Color calibration in color printers may improve the consistency of color output over time, and the consistency of color output from printer to printer, or page to page, as well. The color calibration for different printing temperatures may also impact the consistency of color output. The parameters that can lead a printer to deliver colors differently than expected are manifold and may include humidity, temperature variations in the print heads, or slightly different substrate chemical properties, among many others.
Various examples may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:
While various examples discussed herein are amenable to modifications and alternative forms, aspects thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular examples described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure including aspects defined in the claims. In addition, the term “example” as used throughout this application is only by way of illustration, and not limitation.
Many printing devices are calibrated, not only when printing supplies are replenished, or when different materials are to be printed on, but over various intervals of time as well. Additionally, because the characteristics of the printing materials may change, for instance the light reflective characteristics of the printing materials may be different, or the amounts of color inks put down increase, the end result may be appreciated to be a color print different from those previously made on that printer.
In some examples, calibrating a color printer involves establishing how much of each reference color, such as Cyan (C), Magenta (M), Yellow (Y) and Black (K), are in a printed strip. Additionally, a reading of the printing material white point may be determined. As used herein, a white point refers to or includes a print material's whitest point, i.e. the color of the color space that is closest to white, although a non-printed region of a corresponding medium does not need to be white. The print material's white point may be approximately coincident with the unprinted material's color. The white point of the printing material may impact the final color and/or quality of print and therefore impact the calibration of the printing device.
In accordance with the present disclosure, an apparatus for configuring color concentrations based on a white-point of print material includes a media sensor and a formatter. The media sensor may collect spectral data from light reflected off the print material. The media sensor may include a light source to illuminate a portion of the print material, a diffractor to diffract light reflected off of the print material, and a photo-detector to obtain the spectral data from the light reflected off the print material. The formatter may identify a white-point of the print material using the spectral data and configure color concentrations in the apparatus based on the identified white-point of the print material.
In various examples, the photo-detector includes an array of photodiodes, and the diffractor includes a prism. In such examples, the array of photodiodes may detect an intensity of light from each spectral bin diffracted from the prism. Additionally and/or alternatively, the diffractor may include a diffraction grating. As used herein, diffraction grating refers to or includes a component with a periodic structure that splits and diffracts light into several beams traveling in different directions or spectral bins. In some examples, the media sensor may determine a type of print material used by the apparatus, and collect a plurality of light intensity readings from light reflected off the print material. Accordingly, the formatter may configure the color concentrations based on the white-point of the identified type of print material.
In accordance with the present disclosure, color concentrations may be configured based on a white-point of print material. The printing device may include a media type sensor to determine the print mode to be used for an associated media type. The print mode may specify the process speed, transfer voltages and fuser temperature control to be used for quality printing. Additionally, the media sensor may also incorporate a photo-diode array for detecting media texture, surface roughness and gloss. Moreover, the media sensor may include a spectral density capability that may be used to determine the processing speed, transfer speed and fusing speed for the associated media type. The spectral information from the media sensor may be used to determine the white-point for the media. Accordingly, color concentrations for the printing device may be adjusted for the print material's white-point to improve color accuracy for a wide range of material colorations.
Turning now to the figures,
The apparatus 100 may apply the white-point correction to a plurality of different media types. Although
In various examples, the formatter 115 may configure color concentrations in the apparatus 100 based on the identified white-point of the print material 107. For instance, the formatter 115 may select a color table among a plurality of color tables based on the identified white-point, and configure the color concentrations in the apparatus 100 using the selected color table. Additionally and/or alternatively, the formatter 115 may identify a plurality of color tables based on the identified white-point, and configure the color concentrations in the printing device by interpolating between the identified color tables. For example, if the white-point of the print material 107 is in between two or more color table values, then the formatter 115 may identify color concentrations between the two or more color table values for printing with the print material 107.
In various examples, the media sensor 209 collects spectral data from light reflected off a print material. For instance, as illustrated in
As a non-limiting example, the scanner 201 may include a contact image sensor scanner, including a linear array of red, green and blue LEDs (Light Emitting Diodes) for shining light onto the print material and a sensor for recording information, as reflected by the print material.
In some examples, the scanner 201 may use a charged couple device or complementary metal oxide semiconductor type image sensor. At the end of the manufacturing stage, and during the lifetime of the scanner, color tables may be used to calibrate the scanner. By regularly calibrating the scanner, a high color accuracy of the scanner may be maintained or obtained.
