The present disclosure relates generally to integrated circuits (IC) and IC sensor systems. More particularly, aspects of this disclosure relate to systems, methods and devices utilizing flexible and stretchable electronics for sensing and analysis.
Integrated circuits (IC) are the cornerstone of the information age and the foundation of today's information technology industries. The integrated circuit, a.k.a. “microchip,” is a set of interconnected electronic components, such as transistors, capacitors, and resistors, which are etched or imprinted onto a tiny wafer of semiconducting material, such as silicon or germanium. Integrated circuits take on various forms including, as some non-limiting examples, microprocessors, amplifiers, Flash memories, application specific integrated circuits (ASICs), static random access memories (SRAMs), digital signal processors (DSPs), dynamic random access memories (DRAMs), erasable programmable read only memories (EPROMs), and programmable logic. Integrated circuits are used in innumerable products, including personal computers, laptop and tablet computers, smartphones, flat-screen televisions, medical instruments, telecommunication equipment, networking equipment, airplanes, watercraft and automobiles.
Advances in integrated circuit technology and microchip manufacturing have led to a steady decrease in chip size and an increase in circuit density and circuit performance. The scale of semiconductor integration has advanced to the point where a single semiconductor chip can hold tens of millions to over a billion devices in a space smaller than a U.S. penny. Moreover, the width of each conducting line in a modern microchip can be made as small as a fraction of a nanometer. The operating speed and overall performance of a semiconductor chip (e.g., clock speed and signal net switching speeds) has concomitantly increased with the level of integration. To keep pace with increases in on-chip circuit switching frequency and circuit density, semiconductor packages currently offer higher pin counts, greater power dissipation, more protection, and higher speeds than packages of just a few years ago.
Conventional microchips are generally rigid structures that are not designed to be bent or stretched during normal operating conditions. Likewise, most microchips and other integrated circuit modules are typically mounted on a printed circuit board (PCB) that is similarly rigid. Processes using rigid IC's and rigid PCB's are generally incompatible for applications requiring stretchable or bendable electronics. Consequently, many schemes have been proposed for embedding microchips on or in a flexible polymeric substrate to create a flexible electronic circuit system. To ensure constant and reliable electrical connections between individual IC modules, many flexible circuits employ stretchable and bendable interconnects that remain intact while the system stretches and bends. This, in turn, enables many useful device configurations not otherwise possible with rigid silicon-based electronic devices.
High quality medical sensing and analysis has become important in the diagnoses and treatment of a variety of medical conditions, including conditions related to the digestive system (e.g., liver and stomach), the cardiovascular system (e.g., heart and arteries), the nervous system (e.g., brain and spinal cord), and the like. Current medical sensing devices suffer from various disadvantages due to a lack of sophistication in sensing, analysis and therapeutic technology. One disadvantage is that many contemporary sensing and analysis devices are unable to achieve direct and conformal contact with the body of the patient. The inability to achieve direct or conformal contact is typically attributable to the rigid nature of the devices and accompanying circuitry. Such rigidity prevents these devices from coming into conforming and direct contact with human tissue, which may change shape, size, and/or orientation, and may be soft, pliable, curved, and/or irregularly shaped. This, in turn, can compromise the accuracy of measurements and the effectiveness of treatment. Thus, devices, systems and methods that employ flexible and/or stretchable systems for medical sensing, analysis and diagnostics would be desirable.
Systems, apparatuses and methods are provided for monitoring an individual using one or more conformal sensor device. Disclosed herein, for example, are systems, methods, and apparatuses utilizing flexible electronics technology that is configured as conformal sensors for sensing, measuring, or otherwise quantifying cardiac activity. The conformal sensors also can be configured for detecting and/or quantifying motion of a body part (or other object) that is related to cardiac activity. In an example, the conformal sensors can be configured as conformal cardiac sensors. Conformal cardiac sensors can be used for sensing, measuring, or otherwise quantifying, cardiac activity and/or the motion of at least one body part and/or muscle activity that is related to cardiac activity. The example conformal cardiac sensors provide conformal sensing capabilities, providing mechanically transparent close contact with a surface (such as the skin or other portion of the body) to improve measurement and/or analysis of physiological information. For at least some implementations, the conformal cardiac sensors are formed as patches which couple directly to the patient. Specific implementations may employ multiple cardiac sensor devices (e.g., a variety of conformal sensor patches) to simultaneously or substantially simultaneously take measurements from multiple locations on the body. These patches can be flexible and stretchable, and can be formed from flexible electronics and conformal electrodes disposed in or on a flexible and/or stretchable substrate. In various examples, conformal electrodes are formed integral with a conformal cardiac sensor or are made separate/separable from a conformal cardiac sensor. The systems, methods and apparatuses described herein can be configured for use with human subjects and non-human subjects. Moreover, at least some of the disclosed conformal cardiac sensors can be mounted directly to and caused to conform with a portion of the skin or other portion of the body.
Aspects of the present disclosure are directed to conformal cardiac sensor devices for analyzing cardiac activity of a user. In one embodiment, the conformal cardiac sensor device includes at least one flexible substrate that is configured to couple to the user. At least one heart sensor component is embedded on or within the at least one flexible substrate. The heart sensor component(s) is configured to directly contact a portion of skin of the user, measure electrical activity that is indicative of cardiac activity of the user and output a signal indicative thereof. At least one biometric sensor component is embedded on or within the at least one flexible substrate. The biometric sensor component(s) is configured to measure physiological activity that is indicative of cardiac activity of the user. At least one microprocessor is embedded on or within the at least one flexible substrate. The at least one microprocessor is communicatively coupled to the at least one heart sensor component and the at least one biometric sensor component and operable to execute microprocessor executable instructions for controlling the measurement of electrical and physiological activity indicative of cardiac activity of the user. The conformal cardiac sensor device also includes at least one wireless communication component that is embedded on or within the at least one flexible substrate. The wireless communication component(s) is operable to transmit data indicative of the measurements obtained by the heart sensor component and the biometric sensor component.
According to other aspects of the present disclosure, conformal cardiac sensor assemblies for analyzing cardiac activity of an individual are presented. In one embodiment, the conformal cardiac sensor assembly includes a flexible substrate that is operable to attach to a portion of the individual, and a power supply that is attached or coupled to the flexible substrate. A microprocessor is attached or coupled to the flexible substrate and operable to execute microprocessor executable instructions. The conformal cardiac sensor assembly also includes a sensor component that is attached or coupled to the flexible substrate and configured to measure an electrical variable or a physiological variable, or both, indicative of cardiac activity of the individual. A therapeutic component is attached or coupled to the flexible substrate and configured to provide medicinal treatment to the individual based, at least in part, on the measurements obtained by the sensor component. The therapeutic component can trigger other forms of therapy based on cardiac activity of the user (e.g., initiate a soothing environment with calming music and lighting responsive to a conformal cardiac sensor sensing rapid or inordinate cardiac activity (tachycardia)).
Other aspects of the present disclosure are directed to conformal cardiac sensor systems for monitoring cardiac activity a user. In one embodiment, the conformal cardiac sensor system includes one or more memory devices storing microprocessor executable instructions, and one or more microprocessors electrically coupled to the one or more memory devices and operable to execute the microprocessor executable instructions. The conformal cardiac sensor system also includes one or more first sensor devices electrically coupled to the one or more microprocessors and operable to obtain one or more first measurements indicative of cardiac activity of the user. In addition, one or more second sensor devices are electrically coupled to the one or more microprocessors and operable to obtain one or more second measurements indicative of cardiac activity of the user. One or more wireless communication components are electrically coupled to the one or more microprocessors and operable to transmit data indicative of the measurements obtained by the one or more first and second sensor devices. One or more power supplies are electrically coupled to and operable to power the one or more memory devices, the one or more microprocessors, the one or more first and second sensor devices, and the one or more wireless communication components.
