It is to be understood that while certain forms of the present invention are illustrated, it is not to be limited to the specific forms described and shown. The illustrated application is for an air-filled seat cushion, though other applications would include products such as bedding, air-casts, air inserts for footwear, cushioning for sensitive electronics and the like. It will be apparent to those skilled in the art that various applications can be made from this technology without departing from the scope of the invention.
Referring now to
In the manufacturing process of the present invention, a cylindrical port 16 is formed to mate with a shut-off valve that allows inflation of the air cell matrix, adjustment of pressure based on user preference, and deflation for easy transport from place to place. Additional ports can also be formed to provide further control of air flow. In one embodiment, ports 18 and 20 are created similar to port 16, to allow shutoff of flow between right and left sides of the air cell matrix. This could provide the added benefit of stabilizing the user from side to side, especially useful for maintaining proper sitting posture or preventing excessive body lean in activities where a stable upright position is desired, such as flying aircraft or racing automobiles
Referring now to
In the preferred embodiment of the invention, some air passages are larger in size to allow for more rapid inflation and deflation to occur. These passages are strategically placed along the air flow route from the inflation valve, through air passages to ports 18 and 20 and into the left side of the air matrix. The larger passages effectively “spread” the flow of air, exposing more of the small air passages 24 to maximum flow during inflation and deflation. Flow in and out of an inlet valve attached to port 16 is therefore more closely matched to the sum of what the internal passages can accommodate. The result is a faster inflation and deflation of the entire matrix, making this process much more convenient, which is especially useful for travel purposes.
It should be noted that the parting line 28 between the upper and lower air cell halves can be altered to further tailor the design. In other words, the air cell halves do not need to be equal in thickness. For example, a shallow bottom half with taller top half could be used to create thicker plastic on the bottom and thinner plastic on the top, providing more robustness on the bottom with more comfort on the top half. The depth of cells can therefore be used to control the amount of thinning that occurs when the plastic forms into the cells for a specific function. At its extreme, the air cells could have a fully formed top half mated to a flat bottom. This however would create a tendency for the cells to shear over as discussed previously and would cause other detrimental effects.
In another embodiment of the invention, holes or slots could be added in the webbing area between air cells, so that air could flow from the top half of the air matrix through to the bottom and visa versa. This increased in air flow could be used to keep the user cooler than without holes.
In yet another embodiment, ports in the air cell matrix could be configured so as to link multiple parts together, creating a larger supporting surface as needed. This could be used, for example, to create a bedding surface from multiple smaller parts. This would have the advantage of being able to further tailor the system based on need, while also avoiding the cost of building a much larger mold for production (a significant cost).
For any of these embodiments, a control system could be added to control pressure automatically, by used of an electric air pump and electronic control box. This could be used, for example, to cycle the air pressure through separate quadrants, or to maintain pressure in multiple sections at different levels.
The preferred method of manufacture of the present invention is twin-sheet thermoforming. This process has large advantages over prior approaches in the manufacture air-filled seating devices. The following section helps to summarize this process from beginning with plastic selection to ending with finished parts.
The twin-sheet thermoforming process begins with extrusion of the chosen plastic to a desired film thickness. Exact thickness of plastic should be determined before production by forming parts from various plastic thicknesses first (for example, targeting 0.020″ thick film). This is because some amount of sagging occurs when the plastic is heated and before it is vacuum formed against the molds. This sagging thins the material slightly, so that the resulting thickness for finished parts is lessened to some degree. Since extrusion companies have minimum orders, and larger runs reduce overall cost per pound of film, it is important to take the time to determine what the right thickness is based on the actual forming process. This will avoid purchasing plastic that is either too thin or too thick.
Plastic is then extruded based on the width necessary to envelope the mold and be clamped into “clamp frames” outside the edges of the mold. Typically, about one half inch in extra width is needed on each side of the mold to permit this. As discussed previously, a number of plastic types could be used for the present invention, including but not limited to urethanes, vinyls, polypropylenes, polyethylenes and special formulations that combine some of these together (for example vinyl with urethane to minimize cost).
