1. Field of the Invention
This invention pertains to an apparatus and method for furling and reefing a sail.
2. Description of the Related Art
The roller furler concept originated in earlier generation of sail powered vessels as a method of managing staysails. A staysail is generally a triangular shaped sail whose leading edge is supported by a flexible cable or rod under tension. Staysails are known by various names such as, but not limited to Jibs, Genoas, Yankees, Gennekers, Code 0s, In-mast Furling Mainsails, and the like. A roller furler is a mechanical device which winds the staysail around the tensioned edge cable.
The original concept was conceived to provide two functions. The first function, known as ‘furling’, provides storage of the sail when not deployed. This aspect of the concept allows a simple method to set or strike a staysail. Prior art has produced many concepts which serve this function. The second function, known as ‘reefing’, was seen as an additional benefit. Reefing is the common term for an operation which partially stores a sail and thereby reduces the amount of a sail exposed to an air stream. The purpose of this reduction in sail area is to reduce the power being generated by the sail commensurate with stability of the sailing vessel. It is common for sailing vessels to be overwhelmed by excess wind pressure.
Prior art for the reefing function has not been entirely successful. Sails are constructed with a three dimensional curvature to produce precise airfoil shapes with highly efficient lift-to-drag ratio when properly supported and exposed to an air stream. This three dimensional curvature presents geometric difficulties for prior art. Rolling a three dimensional curved surface around an essentially straight stay cable normally causes severe distortion of the efficient airfoil shape. Past attempts to roller reef sails have produced such distorted sail aerodynamic properties that the sail no longer produces the necessary efficient lift to propel the boat in a close-hauled angle of motion. This loss in close-hauled (upwind) performance reduces the vessels operational safety margins when navigating in proximity to obstructions or in inclement weather.
Prior art devices generally wind a sail from a mechanism driving a more or less torsionally rigid hollow sail mounting track fitted over the stay cable. This rigid sail mounting track rotates the entire luff edge of the sail in a uniform motion, (i.e. all at once). The result of this method is to generate shear stresses in the sail as it is partially rolled (reefed). This shear stress causes sail material to accumulate in the midsection of the sail, thereby producing exaggerated camber and severe distortion in the airfoil shape.
Prior art devices have included upper swivel assemblies that insufficiently maintain alignment and position engagement with the sail mounting tracks. This upper swivel device provides an attachment between the sail halyard and the sail. To accommodate the winding of the sail, the swivel device must allow the sail to swivel freely around the sail mounting track and or the leading edge support cable with the halyard being tensioned. As the sail is wound or furled, the sail attachment portion of the swivel device rotates. When rotation occurs, the load on the swivel device becomes skewed causing torque inputs that increase friction and may eventually damage the contact points (typically the sail mounting tracks). This increased friction, may also cause a condition known as “Halyard wrap”, where the upper swivel assembly does not “rotationally isolate” the sail from the halyard and where, during winding, the halyard is undesirably wound around the stay cable.
A second failure mode is when the sail mounting track becomes positioned inadequately high on the stay cable. During operation, the upper swivel device slides along the sail-mounting track until the sail is fully hoisted. If the resulting position of a fully hoisted sail and upper swivel extends beyond the height of the sail-mounting track, it can become disengaged. When this occurs, the sail cannot be lowered and the boat becomes in jeopardy.
Disclosed herein is a conformal roller furler assembly for furling a sail that balances the winding forces necessary to reef the sail with the panel stresses present in the airfoil shaped compound curvatures of the sail. One object of the invention is to create a state of dynamic equilibrium between the winding force and the sail's airfoil shape.
