The present disclosure is generally related to satellite communications antenna systems for aircraft and terrestrial vehicles operating in the Ku-band, Ka-band, or both.
In recent years, airlines have attempted to expand in-flight entertainment capabilities, such as by adding in-flight television and, in some instances, in-flight Internet access. To provide such services, the airplane includes an antenna configured to send and receive signals to and from a satellite.
In general, the antenna size may be limited by gimbal under radome configurations due to drag, fuel costs, bird impacts, and other factors. Conventionally, one approach involves using a two-axis gimbal to move the antenna. The external radome can limit the available volume for the antenna system. While larger antennas could produce a larger gain, the radome imposes some size restrictions. Additionally, having a gimbal move the aperture through a larger volume limits the space for the actual aperture, which also limits the gain. The expense for designing and then certifying another radome to allow for a larger antenna would be cost prohibitive and may also add to issues with respect to reliability, maintenance, and life cycle costs.
In certain embodiments, an apparatus may include a modular antenna structure or frame configured to receive a plurality of reflective element cells adapted to conform to an exterior surface of an aircraft. The plurality of reflective element cells cooperate with the modular antenna structure to provide a reflectarray having one or more reflective surfaces, which may be terminated with a controllable phase over an area to provide a desired beam formation.
In certain embodiments, a frame includes a plurality of frame elements configured to couple to a surface and configured to accept a corresponding plurality of reflect element cells to produce a reflectarray, which may be illuminated with a horn, an array, a sub-reflector, or some other source to provide electromagnetic radiation toward the surface. The frame provides a mechanical structure as well as electrical interconnects.
In some embodiments, a communication system may include a frame formed from a plurality of frame elements. Each frame element may be configured to receive a reflective element cell. The frame and the reflective element cells may be configurable.
The novel features of this disclosure can best be understood from the accompanying drawings, taken in conjunction with the accompanying description. The drawings are provided for illustrative purposes only, and are not necessarily drawn to scale.
In the following discussion, the same reference numbers are used in the various embodiments to indicate the same or similar elements.
Embodiments of a satellite communications antenna system are described below, which may include a frame formed from a plurality of frame elements, each of which may be configured to physically secure and electrically couple to a reflectarray tile. In some embodiments, the frame elements are modular and may be coupled to adjacent frame elements to form an array of frame elements, which may be referred to as a frame or an antenna frame. In some embodiments, the frame may secure a plurality of reflectarray tiles to provide a reflectarray that can be configured for single band or multi-band satellite communications, including microwave signals.
As used herein, the term “microwave” signals refers to electromagnetic radiation having wavelengths in a range from one meter to one millimeter and frequencies in a range between approximately 300 Megahertz (MHz) and 300 Gigahertz (GHz). The antenna devices described herein may be configured to receive microwave signals in the C-band (4 to 8 GHz), X-band (8 to 12 GHz), K-band (18 to 26.5 GHz), Ka-band (26.5 to 40 GHz), Ku-band (12 to 18 GHz), other microwave frequency bands, or any combination thereof. Such bands of the microwave spectrum may be used for long-distance radio telecommunications, satellite communications, radar, terrestrial broadband, space communications, amateur radio, automotive radar, and the like.
Embodiments of a conformal multi-band antenna structure are described below that may be configured for use with aircraft or terrestrial vehicles and that may be configured to send microwave signals, to receive microwave signals, or both and operate on such signals in the Ku-band, the Ka-band, or any combination thereof. Further, embodiments of the conformal multi-band antenna structure may be used in static installations for low earth orbit (LEO) or medium earth orbit (MEO) satellite tracking or other embodiments where the platform is fixed and the signal source is moving. The structure may include a frame configured to conform to a surface to which the frame is attached and configured to accept one or more reflectarray tiles, which can be illuminated by an antenna feed. The frame may provide both a mechanical structure for securing the reflectarray tiles and an electrical interconnect for coupling to an antenna aperture of each reflectarray tile. The frame may also be electrically coupled to one or more systems within the frame, within the underlying structure, or any combination thereof.
In certain embodiments, the electrical interconnections may deliver power and digital command signals to the reflectarray tiles. The digital command signals may be used to control the reflectarray tiles, and the command signals may be addressed to specific tiles of the array, making the tiles independently addressable and controllable.
