This invention relates to performing floating point arithmetic operations in programmable logic devices (PLDs), including the use of specialized processing blocks, which may be included in such devices, to perform floating point operations.
As applications for which PLDs are used increase in complexity, it has become more common to design PLDs to include specialized processing blocks in addition to blocks of generic programmable logic resources. Such specialized processing blocks may include a concentration of circuitry on a PLD that has been partly or fully hardwired to perform one or more specific tasks, such as a logical or a mathematical operation. A specialized processing block may also contain one or more specialized structures, such as an array of configurable memory elements. Examples of structures that are commonly implemented in such specialized processing blocks include: multipliers, arithmetic logic units (ALUs), barrel-shifters, various memory elements (such as FIFO/LIFO/SIPO/RAM/ROM/CAM blocks and register files), AND/NAND/OR/NOR arrays, etc., or combinations thereof.
One particularly useful type of specialized processing block that has been provided on PLDs is a digital signal processing (DSP) block, which may be used to process, e.g., audio signals. Such blocks are frequently also referred to as multiply-accumulate (“MAC”) blocks, because they include structures to perform multiplication operations, and sums and/or accumulations of multiplication operations.
For example, a PLD sold by Altera Corporation, of San Jose, Calif., under the name STRATIX® II includes DSP blocks, each of which includes four 18-by-18 multipliers. Each of those DSP blocks also includes adders and registers, as well as programmable connectors (e.g., multiplexers) that allow the various components to be configured in different ways. In each such block, the multipliers can be configured not only as four individual 18-by-18 multipliers, but also as four smaller multipliers, or as one larger (36-by-36) multiplier. In addition, one 18-by-18 complex multiplication (which decomposes into two 18-by-18 multiplication operations for each of the real and imaginary parts) can be performed. In order to support four 18-by-18 multiplication operations, the block has 4×(18+18)=144 inputs. Similarly, the output of an 18-by-18 multiplication is 36 bits wide, so to support the output of four such multiplication operations, the block also has 36×4=144 outputs.
The arithmetic operations to be performed by a PLD frequently are floating point operations. However, to the extent that known PLDs, with or without DSP blocks or other specialized blocks or structures, including the aforementioned STRATIX® II PLD, can perform floating point operations at all, they operate in accordance with the IEEE754-1985 standard, which requires that values be normalized at all times because it implies a leading “1”. However, that leads to certain inefficiencies as described below.
The present invention relates to PLDs having improved floating point operation capabilities. In particular, the present invention carries out floating point operations without normalization, although the results may be normalized if IEEE754-1985 compliance is required. In addition, normalization may be performed in intermediate steps if loss of data might otherwise result.
Therefore, in accordance with the present invention, there is provided a method of configuring a programmable logic device to perform floating point operations on values formatted in accordance with a standard requiring a first mantissa size and a first exponent size. The method includes configuring logic of the programmable logic device to reformat those values to have a second mantissa size larger than that first mantissa size, configuring logic of the programmable logic device to perform those operations on the reformatted values to compute a result, and configuring logic of said programmable logic device to reformat the result in accordance with the standard to the first mantissa size.
A programmable logic device so configured, and a machine-readable data storage medium encoded with software for performing the method, are also provided.
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
Floating point numbers are commonplace for representing real numbers in scientific notation in computing systems. Examples of real numbers in scientific notation are:
3.1415926510×100 (π)
2.71828182810×100 (e)
0.00000000110 or 1.010×10−9 (seconds in a nanosecond)
315576000010 or 3.1557610×109 (seconds in a century)
The first two examples are real numbers in the range of the lower integers, the third example represents a very small fraction, and the fourth example represents a very large integer. Floating point numbers in computing systems are designed to cover the large numeric range and diverse precision requirements shown in these examples. Fixed point number systems have a very limited window of representation which prevents them from representing very large or very small numbers simultaneously. The position of the notional binary-point in fixed point numbers addresses this numeric range problem to a certain extent but does so at the expense of precision. With a floating point number the window of representation can move, which allows the appropriate amount of precision for the scale of the number.
Floating point representation is generally preferred over fixed point representation in computing systems because it permits an ideal balance of numeric range and precision. However, floating point representation requires more complex implementation compared to fixed point representation.
