Not Applicable
Not Applicable
The present invention is in the field of occupational safety as it applies to Confined spaces. Confined space entries that are safe and United States Occupational Safety and Health Administration (OSHA) compliant require personnel to meter the atmosphere prior to entry to ensure that it poses no danger to the entrant. Other countries have similar regulatory organizations and requirements.
Many infrastructure and industrial facilities have confined spaces that must be accessed on a routine basis to support or maintain operations. Many safety regulatory agencies around the world have similar definitions to define what constitutes a confined space. In the United States, OSHA defines a confined space as, (Excerpted from OSHA 3138-01R 2004):
Many workplaces contain spaces that are considered to be “confined” because their configurations hinder the activities of employees who must enter into, work in or exit from them. In many instances, employees who work in confined spaces also face increased risk of exposure to serious physical injury from hazards such as entrapment, engulfment and hazardous atmospheric conditions. Confinement itself may pose entrapment hazards and work in confined spaces may keep employees closer to hazards such as machinery components than they would be otherwise. For example, confinement limited access and restricted airflow can result in hazardous conditions that would not normally arise in an open workplace.
The terms “permit-required confined space” and “permit space” refer to spaces that meet OSHA's definition of a “confined space” and contain health or safety hazards. For this reason, OSHA requires workers to have a permit to enter these spaces.
By definition, a confined space:
By definition, a permit-required confined space has one or more of these characteristics:
Confined spaces are inherently dangerous to workers. Many industrial accidents in confined spaces result in death and injury of exposure to other hazards that may not be obvious prior to entry. Accidents in confined spaces have led to secondary deaths or injuries to workers who try and rush to the aid of a fellow worker and fall victim to a hidden hazard. It is estimated that up to 100 work-related deaths in the United States occur on an annual basis from accidents related to operations conducted within these dangerous environments.
As a result of the dangers associated with confined space entry, OSHA and other regulatory agencies have mandated that certain procedures be followed when an individual must enter these locations. These procedures are intended to reduce the risk of injury to an individual that must enter the space.
Atmospheric testing of confined spaces prior to entry are critical to safe entry of many confined spaces. One of the primary sources of death and injury to workers involved in confined space entry operations is asphyxiation. Proper safety protocols have been defined by OSHA that mandates that the atmosphere is tested with certified equipment and for a sufficient length of time by an individual who is appropriately trained on its operation.
Evaluation Testing:
Evaluation testing is done to:
Verification Testing:
Atmospheric testing in a confined space is usually conducted using a multi-gas meter that is specifically designed to test for such atmospheric conditions as Oxygen levels, Hydrogen Sulfide levels, Carbon Monoxide levels and LEL, (lower explosive levels of combustible gases). This suitable regulatory agency compliant device will be referred to in this document as an atmospheric sensor/meter.
In some instances, injuries and fatalities will occur when individuals enter into a confined space without the appropriate training or access to appropriate safety equipment and do not take proper measures of metering the atmosphere prior to entry. In these situations, it is easy to understand how an unnecessary death or injury could result.
Unfortunately, there are also confined space accidents that occur with individuals who have been trained and have access to vital safety and monitoring equipment. In the majority of these cases, it is the entrant who will accidently or willfully neglect to properly test the atmosphere of the confined space prior to entry. As a result of these careless and dangerous acts by those individuals and despite confined space entry training; knowledge of regulatory safety agency regulations; knowledge of company safety policy mandating atmospheric testing prior to entry and access to appropriate atmospheric metering technology fatalities and injuries still occur in the workplace due to asphyxiation in confined spaces.
When a worker neglects to meter the atmosphere, he is taking unnecessary chances with his health and well-being and increases the potential liability of his employers. An employee who engages in this breach of safety protocol may often repeat his advance atmospheric testing omission many times with increasing confidence, until it is too late and there is an accident. In most instances, the atmosphere will be sufficiently safe for human life and the employee will suffer no permanent ill consequences. His risky behavior may go unnoticed by supervisory staff until he enters a confined space that has an atmosphere that will not support human life and there is a death or serious injury.
A method of preventing access to a dangerous confined space atmospheric environment is herein described. The unique safety feature of this invention is that it forces a safety reading of a confined space atmosphere and will issue a preemptive alarm in advance of entry. This is accomplished by marrying the atmospheric meter-alarm system to the mechanism that is utilized to facilitate ingress and egress to and from the confined space. This alarm would remove significant if not all doubt of the user that physical entrance to the confirmed space is life threatening from a dangerous atmosphere in advance of entry. Further the testing and alarm will indicate to surrounding personnel and facilities management, that critical safety procedures are not being followed, acting as a deterrent to the operator/entrant to not maintaining established safety producers. This protection is accomplished as a natural consequence of facilitating the entrant access to the space.
