The CVV is based upon expandable, elongating, actuated structural elements which surround at least a portion of the thoracic cavity. For consistency within this document, we will refer to these elements as “lengthening mechanical elements.”
Connection must be maintained between the CVV and the body. Connection could be via reversible adhesives or an isolated air cushion surrounding the torso and inside the CVV device, so that a mild vacuum exists around the thoracic cavity during inhalation, or by other means.
Said vacuum can either be a continuous vacuum maintained by a vacuum pump, or a temporary vacuum that occurs only during inhalation. Said temporary vacuum could be caused by the expansion of the CVV around the torso. In either case, the gas pressure under the CVV will go down during the inhalation cycle.
In the case of a gas layer which is always at a pressure below atmospheric pressure around the torso, the maximum vacuum relative to local atmospheric pressure in that layer must be limited to avoid bruising. The safe level of the vacuum will vary from individual to individual and is affected by many factors including taking aspirin for example. Typically, such a constant vacuum should not be more than 5% of atmospheric pressure or approximately 5000 Pa below the surrounding atmospheric pressure.
The gas volume between the low-permeability layer in the CVV and the skin may be different for different designs. Preferably, the volume of air between the patient's skin and the low gas permeability layer of the CVV should be no more than one tenth the volume of air that exists under a typical cuirass ventilator.
In the conformal version of the CVV most of the air under the vest is interstitial between the fibers of a fabric layer.
It is also possible to have a pocket of air under the vest which decouples the skin from the vest while still allowing the actuation of inhalation through the vacuum surrounding the thoracic cavity. In this mode the CVV can be thought of as a flexible cuirass ventilator but differs from prior art flexible cures ventilators and that it is the deformation of the flexible vest per se that causes breathing.
In the versions of the invention in which there is a large enough air bubble under the vest to decouple the skin from the vast, the best portion of the CVV nearly conforms to the shape of the body, and inhalation is driven by the shape change of the vest as opposed to a zone where air is introduced and removed through a tube as in the cuirass ventilator.
One-way valves that expel air during the contraction of the vest, but which hold the vacuum during expansion of the vest can create the necessary vacuum.
Alternatively, a special engineered elastomeric sheet which has a higher permeability in one direction than in the opposite direction can be used to create the vacuum needed around the torso and beneath the vest during the inhalation cycle. Said specially engineered elastomeric sheet may have slits at an angle through the elastomeric sheet with a small wedge of rubber removed on only one side of the slit. Such an elastomeric sheet will resist flow in one direction, but it opens when a pressure differential is applied in the other direction.
The method used to create a vacuum attachment of the CVV to the torso may also comprise suction cups that stick against the body.
Expansion of the CVV may be powered by any means that can create the desired shape change in the lengthening mechanical elements including anisotropic elastomeric inflatable tubes in the wall of the vest, or electromechanically driven components of the CVV such as can be created with electromagnetic linear drivers, piezoelectric components, or magnetostrictive alloys for example. Said drivers may also include linear actuators which are linked to a framework around the thoracic cavity.
In a preferred version of the CVV, the inhalation and exhalation cycle are driven by structural elements that lengthen and shorten in the vest itself. These lengthening mechanical elements are incorporated into a vest that fits around the thoracic cavity of a patient needing respiratory support or for any other purpose which may include an effort to increase lung capacity. Said lengthening mechanical elements get longer when they are stimulated. That stimulation can occur through a change in fluid pressure, through flow of an electric current, or a change in electrical potential.
The vest may contract to help exhalation of air as well as inhalation. Said contraction may be through an elastic contraction of the inflatable tubes which follows the expansion, caused by removing fluid from inside said tubes, or by a separate means embedded into the vest. In the case of an electrically actuated motion lengthening mechanical elements within the vest causing the expansion and contraction of the vest, this same mechanism may be used to cause the contraction.
Alternatively, contraction can be created by a separate mechanism that is different from the mechanism which powered the lengthening of the mechanical elements during the inhalation cycle. Said mechanism to power the exhalation cycle may comprise a second type of inflatable tube that gets shorter when the tube is pressurized, or a muscle wire for example.
Elastic retraction of the vest is like the lung elasticity which normally causes exhalation, but which is deficient among COPD patients.
It is possible to apply a pressure change inside anisotropic elastomer tubes in the vest to cause both the inhalation vacuum and the exhalation pressure inside the CVV. This option enables the complete breathing cycle to be powered by the same mechanism. Said anisotropic elastomer tubes will last longer if they do not cycle through zero strain during the breathing cycle deformations.
This operational method of maintaining positive inflation pressure inside the anisotropic inflatable tubes at all times could potentially cause squeezing of the lungs during certain kinds of accidents such as leakage of the fluid from the anisotropic inflatable tubes or from the manifold which delivers fluid to and from said anisotropic elastomer tubes. Because of this, it may be desirable to actuate exhalation via contraction of the anisotropic tubes to their zero elastic stress state. Such an exhalation cycle avoids the possibility that in some sort of malfunction the vest would be squeezing the patient.
In the case that exhalation is powered by contraction of the anisotropic elastomer tubes to their zero stress rest state, there would be a contraction around the pneumothorax, but even if hydraulic fluid is lost the contraction of the CVV would not be so severe as to prevent at least shallow inhalation.