The IEEE754-1985 standard is commonly used for floating point numbers. A floating point number includes three different parts: the sign of the number, its mantissa and its exponent. Each of these parts may be represented by a binary number and, in the IEEE754-1985 format, have the following bit sizes:
The exponent preferably is an unsigned binary number which, for the single precision format, ranges from 0 to 255. In order to represent a very small number, it is necessary to use negative exponents. To achieve this the exponent preferably has a negative bias associated with it. For single-precision numbers, the bias preferably is −127. For example a value of 140 for the exponent actually represents (140−127)=13, and a value of 100 represents (100−127)=−27. For double precision numbers, the exponent bias preferably is −1023.
As discussed above, according to the standard, the mantissa is a normalized number—i.e., it has no leading zeroes and represents the precision component of a floating point number. Because the mantissa is stored in binary format, the leading bit can either be a 0 or a 1, but for a normalized number it will always be a 1. Therefore, in a system where numbers are always normalized, the leading bit need not be stored and can be implied, effectively giving the mantissa one extra bit of precision. Therefore, in single precision format, the mantissa typically includes 24 bits of precision.
However, the IEEE754-1985 standard requires continuous normalization—i.e., normalization after every step of a multistep computation—to maintain the leading “1” to preserve accuracy. This is expensive in terms of PLD resources, as each normalization operation requires two steps—(1) finding the position of the “1”, and (2) shifting the fractional part to get a leading “1” (which is then eliminated, because it is implied).
In accordance with the invention, there is no implied leading “1”, so that normalization is not required. Although this requires that one bit of precision be given up, because all bits must be kept, rather than implied, this greatly reduces the required logic, particularly shifting logic, and therefore the latency of the floating point operations. Moreover, in a PLD that already has dedicated arithmetic circuits, such as multipliers and/or adders, that are capable of handling the extra bits, there is no additional cost in terms of logic resources to handle those extra bits.
Preferably, the floating point representation in accordance with the invention uses a signed fractional component, with greater precision. Some operations may be configured in general-purpose logic of the programmable logic device. However, multiplication, at least, is more efficiently performed in a dedicated multiplier such as may be available in the aforementioned DSP block. The extra precision in accordance with the invention requires large multipliers, which heretofore have consumed more resources than the shifting logic required for normalization. However, in the aforementioned STRATIX® II PLDs, as well as those described in copending, commonly-assigned U.S. patent applications Ser. Nos. 11/447,329, 11/447,370, 11/447,472 and 11/447,474, all filed Jun. 5, 2006, 11/426,403, filed Jun. 26, 2006, and 11/458,361, filed Jul. 18, 2006, each of which is hereby incorporated herein in its respective entirety, large dedicated multipliers are available, and are more efficient than shifting logic. This allows the efficient use of a signed fractional component.
Specifically, according to a preferred method according to the invention for configuring a programmable logic device to perform floating point operations, the programmable logic device preferably is configured so that floating point values in accordance with a first format, such as the IEEE754-1985 standard format, preferably are converted to an internal format for calculation purposes, and are reconverted to the standard format upon completion of the operations.
Whereas the IEEE754-1985 standard format includes a 24-bit unsigned mantissa (23 bits plus the implied “1”) and an 8-bit exponent, the internal format according to the invention preferably includes a 32-bit signed mantissa and a 10-bit exponent. When converting from the standard 24-bit format to the 32-bit format of the invention, the implied leading “1” of the mantissa is made explicit and preferably is initially positioned at the 28th bit location. This leaves the four most significant bits of the 32-bit number available for overflows as operations progress. For example, 16 additions could be performed before any overflow would consume all four bits. Similarly, because the original standard representation is only 24 bits wide, the four least significant bits also are available for any underflows that may occur.
If this method is implemented on the aforementioned STRATIX® II PLD, or on a PLD of any of the above-incorporated patent applications, which include DSP blocks capable of 36-bit multiplications, then the multiplications of the 32-bit mantissas can be accomplished within the 36-bit dedicated multipliers, making the multipliers more efficient. Moreover, the mantissa size could be expanded to 36 bits if necessary or desired. However, the invention could be implemented even where no dedicated multipliers are available, using programmed general-purpose logic. Moreover, if dedicated multipliers are available, but are only large enough for IEEE754-1985-compliant operations, computations other than multiplications could be performed in programmed general-purpose logic, with the multiplications being performed in the dedicated multipliers. In such a case, the values would have to be renormalized before each multiplication step, but would not have to be normalized for other steps either before or after a multiplication step, except at the end of the operation.