In some embodiments, the frame may be conformal, such that the frame corresponds to the shape of the underlying surface. Further, the frame may have a low profile such that the frame and the corresponding reflectarray tiles do not undermine the airflow characteristics of the underlying surface. One possible example of a conformal frame for an antenna system is described below with respect to
Each frame element 108 may be configured to receive a reflectarray tile, which may be configured to provide electronic beam-forming and beam-pointing functions. Each reflectarray tile may include a plurality of reflective element cells (RECs) in a matrix of rows (M) and columns (N) (i.e., an M×N matrix). The reflectarray tiles may be single-band or multi-band, depending on the implementation.
In some embodiments, the frame 102 and the feed 104 may be coupled to a control system 110 to provide power, data, control signals, or any combination thereof. The control system 110 may be a computing system associated with an aircraft or an automobile. In certain embodiments, the control system 110 may control the reflection phase of one or more of the reflectarray tiles, or RECs of a selected reflectarray tile, or any combination thereof.
In some embodiments, the frame 102 may provide a modular attachment structure that can be sized by adding or removing frame elements 108 to achieve a selected array size. The frame 102 simplifies the installation and subsequent servicing or replacement of reflectarray tiles to provide communication of text, images, video, audio, and other data between the array and a microwave signal source, such as a satellite. Once the frame 102 is coupled to a surface, such as the exterior surface of an aircraft or a vehicle, individual reflectarray tiles may be coupled to individual frame elements 108 to produce a reflectarray that can operate in conjunction with single or multiple feed horns or a phased array feed to provide communications with one or more satellites.
In the illustrated example, the frame elements 108 are substantially rectangular or more specifically square; however, the shape of the frame elements 108 may be varied to correspond to the shape of the reflectarray tiles. If the tiles are formed with a different shape, the frame may be configured to have a corresponding shape to receive and mechanically secure the tiles. Accordingly, the frame elements 108 may be formed to the shape of any regular polygon or another geometric shape that facilitates the tessellation of the frame surface.
In
In some embodiments, the control system 110 may be coupled to the RF feed 104, to the frame 102, and to each tile within the frame 102. One possible example of a system including the control system 110 coupled to an active reflectarray antenna (ARA) that can be implemented as a conformal antenna system is described below with respect to
In some embodiments, the control system 110 may provide radio frequency (RF) signals to the feed 104 via a first communication link 204, which may be a wired connection. The control system 110 may further provide control signals to one or more of the tiles 208 (and optionally to individual cells 210 of each tile 208) via one or more control lines 206. Additionally, the control system 110 may be configured to provide direct current (DC) power to the frame 102 and to each tile 208 and cell 210 through a power bus 212. Other embodiments are also possible.
It should be understood that the feed 104 provides both transmit and receive functionality to the array of reflectors (tiles 208) within the array 202. The frame 102 provides support for a sub-array of tiles 208. Each tile 208 includes a discreet number of reflective element cells 210. Each cell 210 controls the reflection phase of a single sample area.
The frame 102 may secure the antenna reflectarray tiles 208 in a contoured configuration that conforms to the mounting surface, such as an exterior surface of an airplane. The frame 102 may provide mechanical registration and alignment to a known physical geometry. In some embodiments, the frame 102 may provide a low profile of approximately one inch or less relative to the exterior surface. Further, the frame 102 may provide data matrix markings for each tile mounting location to facilitate assembly, testing, and maintenance. The control system 110 or a microcontroller of each tile 208 may read frame configuration information directly, such as from a multi-dimensional bar code, which may include a frame part number, revision data, location data, and so on. In some embodiments, the frame 102 distributes power to each tile 208 using, for example, a blind mate connector that meets environmental requirements. In other embodiments, power may be distributed to at least one of the frame 102 and the tiles 208 using a wireless power transfer, such as by direct contact near field inductive coupling or environmental sealed coils integral to the frame 102.
In the illustrated example, each reflectarray tile 208 may include a plurality of cells 210 in a matrix of rows and columns, such as an M×N matrix. Any number of reflectarray tiles 208 may be included, depending on the implementation. Individual reflectarray tiles 208 may have a fixed time delay, which can be used in a manner consistent with coarse geometry correction of the desired electrical configuration. Reflection phase may be controlled in response to control signals from the control system 110 to point the antenna array 302 at a desired signal source, such as a satellite.