More specifically, the roller furler assembly is used for reefing a sail where the luff is vertically or diagonally supported by a stay cable. The furler includes a hollow drive shaft longitudinally aligned around the stay cable. Attached to the lower end of the drive shaft is a drive mechanism used to selectively rotate the drive shaft around the stay cable. Integrally formed or connected to the middle section of the drive shaft is a torque input device that connects to and re-enforces a hollow, flexible sail edge device that is longitudinally aligned over the middle section of drive shaft. The sail edge device includes a longitudinally aligned track that connects to webbing attached to the sail's luff. In one embodiment, the drive shaft extends upward from the drive mechanism and inside a hollow bore formed inside the sail edge device to a point in the sail edge device approximately level with the sail's geometric center. The length of the torque input device is also less than the length of the sail edge device and between 5% to 25% of the overall length of the stay cable. The upper and lower ends of the sail edge device are detached from the drive shaft thereby enabling the ends of the sail edge device to axially twist. The sail edge device is made of flexible, medium stiffness, high impact resistance plastic alloy of material such as PVC, polyester, nylon, polycarbonate with a modulus of elasticity in the range of 275,000 psi so that when the drive shaft is rotated, torque or rotational force is directly transferred to the section of luff located adjacent to the torque input device and perpendicular to the sail's geometric center. Because the upper and lower ends of the sail edge device are not attached to the drive shaft or to the torque input device, when the drive shaft is rotated, the upper and lower sections of the sail edge device are able to axially twist which reduces automatically and adjusts the pulling forces exerted on the luff so that the sail remains taut and maintains its aerodynamic properties.
A key feature of the assembly is that the sail edge device is coupled to the drive shaft closer to the sail's geometric center rather than the corners of the sail, thereby winding the sail beginning from the section of the sail where the camber is greatest and where the torque input device is located and then progressively extending above and below the torque input device attachment area in a manner compliant to the rotational torque input and the sail properties.
During operation, the upper and lower swivels allow the middle section of the sail adjacent to the torque input device to wind independent of the sail's head and tack which are attached to the upper and lower swivels, respectively. When the twisting or torque limit of the sail edge device is reached, the sail is taut and the entire sail is then wound onto the sail 1 edge device.
In one embodiment, the roller furler assembly includes an optional improved upper swivel with an alignment tube that slides over the sail edge device thereby holding the upper swivel longitudinally aligned over the stay cable.
Referring to the accompanying Figs, there is shown a conformal sail roller furler assembly 10 which permits the sail 90 to be wound around a stay cable 15 that torsionally adjusts to the sail stresses and compound curvatures as it is furled reefed and thereby maintaining the sail 90 in a aerodynamic airfoil shape.
The conformal roller furler assembly 10 consists of a circular hollow drive shaft 20 fabricated from a rigid material of a high modulus of elasticity, which is longitudinally aligned and fitted around the stay cable 15. As shown in
As shown in
Coupled or formed on the upper section 25 of the drive shaft 20 is a torque input device, generally indicated by the reference number 40. During use, the torque input device 40 is used to couple the upper section 25 of the drive shaft 20 to the section of the sail edge device 50 that is longitudinally aligned and extends over the drive shaft 20 and stay cable 15. In the embodiment shown, the torque input device 40 is an elongated, rectangular-shaped key 42 designed to fit into the main passageway 56 formed on the sail edge device 50.
As shown in
The sail edge device 50 extends longitudinally over the middle section 23 and upper sections 25 of the drive shaft 20 and under the alignment tube 76 on the upper swivel 70 that attaches to the upper end of the sail and the sail hoisting rope, also called a halyard 116. During use, when the drive shaft 20 is rotated, the key 42 applies a rotational force to the transverse edge 54 on the inside surface of the sail edge device 50 The sail edge device 50 is specifically designed to twist and thereby absorb and release rotational energy to the sail's luff when furling or reefing the sail. In one embodiment of the invention, the sail edge device is made of flexible, medium stiffness, high impact resistance plastic alloy of materials such as PVC, Polyester, Nylon, Polycarbonate with a modulus of elasticity in the range of 275,000 psi. The wall thickness is approximately 1.5 to 3.0 mms. (0.060 to 0.100 inches). It should be understood however, that the sail edge device 50 is not limited to these materials or wall thicknesses.