As stated above, preferably, and ordinarily, during floating point operations in accordance with the invention, the operands remain in the format according to the invention, and are converted back to their original format only upon completion of operations. Because of the initial presence of the leading and trailing bits, as well as the larger exponent size, during operations it is possible to continue beyond conditions that might have led to overflows or underflows in the original format, because of the possibility that the accumulation of further results may reverse the overflow or underflow condition.
However, if during operation the accumulation of underflows or overflows reaches the point that information may be lost—e.g., there would be an overflow if the data were converted back to the standard format, or an underflow would be approached such that fewer than three significant bits beyond the required mantissa precision (i.e., in this example, fewer than 1+23+3=27 bits) would remain—it may be desirable in accordance with the invention to normalize the data at an intermediate step to prevent lost of precision. In such a case, subsequent operations preferably would not include further normalization until the final result is achieved (unless a condition again arises in which data may be lost).
Alternatively, if overflow or underflow is likely (e.g., there will be many operations in a calculation), then the start position of the mantissa can be changed from the 28th bit position to another position (to the right to prevent overflows; to the left to prevent underflows). The correct result can be maintained by adjusting the exponents accordingly. The larger exponent size (10 bits instead of 8 bits) allows room for the necessary exponent adjustments.
The examples that follow illustrate configurations, in accordance with the invention, of a programmable logic device to perform a number of different arithmetic operations. For simplicity, these examples do not show pipelining between stages, nor do they show circuitry for handling special cases, such as zero, infinity or not-a-number (NAN) situations.
The examples include conversions in both directions between the format of the IEEE754-1985 standard and the internal format according to a preferred embodiment of this invention. Preferred embodiments of those conversions are illustrated in
As shown in
Sign bit 110 and 23-bit-wide mantissa 111 (carrying 24 bits of precision) convert to four sign bits 122 and 24-bit mantissa portion 123 with the aid of exclusive-OR (XOR) 124. Four trailing bits 125 (because again the value cannot change in the conversion) are added to provide 32-bit mantissa 120. The trailing bits are zeroes for positive numbers, and ones for negative numbers (which are inverted).
The operation of XOR 124 preferably is as follows:
If sign bit 110 is a “0”, then XOR 124 has no effect. If sign bit 110 is a “1” (signifying a negative number), then XOR 124 inverts the mantissa—i.e., it converts the mantissa to a one's-complement number. The actual computation requires a two's-complement number. The one's-complement number can be converted to a two's-complement number by adding a “1” to the least significant bit of the one's-complement number. An adder can be provided as part of each conversion 10. However, such adders are very large, and because the precision of the mantissa in the format according to the present invention is greater than that of the IEEE754-1985 mantissa, it is also possible to omit this addition completely without significantly affecting the result.
As a third alternative, a single adder can be provided after a group of conversions 10, which adds to the result a number equal to the total number of negative numbers within that group of conversions 10. For example, if in an addition of eight numbers (meaning there are eight conversions), five of those numbers are negative, the value 510 (1012) can be added to the one's-complement result to give the two's-complement result. This becomes more complicated in the case of multiplications, but can still be used where there is a local cluster of operations.
In
ALU 33, operating in the internal format, is simpler than a corresponding ALU operating in the IEEE754-1985 standard format because it does not have include the shifting logic needed to deal with the implied leading “1” and therefore is about half the size of a standard-format ALU. However, conversion 34 adds about the same amount of logic as ALU 33, while conversions 31, 32 add a negligible amount of logic. Therefore, in this simple example of adding two numbers, the net result is approximately the same under either format in terms of circuit size and latency, because one standard-format ALU is replaced with two blocks each about half the size of the standard-format ALU.