For patients who need positive pressure on the thorax during exhalation due to a loss of elasticity of the lungs, it may be desirable that there be a stronger contraction around the thorax than can be accomplished by the inflatable tubes returning only to their rest state. For this case, which corresponds to severe COPD, it is desirable that the end of the exhalation cycle corresponds to an elastically stressed state in the anisotropic elastomer tubes driving the expansion and contraction of the CVV.
Versions of the device will be useful in emergency situations including battlefield injuries and automobile accidents. The ability to apply the ventilator around the torso could be useful to allow medical access to the head and will produce less distress for many injured patients who want to speak.
For the lengthening mechanical elements to create the desired vacuum inside the CVV, the elements must have an outward-facing curvature surrounding the thoracic cavity. For some people, this may make it impossible for the inflatable anisotropic tubes to follow the body's curvature, and may require a gap between a portion of a person's torso and the outward convex curvature of the CVV structural elements surrounding the thoracic cavity.
One embodiment of this idea which addresses the issue of a concave body shape in some areas is to allow for separation between the CVV and some part of the skin surrounding the thoracic cavity. In this case, the deformation of the vest causes the inhalation through and isolated air pocket line between the vest and the skin. In this mode of operation there is no need for the vest to follow the contours of the body. This may also be more comfortable.
The effective pressure under the vest has one component which is caused by the gas pressure differential between gas pressure inside the vest and outside vest, and another component which is the pressure against the torso delivered by mechanical contact between the vest and the skin. During inhalation, the vacuum under the vest (in the case where the vacuum under the vest pulls the torso out, rather than adhesive connections) must increase by an amount fairly close to the pressure that would be used for positive pressure ventilation during the inhalation cycle. During exhalation, a positive pressure will normally be applied through direct mechanical contact of the vest with the skin.
In the conformal method of operation of the CVV, there may be a vacuum under the vest during both the exhalation cycle and the inhalation cycle through a layer of fabric with an interstitial vacuum attaching the vest to the skin. In this case, care must be taken that the constant vacuum does not cause bruising.
In the flexible cuirass mode of action, the CVV acts as a sort of flexible cuirass ventilator, by trapping a bucket of air between the vest and the skin surrounding the thoracic cavity. In this case, breathing is mediated by changing the gas pressure under the cuirass. In this mode the gas pressure under the flexible cuirass may go from negative to positive in each breathing cycle. But unlike a normal cuirass ventilator, both the pressure and the vacuum are created by deformation of the vest itself.
This is not quite as energy efficient as the mode described above in which a steady direct mechanical contact is always maintained between the vest and the torso. However, the volume change in the gas space between the vest and the skin can be quite small even in the flexible cuirass mode of operation.
The conformal mode of operation is more energy efficient compared to the flexible cuirass mode of operation, but the expanding flexible cuirass version of this CVV may be more comfortable to wear. The conformal mode of action of the CVV allows the CVV to be worn under clothing more discreetly than the flexible cuirass mode of operation.
In the version of the CVV for use under clothing, the lengthening mechanical elements are desirably incorporated into a form-fitting vest, at least a portion of which moves with the body during the inflation/deflation cycle.
For the CVV to work, at least a portion of the torso must move with the vest as it expands. A key realization in this regard is that though the vest must be stretchable around the part of the chest that expands, it is not desirable for the back portion of the vest to be made of a stretchable fabric.
Thus the CVV desirably contains at least two different types of fabric, one which is not very stretchable and the other which is stretchable to the extent which is required to enable the lengthening mechanical elements to move as they are designed to do, while also maintaining contact through the low gas pressure zone under the vest to the thorax.
If an adhesive is used to maintain contact between the CVV and the torso, then only a portion of the total area of contact between the torso and the CVV needs to be adhered. If on the other hand, a modest vacuum is created during the inhalation cycle between the CVV and a portion of the torso, said vacuum may only be applied to the front part of the torso, similar to the way that a cuirass works, or it may work better for the vacuum to go all the way around the torso. This second option avoids the need for gas tight seals along the sides of the torso which has been a problem for the Hayek Medical BCV device.
In the scenario in which a vacuum is applied around the entire torso area, the entire area which lies between the upper edge and the lower edge of the CVV, including the backside of the vest, would be within the vacuum.
The CVV is a combination of these functional components:
One version of the CVV involves a fabric sleeve which is connected to the flexible outer portion of the vest. This sleeve can be made of the same flexible fabric used for the front part of the vest, or it can desirably be a different material selected for low sliding friction against the expanding and contracting mechanical elements.
If the said sleeve is stretchable it may move with the tube as it lengthens. Alternatively, said sleeve may comprise belt loops which are not stretchable in themselves, but which are attached at intermediate points along the stretchable portion of the vest.
In the case that the lengthening mechanical elements within said sleeves are held close to the skin either by a vacuum or an adhesive, it is desirable for the inner surface of said sleeves to slip relative to the expanding mechanical element. This allows for a lateral displacement between the lengthening element and the skin which is desirable to avoid shear stress in the subcutaneous layers below the skin.
This method of attachment involving slidable sleeves or belt loops is preferred for the conformal version the CVV in which there is a very small separation distance between the lengthening mechanical elements and the skin below, because it allows the motion of the skin to be decoupled from the motion of the expandable structural elements. This will be less likely to cause lateral motion of the vest relative to the skin during the inflation/deflation cycle. On the other hand, the CVV can operate through an intermediate gas layer, comprising an air bubble between the low permeability portion of the vest and the skin. This method of operation comprises a flexible cuirass ventilator. In this case it is not important for the lengthening mechanical elements to slide during their motion. Said means of attachment creates a gas pressure mediated connection with the skin of the torso and thereby, a gas pressure mediated connection to the thoracic cavity.