The present invention can best be understood in connection with the accompanying drawings. It is noted that the invention is not limited to the precise embodiments shown in the drawings in which the drawing Figures are described as follows:
Options include a work light 600, video camera sensor 700 to remotely monitor the working in the confined space 900, and various wireless telemetry for communicating to sensors and communicating to remote monitoring locations by WiFi, Bluetooth, ZigBee or other similar wireless communication protocols.
Depending on the physical geometry of the confined space 900 and the appropriate entrance device 110 it may be more practical to use a self-powered gas sensor or meter 400 with a wireless connection to the alarm status annunciator module, (ASAM) 200 for more flexibility as shown in
The details of features in the overall system are otherwise the same as described in
Options shown include a work light 600, video camera sensor 700 to remotely monitor the working in the confined space 900, and various wireless telemetry for communicating to sensors and communicating to remote monitoring locations by WiFi, Bluetooth, ZigBee or other similar wireless communication protocols.
Note that the gas sensor/meter 400 can connect wirelessly (if so capable) directly to the alarm status annunciator module, (ASAM) 200, or to the active/dormant Module (ADM) 300 depending on what makes most sense giving the wireless capability of the gas sensor/meter 400 and the physical geometry of the confined space and surrounding area. The gas sensor/meter 400 can also be wired to the active/dormant Module (ADM) 300.
This method and invention is designed to prevent access into a confined space 900 that has an atmosphere that is not suitable to sustain life by generating a conspicuous alarm response when entry is initiated. It is accomplished by affixing a suitable regulatory agency compliant gas sensor or meter 400 to one end of a mechanical assembly 100 that facilitates access into and egress out of the confined space 900 by the entrant. The preferred gas sensor/meter 400 can be one of two basic types depending on the specific application and expected potential hazards. One type is self-contained and samples the atmosphere in its immediate vicinity. The other can incorporate a sampling tube to enable it to sample the atmosphere at some distance from the meter. This type of device can also effectively sample from multiple locations either by incorporating a manifold with multiple sampling tubes with multiple sampling locations, or a single sampling tube with multiple ports. This would allow sampling at more than one depth in the confined space with a single meter to take into account atmospheric stratification that could exist at different levels of the confined space due to variations in gas density. Either gas meter type requires the ability to communicate wirelessly or by wire a meter status condition including an alarm state to the system. Preferably the gas sensor or meter can also communicate its own health status including functionality of its sensors and battery charge status. The location of where the atmospheric sample is taken need not necessarily be where the meter is physically located by using a meter incorporating a sampling tube. In this case the sample is taken from the sampling point at the end of the sampling tube or from multiple sampling tubes or multiple sampling points along the length of the sampling tube. These gas meters as described are readily available in the marketplace from multiple vendors and, can be selected as required for specific features, ease of mounting and compatibility with communication with the other modules of the system.
Examples of the entrance assembly 100 include but are not limited to a cable 120, ladder 110, ramp, stairway or any other assembly or device that will facilitate physical entry in to the confined space 900. For the purpose of simplifying the system description, we refer to this mechanical assembly that facilitates access and egress as the entrance assembly 100.
The sampling point of the atmospheric sensor/meter 400 is immersed into the confined space 900 environment in advance of the entrant as a natural consequence of utilizing the entrance assembly 100. When the entrance assembly 100 is put into position, the atmospheric sensor/meter 400 sampling point will monitor the atmosphere and communicate its status using wired or wireless means to an alarm status annunciator module, (ASAM) 200, or the active/dormant Module (ADM) 300 depending on the system configuration chosen. The remote annunciators of the alarm status annunciator module, (ASAM) 200 can consist of audible alarms 220, visual alarms 210 and network, data telemetry 230, 240 for remote alerts and archival storage that an alarm event occurred though a networked computer 280.
The alarm status annunciator module, (ASAM) 200, can be mounted on the opposite end of the entrance assembly 100 or mounted/positioned in close proximity to the confined space entrance 205. In either instance, the ASAM 200 resides outside of the confined space. The ASAM 200 can indicate an alarm condition with, but not limited to, red strobe lights 210R and a high decibel audio alarm 220. Conversely, the alarm status annunciator module, (ASAM) 200 can indicate that an acceptable atmosphere exists in the space with a green light 210G, or some other type of annunciator signal. The alarm condition will be generated after the ladder is inserted into the access port 910 into the confined space 900. (i.e. hatch or manway), but before the entrant has an opportunity to enter into the space. The alarm status annunciator module, (ASAM) 200 can also record the atmospheric readings from the gas sensor/meter 400 along with a time and date stamp in a digital memory log. The alarm status annunciator module, (ASAM) 200 can also interface with a local area network to communicate overall status and alarm conditions to other individuals and locations though a networked computer 280.