In some embodiments, the reflectarray tiles 208 may be single-band or multi-band. The frame 102 can be populated with tile variants consistent with the required aperture. In an example, lower frequency coverage may require a larger aperture as compared to that of a higher frequency for equivalent directivity. In some examples, the tile population distribution can be reconfigurable to meet requirements of a location where a particular antenna may be utilized, such as for aircraft routes that present different look angles to a given satellite or to alternate satellite service providers. The cells 210 in multi-band tiles 208 can be vertically stacked and at a different lattice spacing to meet spatial sampling requirements. Other embodiments are also possible.
In
In the illustrated examples of
In the illustrated examples of
In the illustrated example, the frame element 108 may include a protrusion or extension 422 on two edges and a groove or slot 424 and 426 on two edges. A protrusion 422B of a second frame element 108B may be inserted or slid into the slot 426A of the first frame element to couple frame elements 108A and 108B along one edge. A slot 424A may be provided along another edge of the frame element 108A. Similarly, another protrusion (not shown) may be provided on the fourth edge of the frame element 108A.
In some examples, frame elements 108 may be mechanically and electrically coupled to at least one adjacent frame element 108 along one edge and may be coupled to other frame elements 108 along other edges. The frame elements 108 may be coupled together to form an M×N array. The mechanical connection between adjacent frame elements 108 may be adjustable to allow the frame 102 (formed by the matrix of frame elements 108) to curve or conform to an underlying surface.
Further, each frame element 108A and 108B may include a reflector interface 434. The reflector interface 434 may operate to electrically couple a reflectarray tile 208 to the frame element 108. In some embodiments, the frame element 108 may include circuitry configured to couple the reflector interface 434 to the frame element interface 432, and vice versa.
In some embodiments, the REC array 502 may include a digitally controlled array of reflective element cells 210. Dual polarization antenna elements may utilize available tile area to enhance (and sometimes maximize) efficiency. In some embodiments, the serial I/O ports 506 may be arranged peripherally to provide serial communication links to adjacent tiles. In some embodiments, short range diode and detector pairs may be arranged on the edges. In some embodiments, the tile 208 may be environmentally sealed with no connectors, allowing for inductive signaling. Cabling or wiring may extend from the controller 110 to the edge of any tile 208 via the frame 102.
In some embodiments, the populated frame 102 or antenna 302 may include a plurality of tiles 208 that can provide multiband configurations within a single tile 208 using interlaced narrow band antenna elements as well as wideband elements with multiplexed reflections. Further, the antenna 302 may utilize tiles 208 of different frequencies. The frame 102 may be populated with a mixture of tiles 208 of various frequencies. Further, in some embodiments, dedicated areas of the array of tiles 208 may be allocated for each frequency band in view of the feed or additional feeds.
In some embodiments, the tile 208 may include one or more sensors 508 coupled to the microcontroller 504. In some embodiments, the one or more sensors 508 may include a suite of sensors that may provide actionable data to the microcontroller 504. The one or more sensors 508 can include an inertial measurement unit (IMU) chip, which may include gyroscopes, accelerometers, magnetometers, other motion sensors, other incline sensors, or any combination thereof. The IMU chip may allow the tile 208 to make high speed phase corrections locally for stabilization.
Additionally, the one or more sensors 508 can include one or more temperature sensors for local calibration and corrections. The one or more sensors 508 can also include humidity/moisture sensors that can be used to detect potential failure modes. Additionally, the one or more sensors 508 may include pressure/altitude sensors. The tile 208 may share sensor data with neighboring tiles for high confidence in data, drift correction, self-checking, maintenance, or any combination thereof.
In some embodiments, the tiles 208 are provided data serially with a high level of communications efficiency. Commands may be interleaved by giving an extrapolated position based on current position and a velocity vector from the main controller 110. The controller 110 may potentially send a small number of phase values per tile (such as nine). The microcontroller 504 in the tile 208 may interpolate values for each cell based on the provided data. Information about the required phase gradients may be known locally to the controller. In some embodiments, the refresh rate of the tile 208 may be a function of the beam contribution. High contributors may have the shortest update period, because they impact the pattern more significantly. Outlying signal elements that may dominate side lobe performance may be updated on longer schedules.
