Pressure vessels are commonly used for containing a variety of fluids under pressure, such as storing hydrogen, oxygen, natural gas, nitrogen, propane and other fuels, for example. Generally, pressure vessels can have any size or configuration. For example, the vessels can be heavy or light; single-use (e.g., disposable) or reusable; subjectable to high pressures (greater than 50 psi, for example) or low pressures (less than 50 psi, for example); and used for storing fluids at elevated or cryogenic temperatures.
Suitable composite container materials include laminated layers of wound fiberglass filaments or other synthetic filaments bonded together by a thermal-setting or thermoplastic resin. A polymeric or other non-metal resilient liner or bladder often is disposed within a composite shell to seal the vessel and prevent internal fluids from contacting the composite material, thereby serving as a fluid permeation barrier. During manufacture of a pressure vessel, the pressure vessel liner and the dispensing head for the composite fibers move in relation to one another in such a way as to wrap the fiber on the liner in a desired pattern. If the vessel is cylindrical, rather than spherical, fiber winding is normally applied in both a longitudinal (helical) and a circumferential (hoop) wrap. This winding process is defined by a number of factors, such as resin content, fiber configuration, winding tension, and the pattern of the wrap in relation to the axis of the liner.
In one aspect, an apparatus having a plurality of substantially cylindrical pressure vessel structures is provided. Each cylindrical pressure vessel structure has first and second opposite ends. A first cap is positioned at the first ends of the plurality of cylindrical pressure vessel structures. The first cap includes a first dome-shaped protrusion that corresponds to each of the first ends. A first saddle is defined between adjacent first dome-shaped protrusions. A second cap is positioned at the second ends of the plurality of cylindrical pressure vessel structures. The second cap includes a second dome-shaped protrusion that corresponds to each of the second ends. A second saddle is defined between adjacent second dome-shaped protrusions. A reinforcement structure extends around the first and second caps, and is disposed within the one of the first saddles and one of the second saddles.
In another aspect, a method of constructing an assembly of a plurality of composite pressure vessels is disclosed. The method comprises forming a plurality of generally cylindrical pressure vessel structures, where each pressure vessel structure has a first end and a second end. The method further comprises inserting the first end of the plurality of pressure vessel structures into a first cap, and inserting the second end of the plurality of pressure vessel structures into a second cap. The method also includes winding a reinforcement structure around the first and second caps.
This summary is provided to introduce concepts in simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the disclosed or claimed subject matter and is not intended to describe each disclosed embodiment or every implementation of the disclosed or claimed subject matter. Specifically, features disclosed herein with respect to one embodiment may be equally applicable to another. Further, this summary is not intended to be used as an aid in determining the scope of the claimed subject matter. Many other novel advantages, features, or relationships will become apparent as this description proceeds. The figures and the description that follow more particularly exemplify illustrative embodiments.
The disclosed subject matter will be further explained with reference to the attached figures, wherein like structure or system elements are referred to by like reference numerals throughout the several views. It is contemplated that all descriptions are applicable to like and analogous structures throughout the several embodiments.
While the above-identified figures set forth one or more embodiments of the disclosed subject matter, other embodiments are also contemplated, as noted in the disclosure. In all cases, this disclosure presents the disclosed subject matter by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope of the principles of this disclosure.
The figures may not be drawn to scale. In particular, some features may be enlarged relative to other features for clarity. Moreover, where terms such as above, below, over, under, top, bottom, side, right, left, etc., are used, it is to be understood that they are used only for ease of understanding the description. It is contemplated that structures may be oriented otherwise.
The present disclosure relates to an assembly of composite pressure vessel structures arranged in a compact configuration that is conformable to different environments based upon space available to contain the vessels. A cylindrical configuration for a pressure vessel is most suitable for handling the high pressures of compressed gases; however, cylinders do not stack easily because of their rounded shapes surrounded by void spaces. In an exemplary conformable composite assembly of the present disclosure, reinforcement structures, such as fibers, are used to fill the void space, thus efficiently using the available space to strengthen the pressure vessel structures. The reinforcement fibers are disposed in between each cylindrical configuration of pressure vessel structures such that each assembly takes the form of a rectangular prism, which is easy to stack and makes efficient use of the available space. The composite pressure vessel structures can be stacked as high, wide and deep as desired to suit the available space. Moreover, the number of pressure vessel structures that can be stacked in a particular arrangement depends on the available space.