As in case 30, each of conversions 41-44 adds negligible logic, while each of ALUs 45-47, as well as conversion 34, adds half the logic of a standard-format ALU. Using the standard format, the operation of case 40 could have been performed with three standard-format ALUs, while in case 40, it is performed with four blocks (three ALUs 45-47 and conversion 34) approximating in total the size of two standard-format ALUs. Thus, the circuit is about two-thirds the size using the format according to the invention as compared to the standard format.
Instructions for carrying out the method according to this invention may be encoded on a machine-readable medium, to be executed by a suitable computer or similar device to implement the method of the invention for programming or configuring PLDs to perform arithmetic operations in accordance with the format describe above. For example, a personal computer may be equipped with an interface to which a PLD can be connected, and the personal computer can be used by a user to program the PLD using a suitable software tool, such as the QUARTUS® II software available from Altera Corporation, of San Jose, Calif.
The magnetic domains of coating 602 of medium 600 are polarized or oriented so as to encode, in manner which may be conventional, a machine-executable program, for execution by a programming system such as a personal computer or other computer or similar system, having a socket or peripheral attachment into which the PLD to be programmed may be inserted, to configure appropriate portions of the PLD, including its specialized processing blocks, if any, in accordance with the invention.
In the case of a CD-based or DVD-based medium, as is well known, coating 702 is reflective and is impressed with a plurality of pits 703, arranged on one or more layers, to encode the machine-executable program. The arrangement of pits is read by reflecting laser light off the surface of coating 702. A protective coating 704, which preferably is substantially transparent, is provided on top of coating 702.
In the case of magneto-optical disk, as is well known, coating 702 has no pits 703, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 702. The arrangement of the domains encodes the program as described above.
Thus it is seen that a method for carrying out floating point operations, a PLD programmed to perform the method, and software for carrying out the programming, have been provided.
A PLD 90 programmed according to the present invention may be used in many kinds of electronic devices. One possible use is in a data processing system 900 shown in
System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 90 can be used to perform a variety of different logic functions. For example, PLD 90 can be configured as a processor or controller that works in cooperation with processor 901. PLD 90 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 90 can be configured as an interface between processor 901 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.
Various technologies can be used to implement PLDs 90 as described above and incorporating this invention.