Any of the disclosed configurations, including those described in the preceding paragraphs, may include any of the following options (singly or in any combination): at least one therapeutic component embedded on or within the at least one flexible substrate, the at least one therapeutic component being configured to provide medicinal treatment to the user based, at least in part, on the measurements obtained by the at least one heart sensor component and the at least one biometric sensor component; at least one therapeutic component configured to administer to the user an emollient, a pharmaceutical drug or other drug, a biologic material, or other therapeutic material, or any combination thereof; an emollient, pharmaceutical drug or other drug, biologic material, or other therapeutic material delivered to the user in response to a detected occurrence of a predetermined triggering event; an emollient, pharmaceutical drug or other drug, biologic material, or other therapeutic material delivered to the user transdermally; an amount of emollient, pharmaceutical drug or other drug, biologic material, or other therapeutic material delivered to the user that is calibrated, correlated or otherwise modified based on a magnitude of the detected occurrence of the predetermined triggering event; at least one feedback component embedded on or within the at least one flexible substrate, the at least one feedback component being configured to analyze the measurements obtained by the at least one heart sensor component and the at least one biometric sensor component and provide diagnostic information or other physiological information to the user based on the analyzed measurements; at least one feedback component configured to display to the user an indication of the user's overall fitness, VO2 max, cardiovascular demand, energy expenditure, activity level, quality of sleep, stress level, heart plasticity or abnormality, or disordered breathing, or any combination thereof.
Any of the disclosed configurations, including those described in the preceding paragraphs, may include any of the following options (singly or in any combination): the least one first/heart sensor component including an electromyography (EMG) component, an electrocardiogram (EKG) component, or an electroencephalogram (EEG) component, or any combination thereof; the least one second/biometric sensor component including an accelerometer module, a gyroscope module, a muscle activation measurement module, or any combination thereof; at least one power supply embedded on or within the at least one flexible substrate and operable to power the heart sensor component, the biometric sensor component, the microprocessor and the wireless communication component; at least one memory device embedded on or within the at least one flexible substrate and storing the microprocessor executable instructions; the heart sensor component including a plurality of conformal electrodes embedded on or within the at least one flexible substrate, wherein the plurality of conformal electrodes is configured to directly contact the portion of skin of the user; the at least one flexible substrate is a stretchable polymeric patch surrounding the at least one heart sensor component, the at least one biometric sensor component, the at least one microprocessor, and the at least one wireless communication component.
The above summary is not intended to represent each embodiment or every aspect of the present disclosure. Rather, the foregoing summary merely provides an exemplification of some of the novel aspects and features set forth herein. The above features and advantages, and other features and advantages of the present disclosure, will be readily apparent from the following detailed description of representative embodiments and modes for carrying out the present invention when taken in connection with the accompanying drawings and the appended claims.
The present disclosure is susceptible to various modifications and alternative forms, and some representative embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the inventive aspects are not limited to the particular forms illustrated in the drawings. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
This disclosure is susceptible of embodiment in many different forms. There are shown in the drawings, and will herein be described in detail, representative embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the present disclosure and is not intended to limit the broad aspects of the disclosure to the embodiments illustrated. To that extent, elements and limitations that are disclosed, for example, in the Abstract, Summary, and Detailed Description sections, but not explicitly set forth in the claims, should not be incorporated into the claims, singly or collectively, by implication, inference or otherwise. For purposes of the present detailed description, unless specifically disclaimed or logically prohibited: the singular includes the plural and vice versa; and the words “including” or “comprising” or “having” mean “including without limitation.” Moreover, words of approximation, such as “about,” “almost,” “substantially,” “approximately,” and the like, can be used herein in the sense of “at, near, or nearly at,” or “within 3-5% of,” or “within acceptable manufacturing tolerances,” or any logical combination thereof, for example.
It should be understood that any and all combinations of the features, functions and concepts discussed in detail herein are contemplated as being part of the inventive subject matter (provided such concepts are not mutually inconsistent). For example, although differing in appearance, the individual systems and devices and functional componentry depicted and discussed herein can each take on any of the various forms, optional configurations, and functional alternatives described above and below with respect to the other disclosed embodiments, unless explicitly disclaimed or otherwise logically prohibited. Following below are more detailed descriptions of various concepts related to, and embodiments of, inventive methods, apparatuses and systems for analysis of data indicative of cardiac activity, as non-limiting examples, for such applications as diagnosis, treatment, training and/or clinical purposes. It should be appreciated that various concepts introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
The terms “flexible” and “stretchable” and “bendable,” including roots and derivatives thereof, when used as an adjective to modify electrical circuitry, electrical systems, and electrical devices or apparatuses, are meant to encompass electronics that comprise at least some components having pliant or elastic properties such that the circuit is capable of being flexed, stretched and/or bent, respectively, without tearing or breaking or compromising their electrical characteristics. These terms are also meant to encompass circuitry having components (whether or not the components themselves are individually stretchable, flexible or bendable) that are configured in such a way so as to accommodate and remain functional when applied to a stretchable, bendable, inflatable, or otherwise pliant surface. In configurations deemed “extremely stretchable,” the circuitry is capable of stretching and/or compressing and/or bending while withstanding high translational strains, such as in the range of −100% to 100%, −1000% to 1000%, and, in some embodiments, up to −100,000% to +100,000%, and/or high rotational strains, such as to an extent of 180° or greater, without fracturing or breaking and while substantially maintaining electrical performance found in an unstrained state.
Disclosed herein are systems, methods, and apparatuses utilizing conformal electronics technology that is configured as conformal sensors for sensing, measuring, or otherwise quantifying cardiac activity. In an example, a conformal cardiac sensor can be used for sensing, measuring and/or otherwise quantifying specific movement events of portions of the body. In another example, one or more of the systems, methods, and apparatuses described herein can be configured to use the results of analysis of data indicative of cardiac activity, or the motion of at least one body part and/or muscle activity that is related to cardiac activity, for such applications as medical diagnosis, medical treatment, physical activity, sports, physical therapy and/or clinical purposes. Data gathered using disclosed conformal cardiac sensors based on sensing the cardiac activity, or the motion of at least one body part and/or muscle activity that is related to cardiac activity, along with data gathered by sensing other physiological measures of the body, can be analyzed to provide useful information related to medical diagnosis, medical treatment, physical state, physical activity, sports, physical therapy, and/or clinical purposes. When sensing is performed using a thin, conformal, and wearable cardiac sensor, such as those described herein, and measurement devices including such sensors, these measures and metrics can be unimpeded by the size, weight or placement of the measurement devices.
At least some of the systems, methods, and devices described herein provide for creating, building, and deploying thin and conformal electronics that are useful in a wide variety of applications both inside the body and outside the body, through detection of cardiac activity, or the motion of at least one body part and/or muscle activity that is related to cardiac activity. At least some of the example conformal cardiac sensors include silicon-based and other electronics in new form factors allowing for the creation of very thin and conformal devices.
Systems, methods, and apparatuses described herein, including conformal cardiac sensors, can be configured to monitor cardiac activity, or motion of at least one body part and/or muscle activity that is related to cardiac activity, and to gather measured data values indicative of the monitoring. The monitoring can be performed in real-time, at different time intervals, randomly, continuously, and/or when requested. In addition, the example systems, methods, and apparatuses described herein can be configured to store the measured data values to a memory of the system and/or communicate (transmit) the measured data values to an external memory or other storage device, a network, and/or an off-board computing device. In any example herein, the external storage device can be a server, including a server in a data center. Non-limiting examples of a computing device applicable to any of the example systems, apparatus or methods according to the principles herein include smartphones, tablet computers, laptop computers, personal computers, personal digital assistants, slates, e-readers or other electronic reader, an Xbox®, a Wii®, or other game system(s), or other hand-held or worn computing device.
At least some of the disclosed systems, methods, and apparatuses can be used to provide ultra-thin and conformal electrodes that, when combined with cardiac activity measurements, facilitate monitoring and diagnosis of subjects. This in turn, can better facilitate the diagnosis and treatment of such ailments as cardiac disease (more commonly referred to as “heart disease”), vascular diseases of the brain and kidney, and peripheral arterial disease, as some non-limiting examples. In combination with pharmaceuticals, this information can be used to monitor and/or determine subject issues including compliance and effects.
For some embodiments, the conformal cardiac sensors are configured to provide a variety of sensing modalities. As an example, conformal cardiac sensors can be configured with sub-systems such as telemetry, power, power management, processing, as well as construction and materials. A wide variety of multi-modal sensing systems that share similar design and deployment can be fabricated based on the example conformal electronics. An example conformal cardiac sensor system includes electronics for performing at least one measurement related to cardiac activity, including an electrical activity measurement, an accelerometry measurement, or a muscle activation measurement, or any combination of the three. Additionally or alternatively, a conformal cardiac sensor system can include electronics for performing at least one other measurement, such as but not limited to heart rate measurements, temperature measurements, hydration level measurements, neural activity measurements, conductance measurements, environmental measurements, and/or pressure measurements. For instance, disclosed conformal sensors are configured to perform one or more or all of these different types of measurements.