In some embodiments, beam correction and pointing error calibration can be performed in multiple ways. For example, amplitude comparison monopulse can be performed with a four-port feed 104 using sum and difference beams. Further, conical scanning and/or nulling techniques can use the beam steering capability of the tiles 208. Further, the beam correction and pointing error calibration can be performed periodically, as required, during initial installation, based on long-term drift, and so on.
Further, the reflectarray tile 208 may be single band or multi-band. In a multi-band tile, the RECs 210 may be stacked vertically (for example, forming a three-dimensional matrix) and at different lattice spacing to meet the spatial sampling requirements of the selected band.
In some embodiments, the fixed TTD 624 may be at least partially related to the physical position within the frame. The variable phase shift 626 may be controlled by the control system 110 in
In some embodiments, RF performance may be determined by a number of component parameters, such as the antenna element unit cell area efficiency and match, delay line losses, and phase shift range, resolution, and reflection quality. In some embodiments, structural mode scattering may not contribute to the desired beam, and antenna mode scattering may be impacted by the desired phase shift. Delay line losses may have a two-way impact, as the delay may sit between the antenna element and the reflection. Applications that require a controlled time delay would be impacted by switch losses; however, the frame 102 and the modular structure of the tiles 208 provides a fixed time delay that lends itself to fixed coarse geometry correction in basic implementations. Variable delays may be provided for wide instantaneous bandwidth and large apertures in high performance applications. Traditional transmit/receive functionality may not be required at each element. Gain stages, circulators, switches, and other signal grooming elements may be omitted from the signal path. Further, each tile 208 and each cell 210 can be constructed with a low component count, to consume low power, and at a low cost.
In some embodiments, the reflectarray fabrication can be low cost and of a selected precision. Suitable fabrication technologies can include three-dimensional (3D) printing, lithography, selective laser sintering (SLS), and direct metal laser sintering (DMLS). Further, manufacturing process technologies can include casting and molding processes, including investment casting, fusible core casting, and soft tooled plated plastics. Other embodiments are also possible.
While traditional phased array control systems can be computationally intensive and often consume significant DC power resources, the reflectarray elements do not require continuous bias and control. The signal path may be primarily passive. Further, reflection control voltage can be locally stored and refreshed periodically (sample and hold). Tiles 208 can use row and column addressing similar to memory and display technology controllers.
The control system 110 may be within or coupled to a vehicle (such as an aircraft or automobile) or may be integrated within the frame 102, depending on the implementation. The control system 110 may include a microcontroller, a field programmable gate array or other data processing circuitry that may be configured to control transmission and reception of signals via the reflectarray antenna. The control system 110 may include a reflector controller 702, a single controller 704, and an input/output (I/O) interface 706. The I/O interface 706 may be configured to communicate data and control signals to and receive data from reflectarray tiles 208 coupled to the frame 102.
The frame 102 may include an I/O interface 708 coupled to the I/O interface 706 of the control system 110. The I/O interface 708 may be coupled to a bus 712 to which each of the frame elements 108A, 108B, and 108C are coupled. Further, in some instances, one or more of the frame elements 108 may be coupled to the I/O interface 708 through another frame element 108. For example, frame elements 108D and 108E are coupled to the bus 712 through the frame element 108C.
Each frame element 108 may include a frame element interface 432, which may be configured to couple to the bus 712, to a frame element interface 432 of an adjacent frame element 108, or both. The frame element interface 432 may be coupled to the reflectarray tile 208 through a reflector interface 434 (in
In some embodiments, the system 700 provides a cascaded control architecture. Each tile 208 and its sensors provide a first inner loop, which may be at a highest speed relative to other control loops. The control system 110 and its data may provide a second control loop, which may be at a slower speed relative to the first inner loop. The system 700 further includes a slower outer loop for calibration and long-term drift correction.
In some embodiments, each tile 208 may include a light pipe or diffuse edge lighting configured to indicate information when the system 700 is in a maintenance mode. The light may be provided using a red/green/blue (RGB) light-emitting diode (LED). The light may provide a good/bad tile indication, a programming state, and so on. In some embodiments, particular colors or a blinking pattern may be used to indicate a status, such as an error. Other embodiments are also possible.