The lengthening mechanical elements can slide through slippery rings or belt loops which are mechanically attached to the vest. The mechanical means of coupling can also be some form of sliding bearings, including bushings or ball bearings.
In a preferred embodiment of the invention the lengthening mechanical elements which actuate the expansion and contraction of the vest comprise elastomeric tubes which contain two different layers of elastomer and a manifold through which a hydraulic fluid is added and removed during each inhalation/exhalation cycle.
The inner elastomeric layer is desirably isotropic and has a relatively low modulus and hysteresis. This inner elastomeric layer desirably has lower density then the hydraulic fluid used, to minimize the weight of the vest.
During pressure cycling of the vest, this inner isotropic elastomer layer is in effect part of the pressurized fluid within the outer anisotropic layer, which will in most cases include strong high-modulus fibers in addition to the elastomer.
The outer elastomeric layer needs to have good oxidation resistance if the tubes are to last for many years as they should. That may rule out natural rubber which otherwise would have excellent properties for this layer. One desirable solution is to have most of the tube elastomer comprise natural rubber but then to have an oxidation resistant elastomer with low oxygen permeability on the outside of the tube to protect the natural rubber from oxidation and other issues such as ozone.
Said outer anisotropic elastomer layer needs to have a higher modulus in the circumferential direction of the tube compared to the longitudinal direction of the tube. That can be accomplished using helical fiber wound around the tube as in Example 2 and
IRON LUNG VENTILATOR: The Iron Lung ventilator is a negative-pressure ventilator that initiates inhalation by creating a partial vacuum around the thoracic cavity. The entire body is placed inside a vacuum chamber. The head remains outside of the chamber and a seal is made around the neck. Iron lungs can alternate between negative and positive pressure to actuate both inhalation and exhalation.
CUIRASS VENTILATORS: A more recent approach to negative-pressure ventilation is the cuirass ventilator, e.g., Hayek Medical's Biphasic Cuirass Ventilator (BCV). With the BCV, positive and negative pressures are applied only to the chest area.
German patent DE212014000239U1 describes an inflatable cuirass variant of the cuirass ventilator in which inflation pressure is used to expand a flexible cuirass; breathing is actuated by a pressure change under this flexible inflatable cuirass, rather than through inflation/deflation of the flexible cuirass per se.
U.S. Pat. No. 7,435,233B2 describes a variant of the cuirass ventilator in which two rigid shells surround the torso. And in permeable polymer layer it surrounds these two shells, and a mechanical mechanism causes the shells to separate to initiate inhalation. This causes an increase a volume inside the two shells around the body. This device would be extremely uncomfortable to use while sleeping. It expands and contracts to cause a breathing action via changing gas pressure around the torso. This device is not form-fitting nor can it be used under clothing. In this case the shells surround the entire torso, and the two halves are mechanically pushed apart to create the breathing action.
A recent refinement of the cuirass ventilator concept US patent application 20190105225A1 (AIR-AD), is being developed by RightAir (http://rightair.io). This modification uses a smaller cuirass for each patient that is customized to the patient's body shape. Additionally, the weight of the device is supported on the hips rather than the shoulders. The smaller volume of air under the cuirass improves the energy efficiency of the device compared to prior art cuirass ventilator devices, and therefore improves portability compared to the Hayek Medical BCV.
With both the iron6 lung and cuirass ventilators, a much larger volume of air than the lung's capacity must have its pressure changed during the breathing cycle.
SUCTION-DEVICE VENTILATORS: Prior-art exists for ventilators that use various types of suction devices attached to the chest to create inhalation. The Lucas 3 Chest Compressor by Stryker employs a suction device that, in addition to breathing support, can perform cardiopulmonary resuscitation by inducing heart compressions leading to pumping. The mechanism does not involve creation of a vacuum around the thoracic cavity.
The PXT ventilator from Delta Dynamics LLC (U.S. Pat. No. 10,478,375) expands the thoracic cavity via suction cups that are applied to the chest and attached to motors and gears on a rigid framework around the body. This is like the mechanism of Lucas Medical's Chest Compression System; this is not an ambulatory system.
INFLATABLE STRUCTURES: There are many examples of the use of inflatable structures to cause a mechanical motion such as WO1998049976A1 and US patent application 2005/0234292. Recently there has been a flurry of work on soft robots. The inventors are not aware of any prior art device that uses inflatable tubes or elongating structural elements to create a vacuum around the thorax.
The Hayek Medical BCV and the AIR-AD from RightAir LLC are the only somewhat portable negative pressure ventilators of which the inventors are aware. There are numerous positive pressure ventilators which are portable including Philips Respironics' Trilogy 100, Hill-Rom's Life2000, and Ventec Life Systems' VOCSN.
Among the prior art ventilators, the Trilogy 100 from Philips Respironics has the best energy efficiency, achieving ventilation of a typical patient with about 15 watts of power.
Example 1 is a simplified computational example of the core technology that makes the vest ventilator work, in the preferred version in which the lengthening mechanical elements are based on anisotropic inflatable elastomeric tubes.
In this example we model a single anisotropic inflatable tube formed into a toroidal shape, and then calculate pressure, shape changes, and energy needed to drive the shape changes that actuate the CVV. Although the model is developed by considering full circular toroids, only about 40% of the total circumference of such a toroid is used in the front, actuated portion of the CVV.