An example cardiac sensor system includes an accelerometer, such as but not limited to a single-axis accelerometer and/or a 3-axis accelerometer, for providing accelerometry measurements. As another non-limiting example, the accelerometry component may be a 3-D accelerometer. Optionally or alternatively, the example cardiac sensor system includes one or more gyroscopes. The example cardiac sensor system can be disposed proximate to a body part or other object, and data collected based on the cardiac activity and/or the motion of at least one body part and/or muscle activity that is related to cardiac activity is analyzed. In a non-limiting example, a cardiac sensor system is configured to combine cardiac activity sensing in the form of a heart rate monitor and electrocardiogram (ECG) for a variety of applications. In an example implementation, the cardiac sensor may also include components for measuring motion and/or muscle activity, such as an accelerometry component and/or an electromyography component. Other sensors that can be employed for monitoring cardiac activity include triboelectric sensors, ultrasonic sensors, acoustoelectric sensors and transducers, endocardial sensors, piezoelectric activity sensors, thoracic impedance sensors, and the like. A controller communicatively coupled with one or more or all of the disclosed sensors can be employed to sense a cardiac event or a precursor to a cardiac event (e.g., heart failure, a decompensation episode of ventricular dysfunction, cardiovascular collapse, etc.).
For ECG measurements, the electrical activity of a portion of cardiac tissue or any other tissue in communication with the heart, or other portion of the body related to cardiac activity, is measured and quantified. In some implementations, the ECG measurements are performed using electrodes mounted on, disposed proximate to, or placed in communication with a portion of cardiac tissue or any other tissue in communication with the heart, or other portion of the body related to cardiac activity. Electrical activity is monitored, for example, based on such features as spikes and/or dips in a wave pattern or patterns of an electrical signal. For instance, with each heartbeat, an electrical signal can spread from one portion of cardiac tissue to another. The traveling electrical signal can cause cardiac tissue to contract. As a result, the heart pumps blood. The process, and associated electrical signals, repeats with each new heartbeat. Analysis of the data indicative of the electrical signal from the ECG measurements can be used to provide information indicative of the state of cardiac activity. For example, the analysis of the data is used to provide information about at least one of: the regularity or pace of the cardiac activity (including the heart beats), the rhythm of cardiac activity (including whether it is steady or irregular), the strength, timing and/or pathway of the electrical signals related to cardiac activity as the electrical signal passes through portions of cardiac tissue. As non-limiting examples, the data indicative of cardiac activity is analyzed to provide information related to a condition of the heart, including information related to a heart attack, a stroke, an arrhythmia, heart failure, and/or any other condition or disorder affecting heart function.
Electronics for muscle activation monitoring can be configured, for example, to perform electromyography (EMG) measurements. The electronics for EMG can be implemented to provide a measure of muscle response or electrical activity in response to a stimulation of the muscle. In a non-limiting example, the EMG measurements are used to detect neuromuscular abnormalities. For EMG measurements, electrodes coupled to the example conformal cardiac sensors are disposed on, proximate to, or in communication with a portion of cardiac tissue or any other tissue in communication with the heart, or other portion of the body related to cardiac activity, and the electrical signals indicative of an EMG measurement is detected or otherwise quantified by the electrodes. The EMG can be performed to measure the electrical activity of muscle related to cardiac activity during rest, or during muscle activity, including a slight contraction and/or a forceful contraction. Muscle tissue may not produce electrical signals during rest, however, a brief period of activity can be observed when a discrete electrical stimulation is applied using an electrode disposed proximate to the cardiac tissue and/or other muscle related to cardiac activity. Conformal cardiac sensors can be configured to measure, via the EMG electrodes, an action potential. In an example, the action potential is the electrical potential generated when muscle cells are electrically or neurologically stimulated or otherwise activated. As muscle is contracted more forcefully, more and more muscle fibers are activated, producing varying action potentials. Analysis of the magnitude and/or shape of the waveform(s) of the action potentials measured can be used to provide information about cardiac activity (including a body part and/or a muscle involved in cardiac activity), including the number of muscle fibers involved. In an example, the analysis of the magnitude and/or shape of the waveforms measured using the conformal sensors are used to provide an indication of the ability of the cardiac tissue and/or other muscle related to cardiac activity to respond, e.g., to movement and/or to stimuli (including electrical stimuli). Analysis of spectral or frequency content of such signals can be further used to provide an indication of muscle activation and/or other tissue activity, and associated cardiac activity. This data or any other data described herein can be further filtered and/or compressed to reduce the amount of information to be stored.
For some embodiments, data indicative of the conformal sensor measurements, including the measured action potentials, can be stored in a resident memory device of the conformal sensor system and/or communicated or otherwise transmitted, e.g., wirelessly, to an external memory or other storage device, network, and/or off-board computing device. Conformal cardiac sensor systems disclosed herein can include one or more processing units that are configured to analyze the data indicative of the conformal sensor measurements, including the measured action potentials.
According to other aspects of the disclosed concepts, a conformal cardiac sensor system comprises electronics coupled to recording and stimulating electrodes for performing a nerve conduction study (NCS) measurement. An NCS measurement can be used to provide data indicative of the amount and speed of conduction of an electrical impulse through a nerve. Analysis of a NCS measurement can be used to determine nerve damage or destruction related to cardiac activity. In a NCS measurement, an impulse monitoring “recording” electrode can be coupled to a body part, or other object proximate to a nerve (or nerve bundle) of interest, or other tissue related to cardiac activity, and a pulse emitting “stimulating” electrode can be disposed at a known distance away from the recording electrode. The conformal sensor system can be configured to apply a mild and brief electrical stimulation to stimulate a nerve (or nerve bundle) of interest via the stimulating electrode(s). Measurement of the response of the nerve (or nerve bundle) of interest can be made via the recording electrode(s). The stimulation of the nerve (or nerve bundle) of interest and/or the detected response can be stored to a memory of the conformal sensor system and/or communicated (transmitted), e.g., to an external memory or other storage device, a network, and/or an off-board computing device.
The architecture of a conformal cardiac sensor system can include, for example, one or more sensor devices, power and/or power circuitry, wired and/or wireless communication devices, and at least one processing unit. In some examples, the power source can be a wireless power source. Non-limiting examples of other components of the conformal cardiac sensor system include at least one battery, a regulator, a memory (such as but not limited to a read-only memory, a flash memory, and/or a random-access memory), an input interface, an output interface, a communication module, a passive circuit component, an active circuit component, etc. One or more or all of the disclosed conformal cardiac sensor systems include at least one microcontroller and/or other integrated circuit component. In an example, the conformal cardiac sensor system comprises at least one coil, such as but not limited to a near-field communication (NFC) enabled coil. In another example, the conformal cardiac sensor system includes a radio-frequency identification (RFID) component. In an example, the conformal cardiac sensor system can include a dynamic NFC/RFID tag integrated circuit with a dual-interface, electrically erasable programmable memory (EEPROM).
The example device of
The indicator 203 of the example systems of
In some implementations, as described above, the signaling of the indicator 203 is detectable to the human eye; in other implementations, it is not detectable by the human eye but can be detected using an image sensor. The indicator 203 may be configured to emit light outside the visible spectrum of the human eye (e.g., infrared) or to emit light that is too dim to be detected, as examples of indication methods substantially not detectable by the human eye. In these examples, the image sensor can be configured to detect such signals outside the viewing capabilities of a human eye. In various examples, the image sensor may be a component of a smartphone, a tablet computer, a slate computer, an e-reader or other electronic reader or hand-held or wearable computing device, a laptop, an Xbox®, a Wii®, or other game system(s).