In an exemplary embodiment of the present disclosure illustrated in
In an exemplary embodiment, each of the plurality of pressure vessel structures 12 of assembly 10 has a main body section 14 terminating in ends 16, 18 (shown in
Pressure vessels are typically made out of laminated layers of wound fiberglass filaments or other synthetic filaments bonded together by a thermosetting or thermoplastic resin. A polymeric or other non-metal resilient liner or bladder 20 often is disposed within the composite shell 22 to seal the vessel structure 12 and prevent internal fluids from contacting the composite material. (
In some embodiments, the liner 20 can be made of polymers including elastomers and can be manufactured by compression molding, blow molding, injection molding or any other generally known technique. In other embodiments, the liner 20 can be comprised of other materials, including steel, aluminum, nickel, titanium, platinum, gold, silver, stainless steel, and any alloys thereof. Suitable metals can be generally characterized as having a high modulus of elasticity. In one embodiment, the liner 20 is formed of blow molded high density polyethylene (HDPE).
The shell 22 comprises a generally known composite structure made of fiber reinforcing material in a resin matrix. The fiber may be fiberglass, aramid, carbon, graphite, or any other generally known fibrous reinforcing material. The resin matrix used may be epoxy, polyester, vinyl ester, thermoplastic or any other suitable resinous material capable of providing fiber to fiber bonding, fiber layer to layer bonding, and the fragmentation resistance required for the particular application in which the vessel is to be used.
In one embodiment, first and second caps 24, 30 can be made of a metal such as aluminum or stainless steel. In another exemplary configuration, first and second caps 24, 30 can be made from strong thermosetting plastic materials, such as but not limited to, polyimides and epoxies. Since first and second caps 24, 30 are relatively thick in cross-section compared to the vessel structures 12, the first and second caps 24, 30 are designed so that the pressure in the vessel structures 12 does not exceed the plastic strain limit of the caps 24, 30. In some embodiments, neck portions or bosses 36, 40 in first and second caps 24, 30, respectively, are straight—having a uniform thickness and extending parallel to longitudinal axis 54.
In an exemplary embodiment, first and second caps 24, 30 have similar compositions, structures and dimensions. Accordingly, it is to be understood that in this disclosure, all descriptions pertaining to first cap 24 also apply to second cap 30 and vice versa. Although the exemplary embodiment of assembly 10 illustrated in
In the illustrative embodiment shown in
As shown in
In one embodiment, first cap 24 includes two partial protrusions 42 disposed on the outer sides of the three dome-shaped protrusions 26. The partial protrusions 42 have flat ends 42B. On each side of assembly 10, flat end 42B of first cap 24 is generally co-planar with a flat end 42B of second cap 30. As shown in
In the illustrative embodiment shown in
As shown in
As shown in
In
A perspective view of one of the longitudinal bands 48 is illustrated in
As shown in
In an exemplary method of construction of assembly 10, liner 20 is made of a polymer or corrosion-free metal by compression molding, blow molding, injection molding or any other generally known technique. Then, composite shell 22 is formed over liner 20. An exemplary composite shell 22 is fabricated by continuous winding of filament, wire, yarn, tape or other fibrous structures, that are either previously impregnated with a resin matrix material, impregnated during winding, or impregnated post winding, are placed over the liner, which is typically supported on a rotating form or a cylindrically-shaped mandrel. The fiber is applied over the liner 20 in a predetermined pattern to meet specific stress conditions. The tension of the fibers over the mandrel provides positive pressure to compact the laminate. The mandrel defines the shape of the assembly 10.