These toroidal segments are stacked up and linked to a hydraulic fluid source via a shared manifold; for the purpose of this example, 21 of these toroidal segments are used to form the front part of the CVV, as in features 11 or 21 of
To explain how the invention works consider
The inflatable tube forming the half toroid of
It is convenient to consider the full toroid as shown in
When the lengthening anisotropic tubes cover only a portion of the circumference around the patient, then the lengthening of the anisotropic tubes during the inhalation cycle must be greater than would be the case if the tubes went all the way around the torso.
Table 1 models two equilibrium states of the tube at 10% strain corresponding to 91 (column four), or 95 (column five). Results are presented for both a relatively low modulus elastomer (10% secant modulus equals 1 MPa) and a relatively high modulus elastomer (10% secant modulus equals 5 MPa).
Consider the case where the total circumference around the torso is 100 cm as in Table 1. If the circumference change around the torso during the breathing cycle is 4%, which implies a circumference increaseof 4 cm, this implies a 10% elongation of the 40 cm anisotropic tubes forming the CVV.
The strain conditions of Table 1 represent an upper bound for the lengthening mechanical elements of the CVV. A typical patient that has a 100 cm circumference and a breathing volume of 2 liters of air per breath would have a circumference changeof 1.5 cm. Example 2 uses this more realistic estimate for the lengthening of the mechanical elements.
For Table 1, we adjusted r4=15.92 cm so that circumference of the undeformed toroid is 100 cm. The pressurized tube radius r2=6 mm, modulus values for the tube wall M1=M2=(1.0 or 5.0) MPa. We modelled two differential pressures Pdiff inside the toroid versus outside the toroid: 2500 Pa and 5000 Pa.
Neither
Although in this example the inflating fluid is a nearly incompressible hydraulic liquid, it is also possible for that fluid to be a gas. Using an incompressible fluid instead of a gas reduces heat generation per cycle and energy that must be consumed to actuate each breathing cycle.
(Tables 1-3 also link the mathematical symbols used in this section with the numeral references in the drawings.)
This example elucidates the relationship between inflation pressure of an anisotropic tube which forms the toroid, the elastic stress in the tube wall, the shape of the toroid, and the hoop stress Pdiff due to the pressure difference inside the toroid versus outside the toroid. This simplified treatment does not account for resistance to lengthening of the tube from friction between the tube and the sleeve in which it resides.
The effective pressure Pdiff between inside the toroid and outside of the toroid has one component which is caused by the gas pressure difference, and a second component due to mechanical contact between the vest and the torso. Outside the toroid, this is simply the atmospheric pressure, and inside the toroid, it is possible for the gas pressure to be lower than Pdiff (in order to maintain good mechanical contact between the CVV and the torso).
The individual toroidal segments of the vest ventilator should not be attached to each other in the vest so that each inflatable tube can move somewhat independently from its neighbors. There needs to be clearance between next neighbor inflatable toroidal tubes to allow for flexibility of motion for each individual inflatable tube within the vest. Because of this there is a gap between next neighbor anisotropic inflatable tubes, as shown in
The middle toroidal tube shown in
This example uses simplifying assumptions to enable an analytical model which is easier to understand than the full-out finite element analysis of a CVV. The simplifications used for this example and Table 1 are listed below:
The simplifying assumptions above reduce the complexity of explaining the mechanical behavior of the CVV device based on anisotropic inflatable tubes. The resultant analytical model based on these simplifying assumptions makes it simple to show the relationship between the inflation pressure in the tube and the vacuum level that can be created inside the toroid. It also makes it simple to calculate the energy expended per inhalation cycle.
Actual devices can be modeled with a finite element modeling method, in which case it is not necessary to make the simplifying assumptions of this example.
Table 1 shows typical results from such a calculation for realistic anisotropic elastomer tubes. The exact state modeled corresponds to 91 or 95 of
It is desirable to actuate the CVV by injecting hydraulic fluid at a controlled rate. This also facilitates detailed control of the rate of inhalation and exhalation.
For the purpose of calculating the energy used per cycle, one can get a reasonable estimate by assuming that the inflation pressure goes linearly from a low value to a high value and back. (The actual pressure inside the tubes will always be less than or equal to the maximum pressure in the tube, so although the actual pressure versus time curve will not be linear, this is at least a reasonable estimate for the hydraulic work done during the inhalation cycle.) This corresponds to the pressure versus axial strain lines 94 and 98 of
Given this simplification, the energy required per breathing cycle will be approximately half of the PV energy indicated by multiplying maximum hydraulic pressure Pi times the hydraulic fluid volume change inside anisotropic tubes forming the front part of the vest during the breathing cycle, as indicated by the area under the pressure versus axial strain lines of
The pressure versus axial strain line indicated by 94 represents a high-side estimate for the hydraulic inflation pressure versus axial strain, and 98 shows a low side estimate for this property.
Table 1 assumes an axial toroidal circumference around the thoracic cavity of 100 cm, and uses a high side estimate of the circumferential change during a breathing cycle of 4 cm, which applies to a toroid segment that starts out at 40 cm. (These dimensions were selected so that the axial strain in the toroidal segment would be 10%, and the circumferential strain around the thoracic cavity would be 4%, which is higher than the actual strain would be for most patients.)
The pressurized radius of the anisotropic tubes r2 was adjusted so that the cross-sectional area perpendicular to the tube axis is 1.00 cm2.