The processor 320 of the computer system 300 shown in
Output devices 310 of cardiac monitoring computer system 300 shown in
The example conformal cardiac sensor platform 500 of
The device architecture of
As shown in the example of
These components, in addition to comprising the aforementioned sensor, power, communication and other components, may include additional and alternative components, such as additional electrodes, additional electrode connectors, or any other example component according to the principles described herein. Stretchable interconnects 624 are electrically conductive to facilitate electrical communication between the various components of
For at least some desired applications, an encapsulant material can be introduced locally to any region or portion or component of the conformal sensor device 500, such as proximate to a portion of an electronic component or an interconnect of the conformal device. The encapsulant helps, for example, to protect the component from an applied stress or strain in the event of a deformation force being applied to the overall conformal device. For example, the encapsulant material can aid in adjusting a location of a neutral mechanical plane locally in the region of the component. Controlled placement of the neutral mechanical plane relative to a functional component can result in little to no stress or strain being exerted in the region of the component, when the overall conformal device is subjected to the deformation force.
As a non-limiting example, a portion of the conformal cardiac sensor device proximate to an electronic component may be encapsulated in a polyimide (PI), or other polymer or polymeric material, that can cause the neutral mechanical plane to coincide with the more fragile portions of the component. Non-limiting examples of applicable polymers or polymeric materials include a polyimide (PI), a polyethylene terephthalate (PET), a silicone, or a polyurethane. Other non-limiting examples of applicable polymers or polymeric materials include plastics, elastomers, thermoplastic elastomers, elastoplastics, thermostats, thermoplastics, acrylates, acetal polymers, biodegradable polymers, cellulosic polymers, fluoropolymers, nylons, polyacrylonitrile polymers, polyamide-imide polymers, polyarylates, polybenzimidazole, polybutylene, polycarbonate, polyesters, polyetherimide, polyethylene, polyethylene copolymers and modified polyethylenes, polyketones, poly(methyl methacrylate, polymethylpentene, polyphenylene oxides and polyphenylene sulfides, polyphthalamide, polypropylene, polyurethanes, styrenic resins, sulphone based resins, vinyl-based resins, or any combinations of these materials. In an example, a polymer or polymeric material herein can be a UV curable polymer or a silicone.
In determining the configuration of the overall conformal device, the dimensions of the components, the stiffness of the materials of the component, the dimensions and/or the stiffness of one or more interconnects, the stiffness properties of the encapsulant material, and/or location of placement of the encapsulant material, can be controlled to strategically cause the neutral mechanical plane to fall in a region of one or more components or interconnect(s) of the overall conformal device to prevent a stress or strain concentration near the fragile regions of the component(s) and/or the interconnects. In a non-limiting example, the fragile region is junction between an interconnect and an electronic component.
In any example implementation, the positioning of the neutral mechanical plane in any given region of the overall conformal device can be controlled to protect one or more of the electronically functional components of the overall conformal device structure from an applied stress or strain. The positioning of the neutral mechanical plane can be controlled locally at any electronic component of the overall conformal device by controlling parameters locally such as, but not limited to, at least one of: (a) type of material (stiffness) of an electronic component and/or dimensions of the electronic component; (b) type of material (stiffness) of the interconnect and/or shape of the interconnect; and (c) the use of an encapsulant, including choice of type of encapsulant material (stiffness) and/or choice of local placement of the encapsulant in the overall conformal device.
The example conformal cardiac sensor device 710 can include disposable ECG electrodes 714, a re-usable connector 716 to mechanically and electrically couple the ECG electrodes with a main portion/body of the conformal cardiac sensor device 716, and a cardiac sensor unit 712 forming the main portion of the cardiac sensor device. In the example of
Turning next to
Turning next to
The example conformal electronics technology herein can be designed and implemented with various mechanical and electrical layouts for multifunctional platforms. The example devices including the conformal electronics technology can be integrated with various stretchable form factors using designs embedded in polymeric layers. These can be formulated to protect the circuits from strain and to achieve mechanical flexibility with ultra-thin profiles, such as but not limited to thicknesses of about 1 mm on average. In other examples, the patch can be configured with thinner or thicker cross-sectional dimensions. The example device architecture can include a reusable module containing surface-mount technology (SMT) components, including ECG measuring components, accelerometer, wireless communication, microcontroller, antenna, coupled with disposable conformal electrode arrays for sensing EMG or other electrical measurements (such as but not limited to NCS and electroencephalogram (EEG) signals).
Processor-executable instructions development (including software, algorithms, firmware, etc.) can be configured to be specific for each platform using predicate algorithms as the basis of signal processing. Filters and sampling rates can be tuned and tested on rigid evaluation boards and then implemented with flexible designs. The example conformal cardiac sensors and conformal electrodes according to the principles described herein can be used, based on implementation of the processor-executable instructions, for monitoring, e.g., cardiac activity at various locations on the body, and/or analysis of data indicative of measurements from the monitoring.
There a various example parameters that can be taken by the conformal cardiac sensor devices, methods and systems disclosed herein. Standard reference measurements can be taken while one or more conformal cardiac sensors is/are mounted to a subject. Each condition can be repeated to generate reproducibility data. Precision and reproducibility of sensor measurement output can be determined based on, for example: (a) Pre-determined relative displacement of ECG electrodes on body and strength of ECG signal; (b) Body motion—X, Y, Z axis acceleration waveform in G's; (c) Muscle activity—muscle motion ON/OFF and ON-to-ON time. Optimal placement for each sensor can be determined, for example, for maximum signal detection. Optimal co-location placement for two or more of the sensors can be determined, for example, in a similar manner.
The example conformal cardiac sensors and conformal electrodes according to the principles described herein can be used to measure ECG and other metrics of cardiac activity (including a measure of heart rate and/or other electrical activity related to cardiac activity), other electrical activity, temperature, hydration level, neural activity, conductance, and/or pressure, with acceptable precision. Acceptable precision can be defined as operationalized as a high correlation (such as but not limited to r≥0.8) of these sensors with standard reference measurements of: electrocardiogram—a MAC 3500 12 Lead ECG Analysis System (GE Healthcare, AZ, USA) 1, or similar; accelerometry—such as, but not limited to, a Shimmer3® base module (http://www.shimmersensing.com/) or similar or an external image-based body monitoring; electromyogram—a Grass P511AC, Amplifier (Grass Technologies, West Warwick, R.I., USA), or similar.
An optimal placement for each conformal cardiac sensor, including ECG electrodes, can be determined, for example, to yield high-quality, precise and reliable measurements. There can be at least one placement in which the example conformal cardiac sensors and conformal electrodes can be placed to yield precise and reliable measurements.
For cardiac activity, subjects can be measured while wearing one or more conformal cardiac sensors on standard references (ECG electrodes). The system may include a 3-axis accelerometer and/or EMG electrodes. The conformal cardiac sensor can be placed at selected locations on the body of the subject or other object to measure cardiac activity of the subject. Standard reference measurements can be taken while the conformal cardiac sensor is mounted. Conformal cardiac sensor patches/bandages/devices can be placed at selected body placement locations, including: chest or other portion of torso, inside wrist, calf, front left shoulder, rear left shoulder, left neck below the ear, and forehead (e.g., as shown in
Example system, methods and devices are provided herein that can be used to estimate the sensitivity, specificity, and/or positive and/or negative predictive values of algorithm(s) from the conformal cardiac sensors to predict, for example but not limited to selected metrics of the efficacy of a treatment or therapy being performed on the subject. The feasibility or acceptability of subjects wearing the conformal cardiac sensors can be monitored. Subjects' cardiac activity can be monitored while wearing the conformal cardiac sensors disposed on a body part or other object for a period of time (e.g., time on the order of minutes, an hour, or a number of hours, while at rest or while carrying out a series of motions, activities and/or tasks.
Presented in
Following are non-limiting example implementations of conformal cardiac sensor systems, methods and devices described herein. The example conformal sensor system can be configured to include at least one sensor component for performing the type of measurements described, including at least one conformal sensor component for measuring cardiac activity. The example conformal sensor system can be configured to include at least one sensor component for performing at least one other measurements, including measurements of motion and/or muscle activity, or other physiological measures of the body. The example conformal sensor system can include any other component described hereinabove, including at least one of a battery, a microcontroller, a microprocessor, a memory, wireless communication, active circuitry and passive circuitry. The example systems, methods and apparatus described herein can be implemented in various example implementations based on use of conformal cardiac sensors for detection and/or analysis of cardiac activity.