In some examples, the media sensor 209 further includes a diffractor to diffract light reflected off of the print material 207, and a photo-detector to obtain the spectral data from the light reflected off the print material. For instance, referring to
In various examples, the printer 200 further includes a formatter 215 to identify a white-point of the print material using spectral data received from the media sensor, and to configure color concentrations in the printer 200 based on the identified white-point of the print material. As used herein, the spectral data refers to or includes light intensity readings collected by the media sensor 209, as well as other information collected by the media sensor 209 including media type, media thickness, media texture, and glossiness, among others. For instance, the formatter 215 may select a color table among a plurality of color tables based on the identified white-point, and configure the color concentrations in the printer 200 using the selected color table. Additionally and/or alternatively, the formatter 215 may identify a plurality of color tables based on the identified white-point, and configure the color concentrations in the printer 200 by interpolating between the identified color tables. In some examples, the formatter 215 may create a custom color table based on the white-point. Although not illustrated, the formatter 215 may in some examples retrieve the appropriate color table, based on the white-point of the media, from a network-based storage location.
The media sensor 209 may be arranged to sense media color information. This information may be used to determine media types. For example, the white points of glossy paper, matte paper and/or other types of media may vary and be associated with reflective qualities, and therefore be associated with particular and/or different color tables. In some examples, the scanner 201 may include a storage device 211 and a processor 213. The printer 200 may comprise a storage device 211 and processor 213. The printer 200 and scanner 201 may use the same or a different storage device 211 and processor 213. The processor 213 may process the color values of the medium 207, as sensed by the media sensor 209, for example an RGB value of a paper's white point. The storage device 211, processor 213, and formatter 215 may be part of a computing device 217 of the printer 200.
The storage device 211 may comprise any type of non-volatile memory. The storage device 211 may store predetermined color values and predetermined color profiles of preselected media types. For example, the storage device 211 may store predetermined white point values and predetermined color tables, for particular types of print media. In various examples, the color tables may be stored in a location external to the printer 200.
The predetermined color values may comprise a white point value of a pre-calculated color profile of a preselected medium. In this description, a “white point” may be defined as a color profile's whitest point, i.e. the color of the color space that is closest to white, although a non-printed regions of a corresponding medium does not need to be white. The color profile's white point may be approximately coincident with the unprinted medium's color. For example, a non-printed region of the medium 207 may be transparent, textured, grey, brown, green, or have any other color.
The processor 213 may be configured to compare the sensed color value with the predetermined color values stored in the storage device 211. Based on this comparison, the processor 213 may select a color table, including color concentrations to achieve a quality color print.
Using the media sensor of the printing device, a plurality of light intensity readings may be collected from light reflected off the print material, at 323. The light intensity readings may be collected by diffracting the reflected light and measuring the light intensity readings using a plurality of photo-detectors of the media sensor. For instance, as discussed with regards to
In some examples, the method includes selecting the color table based on the detected type of print material. For instance, a matte print material with a particular white-point may be associated with a different color table than a glossy print material with the same white-point. Additionally and/or alternatively, the color table may be customized based on the detected type of print material and the plurality of light intensity readings.
As an illustration, the method may include receiving a print material in a printing device, and moving the print material with respect to the printing device. The printing device may scan the print material to determine the white-point. For example, using the light source, diffractor, and photo-detectors, the printing device may scan the print material and identify the white-point of the print material. Using the determined white-point, the colors of the printing device may be calibrated by identifying a color table corresponding with the white-point of the print material.
In various examples, the printing device may automatically select a color table based on the white-point of the print media. By measuring the white-point of the print media and selecting a color table based on the measured white-point, the color concentrations of the printing device may be automatically configured. Additionally and/or alternatively, a user may manually select the color table based on the measured white-point.
The skilled artisan would recognize that various terminology as used in the Specification (including claims) connote a plain meaning in the art unless otherwise indicated. As examples, the Specification describes and/or illustrates aspects useful for implementing the claimed disclosure by way of various structure, such as circuits or circuitry selected or designed to carry out specific acts or functions, as may be recognized in the figures or the related discussion as depicted by or using terms such as blocks, and/or device, among other examples. See, e.g., reference numerals 100 and 200 of
Based upon the above discussion and illustrations, those skilled in the art will readily recognize that various modifications and changes may be made to the various examples without strictly following the exemplary examples and applications illustrated and described herein. For example, methods as exemplified in the Figures may involve steps carried out in various orders, with one or more aspects of the examples herein retained, or may involve fewer or more steps. Such modifications do not depart from the true spirit and scope of various aspects of the disclosure, including aspects set forth in the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/042343 | 7/18/2019 | WO | 00 |