Sewn or adhesively attached to the luff 92 is reinforced webbing 80. The webbing 80 includes a continuous, longitudinally aligned beaded edge 82 that slides into one of the tracks 58 or 58′ on the sail edge device 50 to securely attach the middle section of the luff 92 to the sail edge device 50. In the embodiment shown in
As shown more clearly in
When it is desirable to furl or reef the sail 90, the operator inputs torque into the drive mechanism 30. The resulting torque is transferred through the drive shaft 20 to the sail edge device 50 via the torque input device 40 at the approximate geometric center 100 of the sail 90. The winding action initiates at the location of the section of the luff 92 adjacent to the torque input device 40 and then proceeds up and down the webbing 94 and the luff 92 in proportion to stress on the sail 90. In other words, the sail 90 is wound from the vicinity of the geometric center 100 earlier than it is near the corners of the sail 90. The assembly 10 permits the sail 90 to reef and furl differentially in proportion to the variable tension loads along the edge of the sail 90.
A key feature of the device is that while middle section of the sail edge device 50 is directly connected to the drive shaft 20 via the torque input device 40, and the opposite ends of the sail edge device 50 are not directly attached to the drive shaft 20.
The stay cable 15 is typically ⅛ to ¾ inch in diameter. The drive shaft measures 8 to 30 feet in length and 7/16 to 2 inches in diameter depending on the size of the sail. The sail edge device 50 is approximately 70 to 90% of the stay cable 15 with the lower end of the sail edge device 50 being elevated to accommodate the wide lower section of the drive shaft 20, the lower swivel and the drive mechanism 30. The length of the key 42 is approximately 5% to 25% of the overall length of the stay cable 15.
In summary, a roller furler assembly 10 is described for furling a sail 90 where the luff 92 is vertically or diagonally supported by a stay cable 15. The assembly 10 includes a hollow drive shaft 20 longitudinally aligned around the stay cable 15 adjacent to the luff 92. A drive mechanism 30 is coupled to the lower end of the drive shaft 20. Integrally formed or connected to the drive shaft 20 is a torque input device 40 that connects to and re-enforces a hollow, flexible sail edge device 50 fitted over the drive shaft 20 and over the stay cable 15. The sail edge device 50 includes at least one longitudinally aligned track 58 that directly connects to a bead connected to the luff 92. The length of the torque input device 40 is less than the length of the sail edge device 50 so that the opposite ends of the sail edge device 50 connected to the sail luff 92 are not directly coupled to torque input device 40. The lengths of the drive shaft 20, the torque input device 40 and the sail edge device 50 are sufficient however, so that when the drive shaft 20 is rotated, torque or rotational force is applied to the section of the luff 92 located laterally to the sail's geometric center 100. The sail edge device 50 is hollow with relatively thin side walls and made of material that allows the detached ends to twist and deform when normal sail stress are applied during winding. This feature enables the sail 90 to be kept taut and to maintain its aerodynamic properties while the sail 90 is furled or reefed.
Using the above assembly 10, a method is provided for furling and reefing a sail so that the wound and unwound portions of the sail remains essentially equally taut thereby maintaining the aerodynamic properties, comprising the following steps:
a. selecting a roller furler assembly that includes a stay cable, a drive shaft extending over the stay cable, a drive mechanism coupled to the drive shaft, an elongated sail edge device that extends over said drive shaft, said sail edge device being coupled to said drive shaft at a location aligned with the geometric center of the sail, said sail edge device being attached to the luff, said assembly also includes an upper swivel attached to a sail hoisting rope and connected to the head of the sail, and a lower swivel vertically aligned with the drive shaft and connected to the tack of the sail;
b. selecting a fore and aft sail with a luff, a head and a tack;
c. attaching the sail edge device to the luff of a sail at a location aligned with the sail's geometric center and the upper swivel to the head and the lower swivel to the tack; and,
d. selectively rotating the drive mechanism to apply an adjusting, conformal winding pressure along the length of the luff thereby maintaining the sail aerodynamically taut.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means—plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This utility patent application is based on and claims the filing date benefit of the U.S. provisional patent application (Ser. No. 61/140,498), filed on Dec. 23, 2008.
Number | Date | Country | |
---|---|---|---|
61140498 | Dec 2008 | US |