By making these adjustments it is easier to visualize the relationship between strain and volume change inside the anisotropic inflatable tubes because a 1% circumferential strain will occur for each cubic centimeter of hydraulic fluid injected into the toroid.
Column 4 of Table 1 describes a relatively low modulus elastomer tube (1.0 MPa, defined as the 10% secant modulus similar to feature 92 of
The deformed dimensional state of the inflatable anisotropic tubes shown in columns 4 and 5 of Table 1 are the same. The outer diameter of the tubing forming the toroid is 1.13 cm before and after deformation, and the modeled state corresponds to 10% strain in the axial direction of the toroidal segment (40 cm long before inflation, 44 cm in the deformed state of Table 1).
The actual shape adopted by the inflated toroid is a function of shape of the torso lying below the CVV and the volume of fluid inside the toroidal segment tube. If the vacuum level under the CVV is high enough, the anisotropic inflatable tubes will follow the shape of the torso below. If the vacuum level between the CVV and the torso varies between nearly zero to its maximum value, then there may be gaps between the inner surface of the CVV and the torso of the patient during the breathing cycle. In the case that there is a constant vacuum within the CVV adequate to maintain contact with the torso below even at the end of the exhalation cycle, this constant vacuum does not enter into the energy required for the breathing cycle.
The volume of liquid inside the tubes which form the toroidal segments within the CVV controls the hydraulic pressure inside the tubes, which also depends on the difference between the pressure inside the toroid versus the pressure outside the toroid Pdiff (this is the pressure differential which drives ventilation), and the elastic stress of the various layers of the inflatable anisotropic tube.
The wall of the tube which forms the toroid can have different modulus values in two separate layers. Between r1 61 to r2 62, the tube wall 65 is isotropic prior to deformation. Between r2 62 to r3 63 is an anisotropic (typically fiber-reinforced) elastomer layer 66 which can be modeled as if it is a microscopically uniform material with anisotropic modulus values in the axial direction of the tube and of the circumferential direction of the toroid M2 vs. the modulus M3 in the circumferential direction around the anisotropic portion of the tube wall 66.
In an optimized anisotropic inflatable tube for the CVV, the inner isotropic elastomeric layer 65 between r1 61 to r2 62 should have low stiffness and typically a durometer between 20 to 60 Shore A, and preferably lower density than the hydraulic fluid. It should also have low hysteresis over the course of the normal deformation of the tube to minimize wasted energy and heat production. It is important that this layer of elastomer not have much self-tack, to prevent it from collapsing and not coming apart readily. Both elastomer layers 65 and 66 need excellent resistance to swelling by the hydraulic fluid.
Examples of appropriate elastomers for this inner layer 65 include natural rubber, EPDM, synthetic cis-polyisoprene elastomer, and thermoplastic elastomers with relatively low durometer values, below 60 Shore A durometer. Silicone elastomer may also be used.
The elastomer used in 66 between r2 62 and r3 63 should have low stress relaxation (important because the elastomer retraction helps with the exhalation of air by the patient), better oxidation resistance than natural rubber, and excellent fatigue properties as well as fiber adhesion properties. Some of the elastomers that are particularly suitable here include elastomer blends typically used in tire sidewalls, NBR rubber, and HNBR rubber. A desirable composition to use for this compound formulation comprises nano fibers of polyaramid pulp with a mixture of NBR and HNBR.
The axial modulus M2 in the outer anisotropic layer 66 of the anisotropic tube need not be the same as the modulus M1 in the isotropic elastomer layer 65 that lies between r1 61 to r2 62, 65, although we have adopted that simplification for this example.
It may be desirable that M1 and M2 are significantly different. The elastomer layer 65 may for example be optimized to minimize viscoelastic hysteresis per cycle, while the fiber-reinforced elastomer layer 66 may be optimized to minimize creep and stress relaxation, buckling tendency, and also to optimize the fatigue resistance at the fiber/elastomer interface.
Alternatively, the entire anisotropic tube wall can be formed from fiber reinforced elastomers as in the outer layer of the tube 66 shown in
The modulus in the circumferential direction M3 of the anisotropic portion of the tube wall 66 is significantly higher than the modulus M2 of the anisotropic portion of the tube wall in the axial direction of the tube (which is perpendicular to the page in
The three vectors defining M2, M3, and M4 (the thickness direction in the tube wall 66 are orthogonal at all points along the inflatable toroid. It is possible to generalize the behavior of these anisotropic inflatable toroids regardless of what material and methodology is used to create the anisotropic properties in the tube which forms the toroid.
Said anisotropic properties in the tube wall can be created via fibers embedded into an elastomer matrix, or through differential orientation in the elastomer matrix itself. In the case that fiber reinforcement of the elastomer is used to create the anisotropy, the fibers used within the elastomer matrix may be either long fibers as shown in
Said elastomer matrix may comprise a cross-linked elastomer or a thermoplastic elastomer such as triblock polymers (such as Kraton™ G), dynamic vulcanizate thermoplastic elastomers such as Santoprene™, thermoplastic polyurethanes, or multiblock polymers like Hytrel™
One of the simplifying assumptions deployed here is that the tube cross section remains circular even though the tube is bent around into a larger toroid. This is incorrect, but the errors introduced by this assumption are small if the ratio of the toroid radius r4 34 to the tube radius r3 63 is greater than 10.