In any example implementation, a system, a method, or an apparatus can be configured to receive data indicative of a measurement of the conformal cardiac sensor, analyzing the data to provide information indicative of the desired result, and store to a memory and/or transmit the data and/or the information. The desired result can be information indicative of cardiac activity according to the principles of any of the examples described herein. In some examples according to the principles described herein, a procedure may involve at least a portion of the data gathered, or information related to analysis of the data, being provided to a third party, i.e., to any person or entity other than the subject wearing the sensor system. In these examples, the example cardiac sensor system may be configured to provide the data gathered, or information related to analysis of the data, to the third party only with the prior consent of the subject. Non-limiting examples of third parties include a coach, a member of a coaching staff, a physical therapist, a medical practitioner (including a doctor or other sports medicine practitioner), a physical trainer, a sports health practitioner, and the liked.
As shown in
In the non-limiting example of
Turning next to
Presented in
Looking next at
With reference to
Next,
As depicted in the example of
In a non-limiting example, any of the example conformal cardiac sensor system can be maintained in sleep mode when no measurements are being made. If the accelerometer measurement indicates that a threshold or other specified value is exceeded, potentially indicating a fall event or other rapid movement, the microcontroller can be triggered to be turned “ON”, along with an ECG recording sensor. In an example a communication component, such as but not limited to a Bluetooth® module, also may be triggered. The ECG measurements can be taken until either the ECG recording sensor is turned “OFF” or the power source loses energy below a threshold value (e.g., a battery runs out). The ECG measurements may be stored locally on a memory of the system age and/or communicated to an external storage (e.g., using data streaming) until the ECG recording sensor is turned “OFF” or the power source loses energy below a threshold value.
Illustrated in
In another example, the example conformal cardiac sensor systems can be used for monitoring heart rate variability in a subject having Parkinson's disease and, optionally, output an indication thereof (e.g., via feedback component 109 of
In another example, the example conformal cardiac sensor systems can be used for monitoring heart rate variability in Parkinson's disease to provide a potential alert of conditions that can lead to heart failure (e.g., via feedback component 109 of
In another example, the example conformal cardiac sensor systems can be used as a cardiac arrhythmia sensing device. In this example, the conformal cardiac sensor system may be used as a cardiac monitor for identifying suspected arrhythmias in a subject based on cardiac data gathered and, optionally, output an indication thereof (e.g., via feedback component 109 of
In an example, a subject may be administered, e.g., a pharmaceutical drug or biologic or other therapy (e.g., via therapeutic component 108 of
In an example, the example conformal cardiac sensor system may be configured to determine an effect of regulating heart rate on BP/hypertension using continuous monitoring: a subject with pre-hypertension can be at risk of hypertension and cardiovascular diseases. Efficient interventions may not be accomplished if continuous monitoring of irregular heart rate is not well characterized. Studies indicate that heart rate variability-biofeedback (HRV-BF) increases HRV and baroreflex sensitivity (BRS), as well as reduces related pathological symptoms. Such a result suggests the potentially beneficial effects of HRV-BF on prehypertension. However, little is known about these effects. These effects can be investigated using the example conformal cardiac sensor system according to the principles herein, by configuring the system to track heart rate variability and, optionally, output an indication thereof (e.g., via feedback component 109 of
In the example of
An example conformal cardiac sensor system can be used for determining heart rate or activity. An example conformal cardiac sensor system can include an accelerometer component and an ECG component. The system may also include optical sensor components and/or ECG components, e.g., where the system is disposed proximate to the chest, to provide measures for use in the analysis
In an example implementation, the conformal cardiac sensor system can be configured to determine a subject's heart rate variability based on the sensor measured data values and output an indication thereof (e.g., via feedback component 109 of
An example conformal cardiac sensor system herein can be used to determine an individual's overall cardiac readiness and output an indication thereof (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to detect a pattern of cardiac activity (including heart rate) that is indicative of a specific cardiac event. For example, the conformal cardiac sensor system can be configured to determine the occurrence of the specific event by comparing cardiac sensor measurements of a patient to a standard for the cardiac event. The standard can be a simulated signal curve or a composite signal based on prior recorded measurement at previous incidents of the specific event, e.g., recordings from the same subject and/or other subject experiencing the specific event.
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate variability and analyze the data to provide an indicator (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate, coupled with measures of motion, analyze the results, and provide an indicator of exertion and/or intensity of a subject (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate, coupled with measures of motion, and provide an indicator of the subject's energy expenditure (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate, coupled with measures of motion, to provide an indicator of a subject's activity level (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate, coupled with measures of motion, to provide an indicator of a subject's quality of sleep (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate, and based on analysis of the results, provide an indication of subject level of anxiety (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate and use an analysis of the results for detection of heart plasticity and abnormalities, including arrhythmia, tachycardia, fibrillation, and bradycardia. Feedback can be provided to a user (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to measure heart rate and provide information that can assist in decision making regarding the timing of heart activity and/or quality of heart function. For example, analysis of heart rate and accelerometry measurement data may be used to provide a user with an indication of periods of time that the user (or user's heart) is under abnormal circumstances, and when the individual should consider waiting before making a decision, e.g., in a military, highly physical, or stressful business situation.
In an example implementation, the conformal cardiac sensor system can be configured to provide an indication (e.g., via feedback component 109 of
In an example implementation, the conformal cardiac sensor system can be configured to maintain a low-power status at a time that no measurement is being performed. In an example, the conformal cardiac sensor system can be configured with a low-power on-board energy supplying component (e.g., a low-power battery). In an example, the conformal cardiac sensor system can be configured with no on-board energy component, and energy may be acquired through inductive coupling or other form of energy harvesting. In these example implementations, the cardiac sensor component(s) may be maintained substantially dormant, in a low-power state, or in an OFF state, until a triggering event occurs. For example, the triggering event can be that the body part or object, to which the system is coupled of disposed on, undergoes motion (or where applicable, muscle activity) above a specified threshold range of values or degree. Examples of such motion could be movement of an arm or other body part, such as but not limited to a bicep or quadriceps movement during physical exertion, a fall (e.g., for a geriatric patient), or a body tremor, e.g., due to an epileptic incident, a Palsy, or Parkinson's. Other examples of such motion could be movement of the object, e.g., a golf club swing, movement of a ball, etc. In another example, the conformal cardiac sensor system may include a near-field component (NFC), and the triggering event may be registered using the NFC component. In other examples, the triggering event may be a sound or other vibration, a change in light level (e.g., a LED) or a magnetic field, temperature (e.g., change in external heat level or blood rushing to an area), or an EEG, a chemical or a physiological measure (e.g., environment pollen or pollution level, or blood glucose level). In an example, the triggering event may be initiated at regular time intervals. The system can be configured such that occurrence of the triggering event causes triggering of the microcontroller; the microcontroller then be configured to cause activation of the ECG, the accelerometer and/or the EMG component, or other sensor component, of the conformal cardiac sensor system to take a measurement.
In an example implementation, the conformal cardiac sensor system may include one or more components (e.g., therapeutic component 108 of
In an example implementation, the conformal cardiac sensor system may include one or more components (e.g., therapeutic component 108 of
While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be examples and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that inventive embodiments may be practiced otherwise than as specifically described. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
The above-described embodiments of the invention may be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code may be executed on any suitable processor or collection of processors, whether provided in a single device or computer or distributed among multiple devices/computers.
Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
The indefinite articles “a” and “an,” as used herein in the specification, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”
As used herein in the specification, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
While particular embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that the present disclosure is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
This application is the U.S. national stage of International Application No. PCT/US2014/066810, filed on Nov. 21, 2014, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/907,973, filed on Nov. 22, 2013, and U.S. Provisional Patent Application No. 61/907,991, filed on Nov. 22, 2013, each of which is incorporated herein by reference in its entirety and for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/066810 | 11/21/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/077559 | 5/28/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3716861 | Root | Feb 1973 | A |
3805427 | Epstein | Apr 1974 | A |
3838240 | Schelhorn | Sep 1974 | A |
4278474 | Blakeslee | Jul 1981 | A |
4304235 | Kaufman | Dec 1981 | A |
4416288 | Freeman | Nov 1983 | A |
4658153 | Brosh | Apr 1987 | A |
5272375 | Belopolsky | Dec 1993 | A |
5306917 | Black | Apr 1994 | A |
5326521 | East | Jul 1994 | A |
5331966 | Bennett | Jul 1994 | A |
5360987 | Shibib | Nov 1994 | A |
5471982 | Edwards | May 1995 | A |
5454270 | Brown | Oct 1995 | A |
5491651 | Janic | Feb 1996 | A |
5567975 | Walsh | Oct 1996 | A |
5580794 | Allen | Dec 1996 | A |
5617870 | Hastings | Apr 1997 | A |
5811790 | Endo | Sep 1998 | A |
5817008 | Rafert | Oct 1998 | A |
5907477 | Tuttle | May 1999 | A |
6063046 | Allum | May 2000 | A |
6265090 | Nishide | Jul 2001 | B1 |
6282960 | Samuels | Sep 2001 | B1 |
6343514 | Smith | Feb 2002 | B1 |
6387052 | Quinn | May 2002 | B1 |
6410971 | Otey | Jun 2002 | B1 |
6421016 | Phillips | Jul 2002 | B1 |
6455931 | Hamilton | Sep 2002 | B1 |
6567158 | Falcial | May 2003 | B1 |
6626940 | Crowley | Sep 2003 | B2 |
6641860 | Kaiserman | Nov 2003 | B1 |
6775906 | Silverbrook | Aug 2004 | B1 |
6784844 | Boakes | Aug 2004 | B1 |
6965160 | Cobbley | Nov 2005 | B2 |
6987314 | Yoshida | Jan 2006 | B1 |
7259030 | Daniels | Aug 2007 | B2 |
7265298 | Maghribi | Sep 2007 | B2 |
7302751 | Hamburgen | Dec 2007 | B2 |
7337012 | Maghribi | Feb 2008 | B2 |
7487587 | Vanfleteren | Feb 2009 | B2 |
7491892 | Wagner | Feb 2009 | B2 |
7521292 | Rogers | Apr 2009 | B2 |
7557367 | Rogers | Jul 2009 | B2 |
7618260 | Daniel | Nov 2009 | B2 |
7622367 | Nuzzo | Nov 2009 | B1 |
7727228 | Abboud | Jun 2010 | B2 |
7739791 | Brandenburg | Jun 2010 | B2 |
7759167 | Vanfleteren | Jul 2010 | B2 |
7815095 | Fujisawa | Oct 2010 | B2 |
7960246 | Flamand | Jun 2011 | B2 |
7982296 | Nuzzo | Jul 2011 | B2 |
8097926 | De Graff | Jan 2012 | B2 |
8198621 | Rogers | Jun 2012 | B2 |
8207473 | Axisa | Jun 2012 | B2 |
8217381 | Rogers | Jul 2012 | B2 |
8372726 | De Graff | Feb 2013 | B2 |
8389862 | Arora | Mar 2013 | B2 |
8431828 | Vanfleteren | Apr 2013 | B2 |
8440546 | Nuzzo | May 2013 | B2 |
8536667 | De Graff | Sep 2013 | B2 |
8552299 | Rogers | Oct 2013 | B2 |
8618656 | Oh | Dec 2013 | B2 |
8664699 | Nuzzo | Mar 2014 | B2 |
8679888 | Rogers | Mar 2014 | B2 |
8729524 | Rogers | May 2014 | B2 |
8754396 | Rogers | Jun 2014 | B2 |
8865489 | Rogers | Oct 2014 | B2 |
8886334 | Ghaffari | Nov 2014 | B2 |
8905772 | Rogers | Dec 2014 | B2 |
9012784 | Arora | Apr 2015 | B2 |
9082025 | Fastert | Jul 2015 | B2 |
9105555 | Rogers | Aug 2015 | B2 |
9105782 | Rogers | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9123614 | Graff | Sep 2015 | B2 |
9159635 | Elolampi | Oct 2015 | B2 |
9168094 | Lee | Oct 2015 | B2 |
9171794 | Rafferty | Oct 2015 | B2 |
9186060 | De Graff | Nov 2015 | B2 |
9226402 | Hsu | Dec 2015 | B2 |
9247637 | Hsu | Jan 2016 | B2 |
9289132 | Ghaffari | Mar 2016 | B2 |
9295842 | Ghaffari | Mar 2016 | B2 |
9324733 | Rogers | Apr 2016 | B2 |
9372123 | Li | Jun 2016 | B2 |
9408305 | Hsu | Aug 2016 | B2 |
20010012918 | Swanson | Aug 2001 | A1 |
20010021867 | Kordis | Sep 2001 | A1 |
20020026127 | Balbierz | Feb 2002 | A1 |
20020082515 | Campbell | Jun 2002 | A1 |
20020094701 | Biegelsen | Jul 2002 | A1 |
20020113739 | Howard | Aug 2002 | A1 |
20020128700 | Cross, Jr. | Sep 2002 | A1 |
20020145467 | Minch | Oct 2002 | A1 |
20020151934 | Levine | Oct 2002 | A1 |
20020158330 | Moon | Oct 2002 | A1 |
20030017848 | Engstrom | Jan 2003 | A1 |
20030045025 | Coyle | Mar 2003 | A1 |
20030097165 | Krulevitch | May 2003 | A1 |
20030120271 | Burnside | Jun 2003 | A1 |
20030162507 | Vatt | Aug 2003 | A1 |
20030214408 | Grajales | Nov 2003 | A1 |
20030236455 | Swanson | Dec 2003 | A1 |
20040006264 | Mojarradi | Jan 2004 | A1 |
20040085469 | Johnson | May 2004 | A1 |
20040092806 | Sagon | May 2004 | A1 |
20040106334 | Suzuki | Jun 2004 | A1 |
20040135094 | Niigaki | Jul 2004 | A1 |
20040138558 | Dunki-Jacobs | Jul 2004 | A1 |
20040149921 | Smyk | Aug 2004 | A1 |
20040178466 | Merrill | Sep 2004 | A1 |
20040192082 | Wagner | Sep 2004 | A1 |
20040201134 | Kawai | Oct 2004 | A1 |
20040203486 | Shepherd | Oct 2004 | A1 |
20040221370 | Hannula | Nov 2004 | A1 |
20040243204 | Maghribi | Dec 2004 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050029680 | Jung | Feb 2005 | A1 |
20050067293 | Naito | Mar 2005 | A1 |
20050070778 | Lackey | Mar 2005 | A1 |
20050096513 | Ozguz | May 2005 | A1 |
20050113744 | Donoghue | May 2005 | A1 |
20050139683 | Yi | Jun 2005 | A1 |
20050171524 | Stern | Aug 2005 | A1 |
20050203366 | Donoghue | Sep 2005 | A1 |
20050248312 | Cao | Nov 2005 | A1 |
20050285262 | Knapp | Dec 2005 | A1 |
20060003709 | Wood | Jan 2006 | A1 |
20060038182 | Rogers | Feb 2006 | A1 |
20060071349 | Tokushige | Apr 2006 | A1 |
20060084394 | Engstrom | Apr 2006 | A1 |
20060106321 | Lewinsky | May 2006 | A1 |
20060128346 | Yasui | Jun 2006 | A1 |
20060154398 | Qing | Jul 2006 | A1 |
20060160560 | Josenhans | Jul 2006 | A1 |
20060248946 | Howell | Nov 2006 | A1 |
20060257945 | Masters | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060270135 | Chrysler | Nov 2006 | A1 |
20060286785 | Rogers | Dec 2006 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070031283 | Davis | Feb 2007 | A1 |
20070108389 | Makela | May 2007 | A1 |
20070113399 | Kumar | May 2007 | A1 |
20070123756 | Kitajima | May 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20080036097 | Ito | Feb 2008 | A1 |