The extruded plastic is then delivered to a company capable of twin-sheet thermoforming thin plastic film. As mentioned earlier, this process involves simultaneous thermoforming of top and bottom halves of a plastic part, then quickly joining these halves together while at the plastic's forming temperature. In the case of the present invention this would result in a complex matrix of air cells, interconnecting passages and one or more inflation features in a single manufacturing process, greatly reducing manufacturing costs over previous methods. Also as mentioned earlier, one major benefit of this method over prior approaches is in the elimination of RF welding. By forming both sides at the same time and mating both halves together in the same operation, many subsequent problems with RF welding can be eliminated. Weld lines can be much more tightly controlled, handling damage from RF welding can be avoided, and final trimming can be accomplished before the thermoformed parts are ejected from the vacuum molds. The production rate with twin-sheet thermoforming can be accomplished much faster than single sheeting and RF welding, minimizing machine time and therefore cost.
Twin-sheet thermoforming offers a number of other benefits which may not be apparent to those skilled in the art of thermoforming. First, twin-sheet thermoforming allows much more elaborate designs to be manufactured as detailed above, enabling the creation of the present invention and variations within its scope. Second, twin-sheet thermoforming allows creation of interfacing ports for the attachment of air valves and the like, as opposed to previous methods which require additional processes for this.
Third, twin-sheet thermoforming allows interconnecting air channels of multiple designs to easily be designed in and formed, as well as features to avoid excess thinning of plastic for the present invention. Fourth, twin-sheet thermoforming is very repeatable, ensuring high-quality parts can be consistently made, unlike other manufacturing methods. Fifth, when parts are joined in this process, heated material pushes inwards at the weld seam, forming a “bead” of material along all welds for extra strength. This is especially important when starting with a thin film of plastic as with the present invention. RF welding, in contrast, relies on the width of the weld, or “weld margin” for sealing strength. Sixth, the twin-sheet thermoforming process results in slightly thicker plastic closer to the parting line 28, because it cools when it first touches this area, then stretches into the depth of the forming cavities. This material distribution allows the vertical air cell walls to maintain a tube-like shape while under the load of the user, allowing air to flow more freely in a horizontal direction and out the perimeter of the air cell device. Finally, twin-sheet thermoforming allows parts to be trimmed as part of the forming process, by designing the molds to cut through the forming material as they are pressed together, removing the “flash” (waste material) used to hold the plastic in clamp frames described earlier.
Twin-sheet thermoforming has some additional benefits as well. It allows the function and/or look of the product to be changed by simply using a different thickness, type, or color of plastic. The same tooling can support manufacturing with all of these options, greatly reducing manufacturing cost to make these changes. If a change in design needs to be made, a new set of forming plates can be machined and attached to the mold bases (which interface with the manufacturer's vacuum and cooling systems) used with the initial forming plates. The cost of a new set of forming plates for the size of the present invention is very reasonable (less than $3,000 depending on complexity).
For the forming process, two “blanks” (pre-cut sheets) of plastic 36 are loaded into their respective clamp frames, and then moved into a large oven that provides even heating of the blanks. This oven is usually computer controlled, and has an infrared eye that records temperature across the blanks when they exit the oven to ensure proper temperature control. The heated blanks are moved between molds A (30) and B (32), where one blank is vacuum formed against the mold A and one is vacuum formed against the mold B. Immediately following this, both molds are brought together so that the top half of the part is fused to the bottom half at the parting line. It is crucial that the forming and joining process happens very quickly, as heat is quickly lost from thin plastic. If timing from the oven to joining of halves is excessive, proper fusing of the materials will not occur.
The formed part is then ejected from the mold, die-cut on the perimeter (if not already trimmed in the mold), and ready for installation of pneumatic fittings to complete the system. Because of the weld bead, it may be necessary to smooth out the inner bore of the interfacing ports so that they properly seal tightly against their respective pneumatic fittings.
Utilizing the twin-sheet thermoforming process to create the present invention has valuable benefits over methods to create prior air-filled devices. The benefits of this manufacturing approach make the present invention feasible in terms of design and cost, allowing its unique function and performance to be manufactured as efficiently as possible.
It is to be understood that while certain forms of the present invention have been illustrated, it is not to be limited to the specific forms described herein. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention or its potential applications.
This document contains the non-provisional submittal for provisional application 60/811,641, which had a filing date of Jun. 6, 2006. The provisional application was entitled “Conforming Air Cell Design and Method of Manufacture” authored by Mark Massmann.
Number | Date | Country | |
---|---|---|---|
60811641 | Jun 2006 | US |