Configuring microelectrodes for safe and effective chronic electrical stimulation

Information

  • Research Project
  • 9208062
  • ApplicationId
    9208062
  • Core Project Number
    R01NS088379
  • Full Project Number
    5R01NS088379-03
  • Serial Number
    088379
  • FOA Number
    PA-13-302
  • Sub Project Id
  • Project Start Date
    2/15/2015 - 9 years ago
  • Project End Date
    1/31/2020 - 4 years ago
  • Program Officer Name
    LANGHALS, NICK B
  • Budget Start Date
    2/1/2017 - 7 years ago
  • Budget End Date
    1/31/2018 - 6 years ago
  • Fiscal Year
    2017
  • Support Year
    03
  • Suffix
  • Award Notice Date
    1/5/2017 - 7 years ago

Configuring microelectrodes for safe and effective chronic electrical stimulation

DESCRIPTION (provided by applicant): The project goal is to quantify the roles and interactions of stimulus charge density (QD) and charge per phase (Q) in the induction of depression of neuronal excitability and loss of neurons during prolonged microstimulation in the cerebral cortex. We will examine these effects of the microstimulation in the immediate vicinity of the stimulating microelectrodes in the feline post-cruciate gyrus of the cerebral cortex, and also the remote effects in the adjacent pre-cruciate gyrus. The relations between Q, QD and the occurrence (or absence) of neuronal injury have been determined for larger macroelectrodes and has enabled development of protocols for safe and effective electrical stimulation with neural interfaces, and we propose to do the same for intraparenchymal microstimulation. Safe (and damaging) protocols for intraparenchymal microstimulation have been determined for some specific situations, but for microstimulation a systematic study has not been performed for the interactions of Q,QD and the physiologic and histologic responses. The proposed study will employ silicon substrate microelectrodes and microwire electrodes implanted chronically in the sensorimotor cortex of adult cats. We will identify combinations of Q and QD that are able to excite pyramidal tract neurons of the cerebral cortex without producing depression of neuronal excitability or loss during 200 hours of stimulation (8 hrs/day for 25 days). The range of Q to be evaluated (2 to 16 nC/phase) will span all or most of the range that is likely to be used in a clinical interface. The stimulus will be delivered for 7 hour per day, for a total of 210 hours at a pulse rate of 50 pps. This is intended to be a realistic representative of the parameters that would be used in a clinical neural interface. Since Q/QD = A, the electrodes' geometric surface area, the data from the study will define the value of A that is necessary and sufficient to allow safe and effective chronic microstimulation in the cerebral cortex using a specified charge per phase.

IC Name
NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
  • Activity
    R01
  • Administering IC
    NS
  • Application Type
    5
  • Direct Cost Amount
    294690
  • Indirect Cost Amount
    104464
  • Total Cost
    399154
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    853
  • Ed Inst. Type
  • Funding ICs
    NINDS:399154\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    BNVT
  • Study Section Name
    Bioengineering of Neuroscience, Vision and Low Vision Technologies Study Section
  • Organization Name
    HUNTINGTON MEDICAL RESEARCH INSTITUTES
  • Organization Department
  • Organization DUNS
    077978898
  • Organization City
    PASADENA
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    911011830
  • Organization District
    UNITED STATES