We have considered values of axial versus circumferential modulus of the tube that are reasonable for a fiber reinforced elastomer. Such realistic numbers are used in our finite element modeling of the vest, but for this example the assumption that r2 is a constant is equivalent to assuming an infinite modulus in the circumferential direction of the tube at radius r2 62.
When the tube is inflated with a volume of incompressible liquid, all dimensions except for r2 62 will change given the simplifying assumptions above. The tube will get longer to make room for the added fluid, which means the circumference of the toroid increases in direct proportion to the volume of liquid introduced into the inflatable toroid, and the wall thickness of the tube must decrease.
The relative increase in circumference around the patient's thoracic cavity is equal to the axial strain in the toroidal portion of the CVV 11 or 21. This strain is determined by the amount of liquid added to or removed from the inner part of the tube. Each cm of lengthening of the inflatable tube as in Table 1 requires the addition of a volume of hydraulic fluid which depends upon A1 (1.0 cm2); as hydraulic fluid is introduced into the anisotropic tube which forms the toroidal segment. Given an initial length of the toroidal segmentof 40 cm, this means that each cm3 of liquid put into the toroid will cause a circumference increase around the patient's torso of 1.0%, while the strain in the toroidal segment is equal to 2.5%.
The energy input per cycle is delivered through the movement of the hydraulic fluid into the anisotropic inflatable toroid, which can be visualized as fluid flowing from a low-pressure zone to a high-pressure zone. From an energy analysis point of view, this is equivalent to hydraulic fluid driving the expansion of a hydraulic cylinder with a pressure that varies with extension of the cylinder.
The hydraulic energy supplied by the driver could be based on a gear pump or a movable piston within a hydraulic cylinder driven by an electric device for example. A bellows pump linked to a mechanical driver such as a rack and pinion is an especially good way to drive the motion of hydraulic fluid, because as long as the bellows remains intact there will be no leakage of fluid.
One can visualize this by imagining a plane perpendicular to the fluid flow where the hydraulic fluid enters or leaves the pressurized inflatable tube forming the toroid of
Part of this energy is dissipated in each cycle by hysteresis in the elastomer, and part is recoverable as the pressure is released. In the case that the toroid is pressurized using a small hydraulic gear pump, it is even possible to recover some of this energy as electricity to charge the batteries when the flow through the gear pump is reversed. Doing so has the potential to increase battery life substantially.
The inflated toroid will adopt a shape that depends on an equilibrium of forces within the toroid of tubing itself. This shape is determined by the volume of hydraulic fluid contained inside the toroid of tubing, which results in a force F1 tending to increase the toroidal circumference.
Elastic stress and pressure are at equilibrium when the toroid is still. The hydraulic pressure P1 inside radius r2 62 creates an axial force equal to F1:
F
1=2*πr22*P1
(There are two sides of the half circle of toroid pushing the two halves of the pressurized toroid apart. We have adopted the convention that forces tending to increase the circumference around the torso are positive and forces tending to reduce the circumference are negative.)
The pressure difference inside minus outside of the toroid Pdiif creates a force F2 which is pushing the two halves together in the case that there is a relative vacuum inside the pressurized toroid. This force F2 is given by:
F
2
=A
2
*P
diff where A2=(2*r3+h)*(1+S1)
The elastic retractile force F3 in the tube wall is given by:
F
3=2*A2*S1*M2 where A2=(πr32−π12),
and the modulus M1=M2 applies to the axial direction within the tube wall. The axial strain in the tube wall is S1, taken as the maximum value of strain during the breathing cycle, 10% in Table 1.
These three forces add up to zero:
F
1
+F
2
+F
3=0.
The hydraulic fluid pressure P1 67 inside of r1 61 will essentially be at a constant pressure throughout the tube at any moment in time, with only minor differences due to viscous resistance to fluid flow and acceleration of the fluid. That hydraulic pressure will increase during the inhalation portion of the breathing cycle as fluid is introduced into the toroidal segment by the hydraulic driver. For Table 1, and 94 and 98 of
The pressure within the isotropic elastomeric layer 65 will be nearly the same as the hydraulic fluid pressure at the fluid/elastomer interface at r1, with a small internal pressure gradient due to the elastic stress as one goes through the elastomer between r1 61 to r2 62. At r2, there is a change of the slope of hydraulic pressure versus radius; in the case of a uniformly anisotropic outer portion of the tube wall between r2 to r3, the pressure does not go through a sudden change but the slope of the hydraulic pressure versus tube radius curve does change.
However in the case we have created as a simplification, where r2 is constant, the hydraulic pressure has a step-change at the interface at r2 between the inner isotropic elastomer layer 65 to the outer anisotropic elastomer layer 66 residing between r2 to r3. In this case, from r2 to r3, the pressure inside the fiber reinforced elastomer layer is approximately equal to the environmental pressure outside of the tube.
The hydraulic pressure within the tube P1 67, inside radius r2 62 causes a force in the axial direction of the toroidal tube which actuates the expansion of the vest around the thoracic cavity.
As shown in
Insofar as the modulus M3 in the circumferential direction of the outer tube wall between r2 to r3 is much higher than the axial modulus M2, inflation pressure inside the tube will cause the toroid radius r4 34 to increase more than the tube's outer radius r3 63.
Because of the simplifying assumption of Example 1, that r2 62 does not change at all, r3 63 will be somewhat reduced during the axial deformation of the tube.