It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3473160 | Wahlstrom | Oct 1969 | A |
4156927 | McElroy et al. | May 1979 | A |
4179746 | Tubbs | Dec 1979 | A |
4212076 | Conners | Jul 1980 | A |
4215406 | Gomola et al. | Jul 1980 | A |
4215407 | Gomola et al. | Jul 1980 | A |
4422155 | Amir et al. | Dec 1983 | A |
4484259 | Palmer et al. | Nov 1984 | A |
4521907 | Amir et al. | Jun 1985 | A |
4575812 | Kloker et al. | Mar 1986 | A |
4597053 | Chamberlin | Jun 1986 | A |
4623961 | Mackiewicz | Nov 1986 | A |
4682302 | Williams | Jul 1987 | A |
4718057 | Venkitakrishnan et al. | Jan 1988 | A |
4727508 | Williams | Feb 1988 | A |
4791590 | Ku et al. | Dec 1988 | A |
4799004 | Mori | Jan 1989 | A |
4823295 | Mader | Apr 1989 | A |
4839847 | Laprade | Jun 1989 | A |
4871930 | Wong et al. | Oct 1989 | A |
4912345 | Steele et al. | Mar 1990 | A |
4918637 | Morton | Apr 1990 | A |
4967160 | Quievy et al. | Oct 1990 | A |
4982354 | Takeuchi et al. | Jan 1991 | A |
4991010 | Hailey et al. | Feb 1991 | A |
4994997 | Martin et al. | Feb 1991 | A |
5073863 | Zhang | Dec 1991 | A |
5081604 | Tanaka | Jan 1992 | A |
5122685 | Chan et al. | Jun 1992 | A |
5128559 | Steele | Jul 1992 | A |
5175702 | Beraud et al. | Dec 1992 | A |
5208491 | Ebeling et al. | May 1993 | A |
RE34363 | Freeman | Aug 1993 | E |
5267187 | Hsieh et al. | Nov 1993 | A |
5296759 | Sutherland et al. | Mar 1994 | A |
5338983 | Agarwala | Aug 1994 | A |
5339263 | White | Aug 1994 | A |
5349250 | New | Sep 1994 | A |
5357152 | Jennings, III et al. | Oct 1994 | A |
5371422 | Patel et al. | Dec 1994 | A |
5381357 | Wedgwood et al. | Jan 1995 | A |
5404324 | Colon-Benet | Apr 1995 | A |
5424589 | Dobbelaere et al. | Jun 1995 | A |
5446651 | Moyse et al. | Aug 1995 | A |
5451948 | Jekel | Sep 1995 | A |
5452231 | Butts et al. | Sep 1995 | A |
5452375 | Rousseau et al. | Sep 1995 | A |
5457644 | McCollum | Oct 1995 | A |
5465226 | Goto | Nov 1995 | A |
5465375 | Thepaut et al. | Nov 1995 | A |
5483178 | Costello et al. | Jan 1996 | A |
5497498 | Taylor | Mar 1996 | A |
5500812 | Saishi et al. | Mar 1996 | A |
5500828 | Doddington et al. | Mar 1996 | A |
5523963 | Hsieh et al. | Jun 1996 | A |
5528550 | Pawate et al. | Jun 1996 | A |
5537601 | Kimura et al. | Jul 1996 | A |
5541864 | Van Bavel et al. | Jul 1996 | A |
5546018 | New et al. | Aug 1996 | A |
5550993 | Ehlig et al. | Aug 1996 | A |
5559450 | Ngai et al. | Sep 1996 | A |
5563526 | Hastings et al. | Oct 1996 | A |
5563819 | Nelson | Oct 1996 | A |
5570039 | Oswald et al. | Oct 1996 | A |
5570040 | Lytle et al. | Oct 1996 | A |
5572148 | Lytle et al. | Nov 1996 | A |
5581501 | Sansbury et al. | Dec 1996 | A |
5590350 | Guttag et al. | Dec 1996 | A |
5594366 | Khong et al. | Jan 1997 | A |
5594912 | Brueckmann et al. | Jan 1997 | A |
5596763 | Guttag et al. | Jan 1997 | A |
5606266 | Pedersen | Feb 1997 | A |
5617058 | Adrian et al. | Apr 1997 | A |
5633601 | Nagaraj | May 1997 | A |
5636150 | Okamoto | Jun 1997 | A |
5636368 | Harrison et al. | Jun 1997 | A |
5640578 | Balmer et al. | Jun 1997 | A |
5644522 | Moyse et al. | Jul 1997 | A |