20080046080 | Vanden Bulcke | Feb 2008 | A1 |
20080074383 | Dean | Mar 2008 | A1 |
20080091089 | Guillory | Apr 2008 | A1 |
20080096620 | Lee | Apr 2008 | A1 |
20080139894 | Szydlo-Moore | Jun 2008 | A1 |
20080157235 | Rogers | Jul 2008 | A1 |
20080188912 | Stone | Aug 2008 | A1 |
20080193749 | Thompson | Aug 2008 | A1 |
20080204021 | Leussler | Aug 2008 | A1 |
20080211087 | Mueller-Hipper | Sep 2008 | A1 |
20080237840 | Alcoe | Oct 2008 | A1 |
20080259576 | Johnson | Oct 2008 | A1 |
20080262381 | Kolen | Oct 2008 | A1 |
20080287167 | Caine | Nov 2008 | A1 |
20080313552 | Buehler | Dec 2008 | A1 |
20090000377 | Shipps | Jan 2009 | A1 |
20090001550 | Yonggang | Jan 2009 | A1 |
20090015560 | Robinson | Jan 2009 | A1 |
20090017884 | Rotschild | Jan 2009 | A1 |
20090048556 | Durand | Feb 2009 | A1 |
20090088750 | Hushka | Apr 2009 | A1 |
20090107704 | Vanfleteren | Apr 2009 | A1 |
20090154736 | Lee | Jun 2009 | A1 |
20090184254 | Miura | Jul 2009 | A1 |
20090204168 | Kallmeyer | Aug 2009 | A1 |
20090215385 | Waters | Aug 2009 | A1 |
20090225751 | Koenck | Sep 2009 | A1 |
20090261828 | Nordmeyer-Massner | Oct 2009 | A1 |
20090273909 | Shin | Nov 2009 | A1 |
20090283891 | Dekker | Nov 2009 | A1 |
20090291508 | Babu | Nov 2009 | A1 |
20090294803 | Nuzzo | Dec 2009 | A1 |
20090322480 | Benedict | Dec 2009 | A1 |
20100002402 | Rogers | Jan 2010 | A1 |
20100059863 | Rogers | Mar 2010 | A1 |
20100072577 | Nuzzo | Mar 2010 | A1 |
20100073669 | Colvin | Mar 2010 | A1 |
20100087782 | Ghaffari | Apr 2010 | A1 |
20100090781 | Yamamoto | Apr 2010 | A1 |
20100090824 | Rowell | Apr 2010 | A1 |
20100116526 | Arora | May 2010 | A1 |
20100117660 | Douglas | May 2010 | A1 |
20100178722 | De Graff | Jul 2010 | A1 |
20100245011 | Chatzopoulos | Sep 2010 | A1 |
20100271191 | De Graff | Oct 2010 | A1 |
20100298895 | Ghaffari | Nov 2010 | A1 |
20100317132 | Rogers | Dec 2010 | A1 |
20100321161 | Isabell | Dec 2010 | A1 |
20100327387 | Kasai | Dec 2010 | A1 |
20110011179 | Gustafsson | Jan 2011 | A1 |
20110034912 | De Graff | Feb 2011 | A1 |
20110051384 | Kriechbaum | Mar 2011 | A1 |
20110054583 | Litt | Mar 2011 | A1 |
20110098583 | Pandia | Apr 2011 | A1 |
20110101789 | Salter | May 2011 | A1 |
20110121822 | Parsche | May 2011 | A1 |
20110140897 | Purks | Jun 2011 | A1 |
20110175735 | Forster | Jul 2011 | A1 |
20110184320 | Shipps | Jul 2011 | A1 |
20110215931 | Callsen | Sep 2011 | A1 |
20110218756 | Callsen | Sep 2011 | A1 |
20110218757 | Callsen | Sep 2011 | A1 |
20110220890 | Nuzzo | Sep 2011 | A1 |
20110263950 | Larson | Oct 2011 | A1 |
20110277813 | Rogers | Nov 2011 | A1 |
20110284268 | Palaniswamy | Nov 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20120016258 | Webster | Jan 2012 | A1 |
20120051005 | Vanfleteren | Mar 2012 | A1 |
20120052268 | Axisa | Mar 2012 | A1 |
20120065937 | De Graff | Mar 2012 | A1 |
20120074546 | Chong | Mar 2012 | A1 |
20120087216 | Keung | Apr 2012 | A1 |
20120091594 | Landesberger | Apr 2012 | A1 |
20120092178 | Callsen | Apr 2012 | A1 |
20120092222 | Kato | Apr 2012 | A1 |
20120101413 | Beetel | Apr 2012 | A1 |
20120101538 | Ballakur | Apr 2012 | A1 |
20120108012 | Yasuda | May 2012 | A1 |
20120126418 | Feng | May 2012 | A1 |
20120157804 | Rogers | Jun 2012 | A1 |
20120172697 | Urman | Jul 2012 | A1 |
20120178367 | Matsumoto | Jul 2012 | A1 |
20120226130 | De Graff | Sep 2012 | A1 |
20120244848 | Ghaffari | Sep 2012 | A1 |
20120256308 | Helin | Oct 2012 | A1 |
20120316455 | Rahman | Dec 2012 | A1 |
20120327608 | Rogers | Dec 2012 | A1 |
20130041235 | Rogers | Feb 2013 | A1 |
20130099358 | Elolampi | Apr 2013 | A1 |
20130100618 | Rogers | Apr 2013 | A1 |
20130116520 | Roham | May 2013 | A1 |
20130118255 | Callsen | May 2013 | A1 |
20130150693 | D'angelo | Jun 2013 | A1 |
20130185003 | Carbeck | Jul 2013 | A1 |
20130192356 | De Graff | Aug 2013 | A1 |
20130200268 | Rafferty | Aug 2013 | A1 |
20130211761 | Brandsma | Aug 2013 | A1 |
20130214300 | Lerman | Aug 2013 | A1 |
20130215467 | Fein | Aug 2013 | A1 |
20130225965 | Ghaffari | Aug 2013 | A1 |
20130237150 | Royston | Sep 2013 | A1 |
20130245388 | Rafferty | Sep 2013 | A1 |
20130274562 | Ghaffari | Oct 2013 | A1 |
20130313713 | Arora | Nov 2013 | A1 |
20130316442 | Meurville | Nov 2013 | A1 |
20130316487 | De Graff | Nov 2013 | A1 |
20130316645 | Li | Nov 2013 | A1 |
20130320503 | Nuzzo | Dec 2013 | A1 |
20130321373 | Yoshizumi | Dec 2013 | A1 |
20130328219 | Chau | Dec 2013 | A1 |
20140001058 | Ghaffari | Jan 2014 | A1 |
20140012160 | Ghaffari | Jan 2014 | A1 |
20140012242 | Lee | Jan 2014 | A1 |
20140022746 | Hsu | Jan 2014 | A1 |
20140039290 | De Graff | Feb 2014 | A1 |
20140097944 | Fastert | Apr 2014 | A1 |
20140110859 | Rafferty | Apr 2014 | A1 |
20140140020 | Rogers | May 2014 | A1 |
20140188426 | Fastert | Jul 2014 | A1 |
20140191236 | Nuzzo | Jul 2014 | A1 |
20140216524 | Rogers | Aug 2014 | A1 |
20140240932 | Hsu | Aug 2014 | A1 |
20140249520 | Ghaffari | Sep 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20140303680 | Donnelly | Oct 2014 | A1 |
20140340857 | Hsu | Nov 2014 | A1 |
20140374872 | Rogers | Dec 2014 | A1 |
20140375465 | Fenuccio | Dec 2014 | A1 |
20150001462 | Rogers | Jan 2015 | A1 |
20150019135 | Kacyvenski | Jan 2015 | A1 |
20150025394 | Hong | Jan 2015 | A1 |
20150035680 | Li | Feb 2015 | A1 |
20150069617 | Arora | Mar 2015 | A1 |
20150099976 | Ghaffari | Apr 2015 | A1 |
20150100135 | Ives | Apr 2015 | A1 |
20150194817 | Lee | Jul 2015 | A1 |
20150237711 | Rogers | Aug 2015 | A1 |
20150241288 | Keen | Aug 2015 | A1 |
20150260713 | Ghaffari | Sep 2015 | A1 |
20150272652 | Ghaffari | Oct 2015 | A1 |
20150286913 | Fastert | Oct 2015 | A1 |
20150320472 | Ghaffari | Nov 2015 | A1 |
20150335254 | Fastert | Nov 2015 | A1 |
20150342036 | Fastert | Nov 2015 | A1 |
20160027834 | de Graff | Jan 2016 | A1 |
20160045162 | De Graff | Feb 2016 | A1 |
20160081192 | Hsu | Mar 2016 | A1 |
20160086909 | Garlock | Mar 2016 | A1 |
20160095652 | Lee | Apr 2016 | A1 |
20160099214 | Dalal | Apr 2016 | A1 |
20160099227 | Dalal | Apr 2016 | A1 |
20160111353 | Rafferty | Apr 2016 | A1 |
20160135740 | Ghaffari | May 2016 | A1 |
20160213262 | Ghaffari | Jul 2016 | A1 |
20160213424 | Ghaffari | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
0585670 | Mar 1994 | EP |
0779059 | Jun 1997 | EP |
1808124 | Jul 2007 | EP |
2259062 | Dec 2010 | EP |
05-087511 | Apr 1993 | JP |