The secant modulus values used here are so-called engineering moduli, which relate to the original dimensions prior to deformation. The secant moduli used in this calculation are determined by a line from zero stress and zero strain to the stress at 10% strain, as illustrated by 103 of
The slope of the line 98 shows the hydraulic pressure versus axial strain of the toroid for the low axial modulus case of M2 (1.0 MPa) in which Pdiff goes from 0 to −2500 Pa. The slope of the line 94 shows the internal pressure versus axial strain of the toroid for the high axial modulus case of M2 (5.0 MPa) in which Pdiff goes from zero to −5000 Pa. (Per our simplifying assumptions, M2=M1).
At zero strain in the tube wall, there is no force contribution from elastic stress in the tube wall. The component of the force due to hydraulic pressure which is maintaining the vacuum F2 changes slightly with the radius of the toroid r4, which changes with the axial strain in the toroid S1.
Both the radius r4 and the circumference around the thoracic cavity increase in direct proportion to the axial strain in the toroidal segment.
In a breathing cycle, the pressure difference between inside the toroid (comprising the torso containing the thoracic cavity) minus outside the toroid Pdiff normally changes from nearly zero at the end of the exhalation cycle to a maximum negative value of Pdiff as shown in
We measured the circumference increase of the torso surrounding the thoracic cavity for several adult subjects and found the range of circumference increase to be between 1 cm to 4 cm. For the particular 100 cm radius r4 of Table 1, this implies a circumferential strain between 1-4%. For the preferred types of CVV shown in
For the particular cases modeled in Table 1 and
The low side estimate of pressure at 10% axial strain (in Table 1) is based on a Pdiff value of −2500 Pa between inside versus outside the toroid, and a relatively low elastomer modulusof 1.0 MPa. The higher pressure estimate of the hydraulic pressure is based on a Pdiff value of −5000 Pa and a rubber modulusof 5 MPa.
Table 1 is based on one single point in the inflation curve of two different toroids of anisotropic inflatable tubing at a circumferential strainof 10%, which form one tube which is a part of the actuated portion of a CVV as in
Table 1 also shows the total energy consumed to cause the deformation of a single anisotropic tube as in 94 and 98 of
Example 2
This example demonstrates one way to create anisotropic elastomer tubes which are suitable for the actuated section of a CVV.
Experimental: A silicone tube with an inside diameter r1 of 0.479 and outside diameter r2 of 0.635 cm was placed onto a polished metal shaft using a talc layer to prevent sticking. A room temperature vulcanizing silicone composition (moisture cure silicone based on hydrolysis of acetate ester groups) was applied to the outside of the tube followed by wrapping a high modulus dental floss around the silicone tube, followed by a final layer of RTV silicone. This tube was placed into an oven for final curing.
The fiber wrapped silicone tubing was prepared as described above, then the actual tubing was cut up to measure stress versus elongation as in
The string which was wrapped around the outside of the tube was near, but not touching the next neighbor string forming the helical winding. The string consists of a multifilament bundle of individual fibers, and the silicone adhesive soaked between those individual fibers to give particularly good adhesion.
The string wraps around the silicone tube at a helix angle defined by the angle between the tube's axis of symmetry and the local axis of symmetry of the fiber helix.
The fiber was wound around the silicone elastomer tube which has an inside radius r1=0.479 cm and outside radius r2=0.635 cm. The moisture curing silicone plus the helically wound fiber made the measured outer radius r3=0.639 cm based on the outer diameter of the helically wound tube.
The helix angle 71 for this fiber is 87.15 degrees at zero strain 70 (where the hydraulic pressure inside the tube 76 is zero). Table 2, Column 4 refers to the pressurized tube shown in 80 in which the helix angle 81 is 86.87 degrees at 10% strain (where the hydraulic pressure inside the tube 86 is 0.152 MPa.
The anisotropic tubing of Example 2 has a 10% secant modulusof 1.91 MPa, as can be seen from
For the purpose of Table 2, we have adopted realistic values for the circumference increase around a human torso during a breathing cycle, and we have adopted a mid-range vacuum pressure −3750 Pa for the maximum value of Pdiff.
Not shown in
Table 2 uses the model of Example 1 to compare these two different strain ranges for the tube described here in this example and illustrated in
Table 2 uses actual dimensions of the sample tube created, and models two different deformations of the anisotropic tubing.
Table 2 and
The higher range of hydraulic pressures between 3.75-7.62% will tend to reduce buckling of the toroidal segments, compared to the case where pressure goes to zero at the end of the exhalation cycle.
Operating between 3.75-7.62% strain in the tube wall will also increase the retractile force at the end of the exhalation cycle, which would be useful for some patients needing a relatively high expiratory pressure due to COPD.
Column 4 of Table 2 applies to the deformation 93 of the anisotropic tubes of
Table 2 shows the behavior of a CVV based on anisotropic tubes of
The effective differential pressure level at the end of the inhalation cycle Pdiff in Table 2 is taken to be 3750 Pa; this is halfway between the upper and lower Pdiff limits of
Silicone is a desirable material for making prototype anisotropic tubes of the CVV due to the simplicity of bonding helically wound fibers around extruded silicone tubing. There are however other suitable materials for these anisotropic tubes.
Tubes having the needed strength and modulus values can be made from many different elastomer/fiber combinations. The particular design of
Example 2 is based on a 50 Shore A durometer silicone elastomer tube of
The horizontal axis of
The inflation pressure inside the anisotropic tube is calculated via the balance of forces which must add up to zero, as illustrated by
The hydraulic pressure Pi increases primarily due to the elastic stress in the tube wall for the particular cases illustrated.