5646545 | Trimberger et al. | Jul 1997 | A |
5646875 | Taborn et al. | Jul 1997 | A |
5648732 | Duncan | Jul 1997 | A |
5652903 | Weng et al. | Jul 1997 | A |
5655069 | Ogawara et al. | Aug 1997 | A |
5664192 | Lloyd et al. | Sep 1997 | A |
5689195 | Cliff et al. | Nov 1997 | A |
5696708 | Leung | Dec 1997 | A |
5729495 | Madurawe | Mar 1998 | A |
5740404 | Baji | Apr 1998 | A |
5744980 | McGowan et al. | Apr 1998 | A |
5744991 | Jefferson et al. | Apr 1998 | A |
5754459 | Telikepalli | May 1998 | A |
5761483 | Trimberger | Jun 1998 | A |
5764555 | McPherson et al. | Jun 1998 | A |
5768613 | Asghar | Jun 1998 | A |
5777912 | Leung et al. | Jul 1998 | A |
5784636 | Rupp | Jul 1998 | A |
5790446 | Yu et al. | Aug 1998 | A |
5794067 | Kadowaki | Aug 1998 | A |
5801546 | Pierce et al. | Sep 1998 | A |
5805477 | Perner | Sep 1998 | A |
5805913 | Guttag et al. | Sep 1998 | A |
5808926 | Gorshtein et al. | Sep 1998 | A |
5812479 | Cliff et al. | Sep 1998 | A |
5812562 | Baeg | Sep 1998 | A |
5815422 | Dockser | Sep 1998 | A |
5821776 | McGowan | Oct 1998 | A |
5825202 | Tavana et al. | Oct 1998 | A |
5838165 | Chatter | Nov 1998 | A |
5841684 | Dockser | Nov 1998 | A |
5847579 | Trimberger | Dec 1998 | A |
5847981 | Kelley et al. | Dec 1998 | A |
5859878 | Phillips et al. | Jan 1999 | A |
5869979 | Bocchino | Feb 1999 | A |
5872380 | Rostoker et al. | Feb 1999 | A |
5874834 | New | Feb 1999 | A |
5878250 | LeBlanc | Mar 1999 | A |
5880981 | Kojima et al. | Mar 1999 | A |
5892962 | Cloutier | Apr 1999 | A |
5894228 | Reddy et al. | Apr 1999 | A |
5898602 | Rothman et al. | Apr 1999 | A |
5931898 | Khoury | Aug 1999 | A |
5942914 | Reddy et al. | Aug 1999 | A |
5944774 | Dent | Aug 1999 | A |
5949710 | Pass et al. | Sep 1999 | A |
5951673 | Miyata | Sep 1999 | A |
5956265 | Lewis | Sep 1999 | A |
5959871 | Pierzchala et al. | Sep 1999 | A |
5960193 | Guttag et al. | Sep 1999 | A |
5961635 | Guttag et al. | Oct 1999 | A |
5963048 | Harrison et al. | Oct 1999 | A |
5963050 | Young et al. | Oct 1999 | A |
5968196 | Ramamurthy et al. | Oct 1999 | A |
5970254 | Cooke et al. | Oct 1999 | A |
5978260 | Trimberger et al. | Nov 1999 | A |
5982195 | Cliff et al. | Nov 1999 | A |
5986465 | Mendel | Nov 1999 | A |
5991788 | Mintzer | Nov 1999 | A |
5991898 | Rajski et al. | Nov 1999 | A |
5995748 | Guttag et al. | Nov 1999 | A |
5999015 | Cliff et al. | Dec 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6005806 | Madurawe et al. | Dec 1999 | A |
6006321 | Abbott | Dec 1999 | A |
6009451 | Burns | Dec 1999 | A |
6018755 | Gonikberg et al. | Jan 2000 | A |
6020759 | Heile | Feb 2000 | A |
6021423 | Nag et al. | Feb 2000 | A |
6029187 | Verbauwhede | Feb 2000 | A |
6031763 | Sansbury | Feb 2000 | A |
6041340 | Mintzer | Mar 2000 | A |
6052327 | Reddy et al. | Apr 2000 | A |
6052755 | Terrill et al. | Apr 2000 | A |
6055555 | Boswell et al. | Apr 2000 | A |
6064614 | Khoury | May 2000 | A |
6065131 | Andrews et al. | May 2000 | A |
6066960 | Pedersen | May 2000 | A |
6069487 | Lane et al. | May 2000 | A |
6072994 | Phillips et al. | Jun 2000 | A |
6073154 | Dick | Jun 2000 | A |
6075381 | LaBerge | Jun 2000 | A |