The active/dormant sensor 260 function can be either incorporated into the alarm status annunciator module, (ASAM) 200 or into a remote active/dormant Module (ADM) 300 that communicates with the alarm status annunciator module ASAM 200. The entrance assembly 100 is monitored by the active/dormant sensor 260 that can indicate an operational mode or a dormant mode. This sensor need not be inserted into the confined space. An operational mode would be when the entrance assembly 100 is put into a position where it would be used to gain access into a confined space 900. This same sensor can also monitor when an individual mounts the ladder. This would indicate that the gas sensor/meter 400 should be operational and atmospheric data is representative of conditions in the confined space 900. A dormant mode would be when it is stored or otherwise not currently in use. An example of an active dormant sensor 260 could be a device that would indicate that the entrance assembly 100 is in close proximity to the tank, manway or other physical structure of the confined space 900. There are many sensor technologies that could be adapted for this purpose including, but not limited to, optical, ultrasonic, pressure, load, conduction, Hall Effect, piezo electric, and others. A simple switch could be used to change state when the entrance assembly 100 is put into an operational position and it comes into contact with the entrance way or other mechanical feature of the confined space 900. Another example could be a simple mercury switch or inclinometer that could indicate horizontal or vertical position of the ladder or other entrance assembly 100. The concept in this case being that the entrance assembly 100 would be inserted into the confined space entrance port 910 in a vertical position when operational and in a horizontal position when it is not being utilized and in its dormant mode. The alarm status annunciator module, (ASAM) 200 uses this sensor information 260 to know when to expect relevant data from an atmospheric meter/sensor and thus know when to generate an alarm. The physical location of this sensor can be located within the alarm status annunciator module ASAM 200, or the remote active/dormant Module (ADM) 300.
The operational/dormant sensor (ADS) 260 signal could be sourced from an independent system than the atmospheric sensor/meter 400 and thus could provide other status or alarm information. For example, if the operational/dormant sensor (ADS) 260 indicated an operational orientation and there was no atmospheric sensor/meter 400 data available within a timeout period, the alarm status annunciator module ASAM 200 would indicate an alarm condition to indicate that the system is not functionally operational. The alarm status annunciator module ASAM 200, could also monitor the battery condition of both the gas sensor/meter 400 and the operational/dormant sensor (ADS) 260 to generate low battery alarms. In some embodiments of the design the active/dormant sensor 260 could signal control of power to other modules in the system when it detects a dormant state, with the intention of reducing power to modules to conserve battery life when not in use. The alarm status annunciator module ASAM 200 could also monitor its own battery level as well as the battery condition of both the atmospheric sensor/meter 400 and the active/dormant sensor 260 to generate low battery alarms.
This active/dormant sensor 260 assembly can be integrated into the alarm status annunciator module, (ASAM) 200, or it can be configured as a separate active/dormant module (ADM) 300 that has its own power source and transmits its status to the remotely located alarm status annunciator module (ASAM) 200 using a wireless data transmission such as Bluetooth 230, ZigBee 230, Wi-Fi 240 or other standard or proprietary wireless data transmission protocol.
In general, the system is designed to be exceedingly difficult to defeat by the operator without causing permanent and obvious damage to the system so as to deter operators from temporarily cheating the system against their and their employer's best interests. In all situations, the alarm status annunciator module, (ASAM) 200, will indicate whether the system is functioning with an indication for Alarm 210R, Safe 210G and Indeterminate 210Y visual indicators. Tamper resistant designs will be utilized for any sensitive or programmable portions of the electro-mechanical assembly including such mechanisms as metal enclosed wire runs, anti-tamper assembly hardware, as well as safeguards against other obvious methods that might be utilized with the intention of circumventing the intention of the invention device.
Many confined spaces 900 require an individual to enter through a hatch or manway 910 and descend down into the space using a portable ladder 110. Examples of this process can be seen when examining bulk transportation operations that utilize rail tankers, hopper cars, ISO tanks or tank truck carriers. Many other confined spaces 900 can utilize this invention and method and use of these examples should in no way be considered a limitation to the use of the invention.
When it is necessary for an individual to enter into the tank for an inspection or a maintenance operation, they must open a hatch, test the atmosphere, insert a ladder, or other type of assembly that helps facilitate access into and egress out of the space and climb down into the tank area which is a confined space. This could include, but not be limited to, a ladder placed into a large vessel, tank or vault and mounted on the lip or flange of a manway, or hatch that opens into the vessel, tank or vault. In many instances, this is the only way that an individual can physically enter or exit the space. It is assumed that the atmosphere of the tank is monitored prior to entry by the entrant to ensure that it is safe.