2009-170173 | Jul 2009 | JP |
WO 1999038211 | Jul 1999 | WO |
WO 2004084720 | Oct 2004 | WO |
WO 2005122285 | Dec 2005 | WO |
WO 2003021679 | Mar 2006 | WO |
WO 2007003019 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007116344 | Oct 2007 | WO |
WO 2007136726 | Nov 2007 | WO |
WO 2008030960 | Mar 2008 | WO |
WO 2009036260 | Mar 2009 | WO |
WO 2009111641 | Sep 2009 | WO |
WO 2009114689 | Sep 2009 | WO |
WO 2010036807 | Apr 2010 | WO |
WO 2010042653 | Apr 2010 | WO |
WO 2010042957 | Apr 2010 | WO |
WO 2010046883 | Apr 2010 | WO |
WO 2010056857 | May 2010 | WO |
WO 2010081137 | Jul 2010 | WO |
WO 2010082993 | Jul 2010 | WO |
WO 2010102310 | Sep 2010 | WO |
WO 2010132552 | Nov 2010 | WO |
WO 2011003181 | Jan 2011 | WO |
WO 2011041727 | Apr 2011 | WO |
WO 2011084450 | Jul 2011 | WO |
WO 2011084709 | Jul 2011 | WO |
WO 2011127331 | Oct 2011 | WO |
WO 2012125494 | Sep 2012 | WO |
WO 2012166686 | Dec 2012 | WO |
WO 2013010171 | Jan 2013 | WO |
WO 2013022853 | Feb 2013 | WO |
WO 2013033724 | Mar 2013 | WO |
WO 2013034987 | Mar 2013 | WO |
WO 2013049716 | Apr 2013 | WO |
WO 2013052919 | Apr 2013 | WO |
WO 2013170032 | Nov 2013 | WO |
WO 2014007871 | Jan 2014 | WO |
WO 2014058473 | Apr 2014 | WO |
WO 2014059032 | Apr 2014 | WO |
WO 2014106041 | Jul 2014 | WO |
WO 2014110176 | Jul 2014 | WO |
WO 2014130928 | Aug 2014 | WO |
WO 2014130931 | Aug 2014 | WO |
WO 2014186467 | Nov 2014 | WO |
WO 2014197443 | Dec 2014 | WO |
WO 2014205434 | Dec 2014 | WO |
WO 2015021039 | Feb 2015 | WO |
WO 2015054312 | Apr 2015 | WO |
WO 2015077559 | May 2015 | WO |
WO 2015080991 | Jun 2015 | WO |
WO 2015102951 | Jul 2015 | WO |
WO 2015103483 | Jul 2015 | WO |
WO 2015103580 | Jul 2015 | WO |
WO 2015127458 | Aug 2015 | WO |
WO 2015134588 | Sep 2015 | WO |
WO 2015138712 | Sep 2015 | WO |
WO 2016048888 | Mar 2016 | WO |
WO 2016054512 | Apr 2016 | WO |
WO 2016057318 | Apr 2016 | WO |
WO 2016081244 | May 2016 | WO |
Entry |
---|
U.S. Appl. No. 12/968,637, filed Dec. 15, 2010, J. Rogers, High-Speed, High-Resolution Electrophysiology In-Vivo Using Conformal Electronics. |
U.S. Appl. No. 13/492,636, filed Jun. 8, 2012, J. Rogers, Flexible and Stretchable Electronic Systems for Epidermal Electronics. |
U.S. Appl. No. 14/155,010, filed Jan. 14, 2014, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 14/479,100, filed Sep. 5, 2014, J. Rogers, Printed Assemblies of Ultrathin, Microscale Inorganic Light Emitting Diodes for Deformable and Semitransparent Displays. |
U.S. Appl. No. 14/521,319, filed Oct. 22, 2014, J. Rogers, Stretchable and Foldable Electronic Devices. |
U.S. Appl. No. 14/706,733, filed May 7, 2015, J. Rogers, Stretchable and Foldable Electronic Devices. |
U.S. Appl. No. 15/084,211, filed Mar. 29, 2016, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 15/084,091, filed Mar. 29, 2016, R. Nuzzo, Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements. |
U.S. Appl. No. 15/084,112, filed Mar. 29, 2016, J. Rogers, Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics. |
U.S. Appl. No. 15/217,121, filed Jul. 22, 2016, B. Litt, Flexible and Scalable Sensor Arrays for Recording and Modulating Physiologic Activity. |
Carvalhal et al., “Electrochemical Detection in a Paper-Based Separation Device”, Analytical Chemistry, vol. 82, No. 3, (1162-1165) (4 pages) (Jan. 7, 2010). |
Demura et al., “Immobilization of Glucose Oxidase with Bombyx Mori Silk Fibroin by Only Stretching Treatment and its Application to Glucose Sensor,” Biotechnology and Bioengineering, vol. 33, 598-603 (6 pages) (1989). |
Ellerbee et al., “Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper,” Analytical Chemistry, vol. 81, No. 20 8447-8452, (6 pages) (Oct. 15, 2009). |
Halsted, “Ligature and Suture Material,” Journal of the American Medical Association, vol. LX, No. 15, 1119-1126, (8 pages) (Apr. 12, 1913). |
Kim et al., “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Applied Physics Letters, vol. 93, 044102-044102.3 (3 pages) (Jul. 31, 2008). |
Kim et al., “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nature, 1-8 (8 pages) (Apr. 18, 2010). |
Kim et al., “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” PNAS, vol. 105, No. 48, 18675-18680 (6 pages) (Dec. 2, 2008). |
Kim et al., “Stretchable and Foldable Silicon Integrated Circuits,” Science, vol. 320, 507-511 (5 pages) (Apr. 25, 2008). |
Kim et al., “Electrowetting on Paper for Electronic Paper Display,” ACS Applied Materials & Interfaces, vol. 2, No. 11, (3318-3323) (6 pages) (Nov. 24, 2010). |
Ko et al., “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, vol. 454, 748-753 (6 pages) (Aug. 7, 2008). |
Lawrence et al., “Bioactive Silk Protein Biomaterial Systems for Optical Devices,” Biomacromolecules, vol. 9, 1214-1220 (7 pages) (Nov. 4, 2008). |
Meitl et al., “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature, vol. 5, 33-38 (6 pages) (Jan. 2006) |
Omenetto et al., “A New Route for Silk,” Nature Photonics, vol. 2, 641-643 (3 pages) (Nov. 2008). |
Omenetto et al., “New Opportunities for an Ancient Material,” Science, vol. 329, 528-531 (5 pages) (Jul. 30, 2010). |
Siegel et al., “Foldable Printed Circuit Boards on Paper Substrates,” Advanced Functional Materials, vol. 20, No. 1, 28-35, (8 pages) (Jan. 8, 2010). |
Tsukada et al., “Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions,” Journal of Polymer Science, vol. 32, 961-968 (8 pages) (1994). |
Wang et al., “Controlled Release From Multilayer Silk Biomaterial Coatings to Modulate Vascular Cell Responses” Biomaterials, 29, 894-903 (10 pages) (Nov. 28, 2008). |
Wikipedia, “Ball bonding” article [online]. Cited in PCT/US2015/051210 search report dated Mar. 1, 2016 with the following information “Jun. 15, 2011 [retrieved on Nov. 15, 2015}. Retrieved 12-18, 29 from the Internet: <URL: https://web.archive.org/web/20110615221003/hltp://en.wikipedia.org/wiki/Ball_bonding>., entire document, especially para 1, 4, 5, 6,” 2 pages, last page says (“last modified on May 11, 2011”). |
International Search Report, PCT/US2014/066810, dated Apr. 13, 2015 (4 pages). |
Written Opinion of the International Searching Authority, PCT/US2014/066810, dated Apr. 13, 2015 (8 pages). |
Extended European Search Report for Application No. EP 14863481.9, dated Jul. 6, 2017 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20160287177 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61907973 | Nov 2013 | US | |
61907991 | Nov 2013 | US |