6084429 | Trimberger | Jul 2000 | A |
6085317 | Smith | Jul 2000 | A |
6091261 | DeLange | Jul 2000 | A |
6091765 | Pietzold, III et al. | Jul 2000 | A |
6094726 | Gonion et al. | Jul 2000 | A |
6097988 | Tobias | Aug 2000 | A |
6098163 | Guttag et al. | Aug 2000 | A |
6107820 | Jefferson et al. | Aug 2000 | A |
6107821 | Kelem et al. | Aug 2000 | A |
6107824 | Reddy et al. | Aug 2000 | A |
6130554 | Kolze et al. | Oct 2000 | A |
6140839 | Kaviani et al. | Oct 2000 | A |
6144980 | Oberman | Nov 2000 | A |
6154049 | New | Nov 2000 | A |
6157210 | Zaveri et al. | Dec 2000 | A |
6163788 | Chen et al. | Dec 2000 | A |
6167415 | Fischer et al. | Dec 2000 | A |
6175849 | Smith | Jan 2001 | B1 |
6215326 | Jefferson et al. | Apr 2001 | B1 |
6226735 | Mirsky | May 2001 | B1 |
6242947 | Trimberger | Jun 2001 | B1 |
6243729 | Staszewski | Jun 2001 | B1 |
6246258 | Lesea | Jun 2001 | B1 |
6279021 | Takano et al. | Aug 2001 | B1 |
6286024 | Yano et al. | Sep 2001 | B1 |
6314442 | Suzuki | Nov 2001 | B1 |
6314551 | Borland | Nov 2001 | B1 |
6321246 | Page et al. | Nov 2001 | B1 |
6323680 | Pedersen et al. | Nov 2001 | B1 |
6327605 | Arakawa et al. | Dec 2001 | B2 |
6351142 | Abbott | Feb 2002 | B1 |
6353843 | Chehrazi et al. | Mar 2002 | B1 |
6359468 | Park et al. | Mar 2002 | B1 |
6360240 | Takano et al. | Mar 2002 | B1 |
6362650 | New et al. | Mar 2002 | B1 |
6366944 | Hossain et al. | Apr 2002 | B1 |
6367003 | Davis | Apr 2002 | B1 |
6369610 | Cheung et al. | Apr 2002 | B1 |
6377970 | Abdallah et al. | Apr 2002 | B1 |
6407576 | Ngai et al. | Jun 2002 | B1 |
6407694 | Cox et al. | Jun 2002 | B1 |
6434587 | Liao et al. | Aug 2002 | B1 |
6438569 | Abbott | Aug 2002 | B1 |
6438570 | Miller | Aug 2002 | B1 |
6446107 | Knowles | Sep 2002 | B1 |
6453382 | Heile | Sep 2002 | B1 |
6467017 | Ngai et al. | Oct 2002 | B1 |
6480980 | Koe | Nov 2002 | B2 |
6483343 | Faith et al. | Nov 2002 | B1 |
6487575 | Oberman | Nov 2002 | B1 |
6523055 | Yu et al. | Feb 2003 | B1 |
6531888 | Abbott | Mar 2003 | B2 |
6538470 | Langhammer et al. | Mar 2003 | B1 |
6542000 | Black et al. | Apr 2003 | B1 |
6556044 | Langhammer et al. | Apr 2003 | B2 |
6557092 | Callen | Apr 2003 | B1 |
6571268 | Giacalone et al. | May 2003 | B1 |
6573749 | New et al. | Jun 2003 | B2 |
6574762 | Karimi et al. | Jun 2003 | B1 |
6591283 | Conway et al. | Jul 2003 | B1 |
6591357 | Mirsky | Jul 2003 | B2 |
6600495 | Boland et al. | Jul 2003 | B1 |
6600788 | Dick et al. | Jul 2003 | B1 |
6628140 | Langhammer et al. | Sep 2003 | B2 |
6687722 | Larsson et al. | Feb 2004 | B1 |
6692534 | Wang et al. | Feb 2004 | B1 |
6700581 | Baldwin et al. | Mar 2004 | B2 |
6725441 | Keller et al. | Apr 2004 | B1 |
6728901 | Rajski et al. | Apr 2004 | B1 |
6731133 | Feng et al. | May 2004 | B1 |
6732134 | Rosenberg et al. | May 2004 | B1 |
6744278 | Liu et al. | Jun 2004 | B1 |
6745254 | Boggs et al. | Jun 2004 | B2 |
6763367 | Kwon et al. | Jul 2004 | B2 |
6771094 | Langhammer et al. | Aug 2004 | B1 |
6774669 | Liu et al. | Aug 2004 | B1 |
6781408 | Langhammer | Aug 2004 | B1 |
6781410 | Pani et al. | Aug 2004 | B2 |
6788104 | Singh et al. | Sep 2004 | B2 |