By integrating atmospheric sensors with remote annunciation and telemetry onto the ladder, or any other device that facilitates entry, it would be impossible for an individual to enter into a confined space without the benefit of prior knowledge on the condition of the atmosphere. Even if the individual neglects to meter the atmosphere prior to entry, to ensure that it is safe, the atmospheric sensors on the entrance assembly that is inserted into the confined space will report on an unsafe atmosphere in advance of entry.
An application example would be as follows:
An operator needs to conduct a maintenance/repair operation inside of a truck carrier tank 900. The operator opens the batch covering the manway 910. This is when the atmosphere of the tank should be tested. If the atmosphere is not safe, then no further steps should be taken by the operator to enter the space. If the atmosphere is safe, entrance assembly 100 is used to allow the entrant to climb down into the confined space 900, in this example a tank, to conduct business. The entrance assembly 100 is stored on the wail in a horizontal position as shown in
The system integrity will be failsafe by incorporating several features to ensure that the system is operating within normal limits. The monitoring of the battery life for active/dormant sensor 260 to make sure that the battery is not close to its lower operational limit of charge. If the battery is low, then an alarm event will be triggered to notify the operator that the system needs attention and the battery should be replaced or recharged. The dormant mode can also indicate to the alarm status annunciator module, (ASAM) 200 that the gas sensor/meter 400 should be powered off If gas sensor/meter 400 readings are still detected, the; the operator has left the atmospheric meter/monitor powered on and will be draining the battery unnecessarily. The alarm status annunciator module, (ASAM) 200 can alert the operator to shut off the gas sensor/meter 400 to preserve battery life or the system could automatically shut off the necessary components not required in the dormant mode. The operator removes the entrance assembly 100 from its horizontal storage location and inserts it vertically into the open manway (entrance port 910) to allow access into the tank (confined space 900). The active/dormant sensor 260 now indicates that the ladder is in an operational configuration. The alarm status annunciator module, (ASAM) 200 will log the time and date that the entrance assembly 100 was placed in an operational configuration. When the entrance assembly 100 is placed in this position, the alarm status annunciator module, (ASAM) 200 will now try and communicate with the gas sensor/meter 400 on the end of the entrance assembly 100. If it cannot establish communications with the gas sensor/meter 400 it will go into an equipment failure alarm mode. This alarm will now alert the operator that no further action should be taken until the equipment is made operational. This may be a simple matter of turning on the gas sensor/meter 400 that was accidently left off, or changing a discharged battery. If communications are established the alarm status annunciator module, (ASAM) 200 will now monitor atmospheric conditions from the gas sensor/meter 400 and indicate safe conditions with a green annunciator light 210G. If data is returned that indicates an unsafe condition, the alarm status annunciator module, (ASAM) 200 will go into an alarm mode, sound a high decibel alarm 220 and activate the alarm light indicators 210R. If safety protocols dictate that an individual must test the atmosphere of the confined space before the entrance assembly 100 is inserted, then this alarm is an indication of a procedural error on the part of the employee and an accident was averted.
The alarm status annunciator module, (ASAM) 200 data can also be transmitted to a networked monitor 280 in the form of a PC console 280a, tablet 280b or mobile device (such as a smartphone 280c or wearable mobile device 280d, i.e., a smart watch) via a network where the status of multiple locations can be displayed. In some instances, it may be necessary to place a wireless repeater on the opposite end of the ladder to allow the wireless signal to be transmitted outside of the tank. This repeater would be incorporated into the alarm status annunciator module, (ASAM) 200 or active/dormant Module (ADM) 300. Remote antennas can also be used to allow proper signal strength and is received for all of the wireless information. See
Other features could be integrated onto the ladder to increase its capability—such as a video camera 700 that can allow others to observe the entrant inside of the confined space, as well as illuminators or an integrated work light 600 that can serve to light up the space and allow an entrant to see.
If a safety protocol is adopted that the entrant must meter the atmosphere of the confined space prior to inserting the ladder, then the system alarm serves a dual function. If the entrance assembly 100 alarm initiates—it not only will alert the employee of the problem before entry and potentially save his life, it will also inform management that this individual has not tested the atmosphere in advance of entry as per established procedures. They will now be aware that this worker is operating in an unsafe manner that is not compliant with regulatory agency mandates and the employee's training. As a result of this procedural omission, the entrant is putting themselves and their employers at risk of potential negative consequences. Action can be taken by management in advance of an accident to mitigate a hazardous action by the employee with either retraining or termination.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention as claimed.
This application claims benefit under 35 USC § 119(e) of provisional application No. 62/505,636 filed May 12, 2017. The '636 application is incorporated, by reference herein.
Number | Date | Country | |
---|---|---|---|
62505636 | May 2017 | US |