These three forces are due to the elastic stress in the tube wall F3 113, the force arising from the differential pressure between the inside of the toroid and the outside toroid F2 112, and the resultant force F1 111 from the hydraulic pressure inside the anisotropic tube. The force equilibrium (F1+F2+F3=0) is used to calculate the hydraulic pressures shown in
The expanding toroidal segment is always in equilibrium with the hydraulic inflation pressure P1 and the differential pressure Pdiff.
Between these bounds are realistic data that refer to Table 2 showing two different breathing deformations 93 and 97 in which a 100 cm circumference around the thoracic cavity of a patient increases to 101.5 cm (which implies elongation in the axial direction of the 40 cm long initial state of the toroidal segment by 3.75% compared to the initial axial length of the toroidal segment before the breathing cycle begins), as shown in Table 2.
We adopted a value for the change in circumference around the thoracic cavity during the breathing cycleof 1.5 cm (corresponding to a normal breath for a person with a 100 cm circumference around the thoracic cavity for the toroid).
We calculate the volume change of the hydraulic fluid inside the experimentally prepared anisotropic toroidal segment of tubing to be 1.875 cubic centimeters.
The maximum hydraulic fluid pressure which occurs at the inflation of the anisotropic elastomer tube of
In Table 2, 20 tubes are stacked to form an active portion of the vest that is 30 cm high. The total volume of hydraulic fluid moving in and out of the vest is equal to (1.875*20=37.5) cm3. This means that if the hydraulic pressure Pi change for each cycle is 0.052 MPa, each cycle will use 0.11 J/cycle. The equivalent energy used per cycle in which the tube wall strain goes from 3.75% to 7.62% as in column 5 of Table 2 would be 0.18 J. At a typical breathing rate of 12 breaths per minute, this implies a power consumption for the entire vest (containing 20 anisotropic tubes) between 0.45 to 0.74 watts.
Detailed finite element modeling of situations where the curvature of the tube is more complex than a circular form allows the prediction of critical conditions that could lead to buckling.
Column 5 of Table 2 models the situation where the anisotropic elastomer tubes of the CVV do not return all the way to their unstressed state during the exhalation, but rather return to the stressed state at 3.75% elongation. The practical advantage of this breathing cycle is that it helps with expiration, as is needed in some lung conditions such as COPD.
The analytical model of the deformation of the actuated section of a CVV which uses anisotropic inflatable tubes for the lengthening mechanical elements, described fully under Example 1, is used here to evaluate four examples of a CVV with differing anisotropic tube diameters.
Table 3 shows the results of these calculations. As with Table 1 and Table 2, the circumference around the patient is taken to be 100 cm, and the elongation of the circumference during the inhalation cycle is taken to be 1.5 cm. The number of anisotropic inflatable tubes forming the actuated portion of the CVV, as in 11 of
Table 3 shows four different radii r2 for the pressurized zone inside the anisotropic tubes, 0.8, 0.4, 0.2 and 0.1 cm. Table 3 shows that as the pressurized radius r2 of the tube is reduced, the inflation pressure inside the tube must increase in order to resist the force due to Pdiff.
Table 3 shows that the total hydraulic energy needed to create the breathing deformation of the CVV is reduced as the anisotropic tube diameter is reduced. As the tube diameter decreases, the pressure needed to counter the compression due to Pdiff increases as the cross-sectional area of the tube also decreases. The total volume of liquid that needs to be put into the actuated section of the CVV goes down with (1/r2)2. At the same time, the number of tubes required to form the 30 cm high actuated portion of the vest increases proportional to (1/r2)2.
The net effect is that the energy efficiency of the CVV is increased as smaller diameter, higher pressure anisotropic tubes are used to form the vest.
As smaller tubes are used, the number of tubes needed for the actuated section of the CVV increases, requiring more connections to be made between the hydraulic manifold (such as 16 or 26) and the anisotropic tubes. Those connections are expected to be a primary location of failures, so a CVV with more tubes may be less reliable than a CVV with larger and fewer anisotropic tubes.
One way to look at this would be to pick an optimal hydraulic pressure range for operation of the CVV and then use that pressure to calculate the desired radius of the anisotropic tubes.
Hydraulic pressure used in the CVV must be low enough so that it is not dangerous to the patient in case of a leak; also the higher the pressure the more likely it is that the system will leak and that is a serious problem because it could result in loss of function.
It is possible to create redundant designs, for example, one can have two sets of inflatable tubes either one of which can actuate the motion of the vest. If one of those subsystems fails because it leaks, the other one would still be functional. However, that would not take care of catastrophic damage in which both systems are compromised simultaneously.
The energy use of the CVVs of Table 1 to Table 3 are quite low compared to the energy consumption of a leading commercially available ventilator, the Trilogy 100 from Philips Respironics. The Trilogy 100 consumes about 19 watts in normal operation for a typical patient. In standby mode, it consumes 0.7 amps, 10 watts. That means that the Trilogy 100 is consuming about 9 watts for the actual breathing cycle energy. As can be seen from the last two lines of Table 1, Table 2, and Table 3, the CVV can be operated at significantly lower power.
The version of the CVV shown in
The pressure versus axial strain curve shown by 93 represents experimental data as shown in more detail in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/063348 | 4/12/2020 | WO |