In some embodiments, a frame 102 may be populated by multiple reflectarray tiles 208, multiple multi-band reflectarray tiles 822, or any combination thereof. In some embodiments, each reflectarray tile 208 or 822 may be independently controlled. In certain examples, each matrix within a multi-band reflectarray tile 822 may be independently controlled. Other embodiments are also possible.
In the embodiments of
The radome covering 1202 may cover a horn 1204 and a sub-reflector 1206, which may cooperate to form a feed assembly configured to illuminate the reflectarray 202. In general, the radome 1202 may be a structural, weatherproof enclosure that protects the feed 1204 and the sub-reflector 1206. In this embodiment, the reflectarray 202 is sealed and does not require protection from the over-arching radome (such as the radome 1104 of
Typically, the radome may be constructed of material that allows for transmission and reception of the electromagnetic signal by the antenna. In some embodiments, the material may be effectively transparent to radio waves. The radome may be configured to protect the antenna from the ambient environment and to conceal antenna electronic equipment from view.
It should be understood that the blade radome 1202 represents one possible implementation, but other implementations are also possible. In some embodiments, the radome 1202 may be implemented in other shapes, such as spherical, geodesic, planar, and so on, depending on the particular application. Further, the radome 1202 may be constructed using a variety of materials, including, for example, fiberglass, polytetrafluoroethylene-coated (PTFE-coated) fabric, other materials, or any combination thereof.
At 1504, the method 1500 can include coupling the antenna frame to a control system. In some embodiments, a frame element of a plurality of frame elements may be coupled to the control system. In some embodiments, the control system may be coupled to a common bus of the conformal antenna frame. In certain embodiments, the coupling may include coupling a connector associated with the frame to a connector associated with the control system. The connector may include an electrical interface, an optical interface, or any combination thereof. The connector associated with the frame may include an I/O interface configured to couple to a shared bus or to a daisy-chain type of interconnection established through the interconnections of the frame elements.
At 1506, the method 1500 can include inserting a plurality of reflectarray tiles into the plurality of frame elements, where each frame element is sized to receive a selected one of the plurality of reflectarray tiles. In some embodiments, one or more of the reflectarray tiles may be single-band tiles. In some embodiments, one or more of the reflectarray tiles may be multi-band tiles. In some embodiments, multi-band and single-band reflectarray tiles may be used.
At 1508, the method 1500 can include selectively configuring one or more phase delays associated with each of the plurality of reflectarray tiles. In an example, each reflectarray tile may have a fixed time delay associated with the physical structure of the frame, the interconnections, and the reflectarray tile itself. Further, each reflectarray tile may have a variable phase that can be configured selectively to point the antenna at a desired satellite and to tune signal reception. Other embodiments are also possible.
In conjunction with the apparatus, systems and methods described above with respect to
In the above discussion, a control system is mentioned that may be separate from the frame and that may be electrically coupled to the frame. In some embodiments, the control system may be integrated within the frame or within a mounting structure associated with the frame to facilitate installation and operation of the reflectarray. Further, since the frame is formed from multiple frame elements, the size and geometric configuration of the frame may be adjusted in a modular fashion by adding or removing frame elements. Additionally, to adjust the receptivity or function of the reflectarray, tiles may be changed or removed (for example to switch between single-band and multi-band operation). Other embodiments are also possible.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the scope of the disclosure.
The present application is a non-provisional of and claims priority to U.S. Provisional Patent Application No. 62/411,204 filed on Oct. 21, 2016 and entitled “Conformal Multi-Band Antenna Structure”, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5053781 | Milman | Oct 1991 | A |
6774848 | Wright | Aug 2004 | B2 |
8334809 | Nichols | Dec 2012 | B2 |
20030020666 | Wright | Jan 2003 | A1 |
20080316124 | Hook | Dec 2008 | A1 |
20100194640 | Navarro | Aug 2010 | A1 |
20100309089 | Collinson | Dec 2010 | A1 |
20130162490 | Blech | Jun 2013 | A1 |
20150015453 | Puzella | Jan 2015 | A1 |
20150303586 | Hafenrichter | Oct 2015 | A1 |
20160156099 | Kim | Jun 2016 | A1 |
20170184716 | Bini | Jun 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180166781 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
62411204 | Oct 2016 | US |