6801924 | Green et al. | Oct 2004 | B1 |
6836839 | Master et al. | Dec 2004 | B2 |
6874079 | Hogenauer | Mar 2005 | B2 |
6904471 | Boggs et al. | Jun 2005 | B2 |
6924663 | Masui et al. | Aug 2005 | B2 |
6963890 | Dutta et al. | Nov 2005 | B2 |
6971083 | Farrugia et al. | Nov 2005 | B1 |
6978287 | Langhammer | Dec 2005 | B1 |
7020673 | Ozawa | Mar 2006 | B2 |
7093204 | Oktem et al. | Aug 2006 | B2 |
7107305 | Deng et al. | Sep 2006 | B2 |
7113969 | Green et al. | Sep 2006 | B1 |
7181484 | Stribaek et al. | Feb 2007 | B2 |
7313585 | Winterrowd | Dec 2007 | B2 |
7395298 | Debes et al. | Jul 2008 | B2 |
7409417 | Lou | Aug 2008 | B2 |
7415542 | Hennedy et al. | Aug 2008 | B2 |
7421465 | Rarick et al. | Sep 2008 | B1 |
7428566 | Siu et al. | Sep 2008 | B2 |
7430578 | Debes et al. | Sep 2008 | B2 |
7430656 | Sperber et al. | Sep 2008 | B2 |
7472155 | Simkins et al. | Dec 2008 | B2 |
7536430 | Guevokian et al. | May 2009 | B2 |
7590676 | Langhammer | Sep 2009 | B1 |
7646430 | Brown Elliott et al. | Jan 2010 | B2 |
7668896 | Lutz et al. | Feb 2010 | B2 |
20010023425 | Oberman et al. | Sep 2001 | A1 |
20010029515 | Mirsky | Oct 2001 | A1 |
20020002573 | Landers et al. | Jan 2002 | A1 |
20020089348 | Langhammer | Jul 2002 | A1 |
20020116434 | Nancekievill | Aug 2002 | A1 |
20030088757 | Lindner et al. | May 2003 | A1 |
20040064770 | Xin | Apr 2004 | A1 |
20040083412 | Corbin et al. | Apr 2004 | A1 |
20040103133 | Gurney | May 2004 | A1 |
20040148321 | Guevorkian et al. | Jul 2004 | A1 |
20040172439 | Lin | Sep 2004 | A1 |
20040178818 | Crotty et al. | Sep 2004 | A1 |
20040193981 | Clark et al. | Sep 2004 | A1 |
20040267863 | Bhushan et al. | Dec 2004 | A1 |
20050038842 | Stoye | Feb 2005 | A1 |
20050144212 | Simkins et al. | Jun 2005 | A1 |
20050144215 | Simkins et al. | Jun 2005 | A1 |
20050144216 | Simkins et al. | Jun 2005 | A1 |
20050166038 | Wang et al. | Jul 2005 | A1 |
20050187997 | Zheng et al. | Aug 2005 | A1 |
20050187999 | Zheng et al. | Aug 2005 | A1 |
20060020655 | Lin | Jan 2006 | A1 |
20070241773 | Hutchings et al. | Oct 2007 | A1 |
20090187615 | Abe et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
0 158 430 | Oct 1985 | EP |
0 380 456 | Aug 1990 | EP |
0 411 491 | Feb 1991 | EP |
0 461 798 | Dec 1991 | EP |
0 498 066 | Aug 1992 | EP |
0 555 092 | Aug 1993 | EP |
0 606 653 | Jul 1994 | EP |
0 657 803 | Jun 1995 | EP |
0 660 227 | Jun 1995 | EP |
0 668 659 | Aug 1995 | EP |
0 905 906 | Mar 1999 | EP |
0 909 028 | Apr 1999 | EP |
0 927 393 | Jul 1999 | EP |
0 992 885 | Apr 2000 | EP |
1 031 934 | Aug 2000 | EP |
1 058 185 | Dec 2000 | EP |
1 220 108 | Jul 2002 | EP |
2 283 602 | May 1995 | GB |
2 286 737 | Aug 1995 | GB |
2 318 198 | Apr 1998 | GB |
61-237133 | Oct 1986 | JP |
7-135447 | May 1995 | JP |
WO9527243 | Oct 1995 | WO |
WO9628774 | Sep 1996 | WO |
WO9708606 | Mar 1997 | WO |
WO9812629 | Mar 1998 | WO |
WO9832071 | Jul 1998 | WO |
WO9838741 | Sep 1998 | WO |
WO9922292 | May 1999 | WO |
WO9931574 | Jun 1999 | WO |
WO9956394 | Nov 1999 | WO |
WO0051239 | Aug 2000 | WO |
WO0052824 | Sep 2000 | WO |
WO0113562 | Feb 2001 | WO |
WO2005101190 | Oct 2005 | WO |