Feb 2002 | B1 |
6373238 | Lewis et al. | Apr 2002 | B2 |
6377430 | Holce et al. | Apr 2002 | B2 |
6380696 | Sembhi et al. | Apr 2002 | B1 |
6384946 | Pitsch et al. | May 2002 | B1 |
6404166 | Puchianu | Jun 2002 | B1 |
6414241 | O'Donnell | Jul 2002 | B1 |
D466078 | Bowman | Nov 2002 | S |
6496378 | Holce et al. | Dec 2002 | B2 |
6504357 | Hemminger et al. | Jan 2003 | B1 |
6504695 | Holce et al. | Jan 2003 | B1 |
6549859 | Ward | Apr 2003 | B1 |
6591482 | Fleege et al. | Jul 2003 | B1 |
D478313 | Bowman | Aug 2003 | S |
6615147 | Jonker et al. | Sep 2003 | B1 |
6636028 | Lavoie et al. | Oct 2003 | B2 |
6657424 | Voisine et al. | Dec 2003 | B1 |
6737854 | Bruno et al. | May 2004 | B2 |
6756776 | Perkinson et al. | Jun 2004 | B2 |
6774803 | Tiffin | Aug 2004 | B1 |
6809509 | Bruno et al. | Oct 2004 | B2 |
6815942 | Randall et al. | Nov 2004 | B2 |
6825771 | Bruno et al. | Nov 2004 | B2 |
6856515 | Holce et al. | Feb 2005 | B2 |
6861683 | Rissing et al. | Mar 2005 | B2 |
6871827 | Petak et al. | Mar 2005 | B2 |
6888712 | Holce et al. | May 2005 | B2 |
6889271 | Germer et al. | May 2005 | B1 |
6937003 | Bowman et al. | Aug 2005 | B2 |
6950292 | Holce et al. | Sep 2005 | B2 |
6988043 | Randall | Jan 2006 | B1 |
7006934 | Jonker et al. | Feb 2006 | B2 |
7053497 | Sodemann et al. | May 2006 | B2 |
7157899 | Bruno | Jan 2007 | B2 |
7161345 | Bruno | Jan 2007 | B2 |
7193428 | Baron et al. | Mar 2007 | B1 |
7212930 | Bruno | May 2007 | B2 |
7221145 | Bowman et al. | May 2007 | B2 |
7230414 | Bruno | Jun 2007 | B2 |
7239810 | Seely et al. | Jul 2007 | B2 |
7274187 | Loy | Sep 2007 | B2 |
7282889 | Freed et al. | Oct 2007 | B2 |
7310049 | Bowman | Dec 2007 | B2 |
7312686 | Bruno | Dec 2007 | B2 |
7312964 | Tchernobrivets | Dec 2007 | B2 |
7330022 | Bowman et al. | Feb 2008 | B2 |
7333345 | Holce et al. | Feb 2008 | B2 |
7352287 | Rupert | Apr 2008 | B2 |
7359809 | Bruno | Apr 2008 | B2 |
7447603 | Bruno | Nov 2008 | B2 |
7453267 | Westbrock, Jr. et al. | Nov 2008 | B2 |
7474088 | Bowman et al. | Jan 2009 | B2 |
7652871 | Caggiano et al. | Jan 2010 | B2 |
8085055 | Rupert | Dec 2011 | B2 |
8160824 | Spanier | Apr 2012 | B2 |
8193803 | Bose et al. | Jun 2012 | B2 |
8212548 | Parker et al. | Jul 2012 | B2 |
8212549 | McNulty et al. | Jul 2012 | B2 |
8294453 | Bowman | Oct 2012 | B2 |
8405383 | Agrawal et al. | Mar 2013 | B2 |
8421443 | Bitsch et al. | Apr 2013 | B2 |
8610438 | Sykora et al. | Dec 2013 | B1 |
8612792 | Fu et al. | Dec 2013 | B2 |
8837118 | McGrail | Sep 2014 | B2 |
8878475 | Bonvin et al. | Nov 2014 | B2 |
8964360 | Trout | Feb 2015 | B2 |
8988062 | Sykora et al. | Mar 2015 | B2 |
9146264 | Cook | Sep 2015 | B2 |
9329659 | Cook | May 2016 | B2 |
9395344 | Sheley | Jul 2016 | B2 |
9424975 | Cook et al. | Aug 2016 | B2 |
9577443 | Gach et al. | Feb 2017 | B2 |
9588148 | Cook et al. | Mar 2017 | B2 |
9607749 | Cook et al. | Mar 2017 | B2 |
20010040446 | Lapinksi | Nov 2001 | A1 |
20040227503 | Bowman | Nov 2004 | A1 |
20050240362 | Randall | Oct 2005 | A1 |
20060085144 | Slota et al. | Apr 2006 | A1 |
20060103548 | Borkowski et al. | May 2006 | A1 |
20060164096 | Kwon | Jul 2006 | A1 |
20060181242 | Freed | Aug 2006 | A1 |
20060238932 | Westbrock | Oct 2006 | A1 |
20070153438 | Caggiano et al. | Jul 2007 | A1 |
20080303511 | Grno | Dec 2008 | A1 |
20080313006 | Witter | Dec 2008 | A1 |
20090115400 | Hunter | May 2009 | A1 |
20090115620 | Hunter | May 2009 | A1 |
20090295370 | Parker | Jun 2009 | A1 |
20090237212 | Hyde | Sep 2009 | A1 |
20100117626 | Wertz et al. | May 2010 | A1 |
20100176960 | Bitsch | Jul 2010 | A1 |
20100207604 | Bitsch | Aug 2010 | A1 |
20100235122 | McCrea | Sep 2010 | A1 |
20100308792 | Rupert | Dec 2010 | A1 |
20110098985 | Lawson | Apr 2011 | A1 |
20110181124 | Uesaka | Jul 2011 | A1 |
20120004780 | Miller | Jan 2012 | A1 |
20120112681 | Bonvin | May 2012 | A1 |
20120126790 | Sobotka | May 2012 | A1 |
20120217954 | Cook | Aug 2012 | A1 |
20120221278 | Cook | Aug 2012 | A1 |
20120235667 | Agrawal et al. | Sep 2012 | A1 |
20130024714 | Fu et al. | Jan 2013 | A1 |
20130027818 | McGrail | Jan 2013 | A1 |
20130144545 | Fu et al. | Jun 2013 | A1 |
20130201031 | Yang | Aug 2013 | A1 |
20130294014 | Irons | Nov 2013 | A1 |
20130335062 | de Buda | Dec 2013 | A1 |
20140184198 | Cook | Jul 2014 | A1 |
20140239964 | Gach et al. | Aug 2014 | A1 |
20140340236 | Rhoads | Nov 2014 | A1 |
20150028848 | Lynch et al. | Jan 2015 | A1 |
20150200713 | Hui | Jul 2015 | A1 |
20150241490 | Kitajima | Aug 2015 | A1 |
20150276890 | Turner | Oct 2015 | A1 |
20150293549 | Lal et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
1531334 | May 2005 | EP |
2016176315 | Nov 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20170184641 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62271421 | Dec 2015 | US |