After the desired number of layers is applied, the wound form is cured, sometimes at elevated temperatures. In one embodiment, a constant electrical current is supplied through the pre-impregnated filament as the filament is being wound on the mandrel. The filament-winding machine traverses the mandrel at speeds that are synchronized with the rotations of the mandrel and controls the winding angle of the reinforcement fibers and the fiber lay-down rate. Mandrel removal, trimming and other finishing operations can be used to complete the process of fabricating a pressure vessel structure 12. Details relevant to the formation of exemplary pressure vessel structures 12 are disclosed in U.S. Pat. No. 4,838,971, entitled “Filament Winding Process and Apparatus,” which is incorporated herein by reference.
Thus, in a method of constructing assembly 10, each pressure vessel structure 12 is formed by disposing a fiber-reinforced shell 22 over a liner 20. Once the liner material solidifies, the shell is wound over the liner. The composite construction of the vessels 12 provides numerous advantages, such as lightness in weight and resistance to fragmentation, corrosion, fatigue and catastrophic failure. These attributes are due to the high specific strengths of the reinforcing fibers or filaments that are typically oriented in the direction of the principal forces in the construction of the pressure vessel structures 12.
After at least the liners 20 of the pressure vessel structures 12 are formed, first and second caps 24, 30 are placed at first and second ends 16, 18, respectively, of body section 14 of the plurality of pressure vessel structures 12. First and second caps 24, 30 provide ports 38, 44 in bosses 36, 40 respectively, for communicating with the interior of each vessel structure 12. First ends 16 are inserted into openings 46 (visible on second cap 30 in
Although the present disclosure has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the disclosure. In addition, any feature disclosed with respect to one embodiment may be incorporated in another embodiment, and vice-versa.
This application claims the benefit of priority of U.S. Provisional Patent Application No. 62/221,525, filed Sep. 21, 2015, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4356925 | Gerhard | Nov 1982 | A |
4459929 | Ffooks | Jul 1984 | A |
4946056 | Stannard | Aug 1990 | A |
5419139 | Blum | May 1995 | A |
5577630 | Blair et al. | Nov 1996 | A |
5651474 | Callaghan et al. | Jul 1997 | A |
6095367 | Blair et al. | Aug 2000 | A |
6257360 | Wozniak | Jul 2001 | B1 |
6418962 | Wozniak et al. | Jul 2002 | B1 |
6708719 | Idoguchi | Mar 2004 | B2 |
6796453 | Sanders | Sep 2004 | B2 |
7131553 | Sanders | Nov 2006 | B2 |
7159738 | Luongo | Jan 2007 | B2 |
7971740 | Shimada et al. | Jul 2011 | B2 |
8020722 | Richards et al. | Sep 2011 | B2 |
8459577 | Manubolu et al. | Jun 2013 | B2 |
8480131 | Schultheis et al. | Jul 2013 | B2 |
8517206 | Liu | Aug 2013 | B2 |
8561827 | Goggin | Oct 2013 | B2 |
8602249 | Fawley | Dec 2013 | B2 |
8608202 | Dossow | Dec 2013 | B2 |
8672358 | Oelerich et al. | Mar 2014 | B2 |
8689772 | Heller et al. | Apr 2014 | B2 |
8701925 | Kubusch | Apr 2014 | B2 |
8733382 | Suess | May 2014 | B2 |
8851320 | Ramoo et al. | Oct 2014 | B2 |
8851321 | Ramoo et al. | Oct 2014 | B2 |
8865370 | Zimmermann et al. | Oct 2014 | B2 |
20090090726 | Kawamata | Apr 2009 | A1 |
20100258572 | Luongo | Oct 2010 | A1 |
20130048513 | Ramoo et al. | Feb 2013 | A1 |
20130098919 | Jarzynski | Apr 2013 | A1 |
20130146605 | Ramoo et al. | Jun 2013 | A1 |
20130305978 | Glezer et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
102012223676 | Mar 2014 | DE |
Number | Date | Country | |
---|---|---|---|
62221525 | Sep 2015 | US |