Conical filter element with funnel directing particles to a trap

Information

  • Patent Grant
  • 11224830
  • Patent Number
    11,224,830
  • Date Filed
    Thursday, August 15, 2019
    4 years ago
  • Date Issued
    Tuesday, January 18, 2022
    2 years ago
Abstract
The invention relates to a filter element (1, 31) for use as a particulate filter in a cooling circuit (100), in particular of an electrochemical energy converter, having a conical grid support structure (3, 33). The filter element features at a first axial end a supply opening (23, 49) for supplying a cooling medium to be filtered into the filter element (1, 31) and the grid support structure (3, 33) carries a filter medium (4, 34). The filter element (1, 31) has axially opposite the supply opening (23, 49) a funnel (16, 40) for axially discharging and collecting particulate impurities, and is closed at second axial end. The conical grid support (3, 33) structure tapers from the first axial end to the second axial end. An arrangement of a fuel cell (102) having a a cooling circuit (100) with the filter element is disclosed.
Description
TECHNICAL FIELD

The present invention relates to a filter element for use as a particulate filter in a cooling circuit of an electrochemical energy converter and arrangement with an electrochemical energy converter and a cooling circuit. As an electrochemical energy converter, a fuel cell or several fuel cells, in particular stacked fuel cells, are particularly preferred.


BACKGROUND ART

In the field of fuel cells, particulate filters are used for filtering particulate impurities contained in the cooling medium, e.g. due to production and assembly. In doing so, the dirt in the fluid is typically filtered out of the fluid in a filter medium by a so-called depth filtration. The dirt adheres firmly both inside and on the surface of the medium to the fibers and structures located there and thus reduces the free cross-section of the medium above a certain amount of dirt, so that less flow cross-section is available for the volume flow and the pressure loss across the medium increases.


Filter elements for fuel cells with conical surfaces are well known. DE 101 01 828 B4 discloses a corresponding filter element in which, among other things, plastic non-woven fabric, cotton non-woven fabric or metallic materials with a mesh- or fabric-like structure are used as filter medium. In this case, however, the filtered particulate dirt can gradually block the filter medium.


DISCLOSURE OF THE INVENTION

Based on the afore-mentioned background art, the objective of the present invention is to provide a filter element for high flow velocities requiring little installation space and having a low pressure loss compared to the volume flow and maintaining this low pressure loss even after having accumulated a certain amount of dirt.


The present invention solves this objective by providing a filter element according to the claims.


A filter element according to the invention is suitable for use as a particulate filter in a cooling circuit of an electrochemical energy converter, in particular of a fuel cell. The cooling circuit can be part of an arrangement comprising the electrochemical energy converter.


The filter element comprises a conical grid support structure with a longitudinal axis A. As the name already suggests, the grid support structure is grid-shaped and can consist of struts in particular. The grid support structure features a supply opening at a first axial end for supplying a coolant to be filtered into the filter element. The filter element is closed at another axial end.


The filter medium is carried and preferably supported by the grid support structure. For example, the filter medium can be disposed from the inside, i.e. from the side of an interior space of the grid support structure, or from the outside at the grid support structure. The conical grid support structure tapers from the first axial end to the second axial end. In this way, an axial flow through the filter element is advantageously made possible when the filter element is mounted in a pipe of a fluid system, in particular of a cooling circuit of an electrochemical energy converter. The filter element is designed to be axially flowed through from the first axial end to the second axial end. The term “axial” in this context refers to the longitudinal axis of the filter element, which corresponds to a main flow direction in a usage arrangement.


According to the invention, the filter element features a funnel in a portion opposite the supply opening. The funnel is intended for axial discharge from the surface of the filter medium and for collecting particulate impurities.


This axial discharge of particulate impurities counteracts a pressure loss due to increasing loading of the filter medium.


The grid support structure can define a circumferential surface. The circumferential surface has a conical shape. Advantageously, the circumferential surface cannot be a closed surface but can be provided with grid windows or with windows in the grid support structure, in which a filter medium is disposed. It can be defined by struts, e.g. circumferential struts and longitudinal struts for connecting the longitudinal struts. The grid support structure can feature a filter medium along its circumferential surface or, for example at a slight distance from the circumferential surface, parallel to it.


Terminally, i.e. at a terminal end, the filter element can feature a collecting chamber for particulate impurities, in particular a dirt collecting chamber with closed wall towards the exterior side of the filter element. This collecting chamber can be designed to receive particulate impurities collected by the funnel. The collecting chamber can be advantageously and preferably limited by the funnel in combination with a terminal end cap segment of the grid support structure or with an end cap disposed on the grid support structure.


The funnel can feature a first funnel opening and a second funnel opening, the second funnel opening being smaller than the first funnel opening. The funnel can be disposed with the second funnel opening pointing towards the collecting chamber. The second funnel opening can preferably lead into this collecting chamber. This reduces the funnel cross-section towards the dirt collecting chamber, which enables a particularly good bundling of the particles separated on the filter medium and their discharge or transport into the collecting chamber.


In addition to the funnel openings, the filter element can feature a backflush opening or several backflush openings for draining medium, in particular cooling medium, from the collecting chamber. The discharge from the collection chamber can take place in particular into an interior space of the filter element or, which is preferred, by passing the filter medium to the outside, since there is no danger of a circulating backflow of particulateladen fluid.


The backflush opening or the backflush openings can be advantageously disposed at the edge of the funnel in relation to the radially outer circumferential edge of the funnel.


The filter medium can preferably be designed as a screen mesh, in particular as a metal mesh, particularly preferably as a high-grade steel screen mesh, which is mechanically particularly stable even under high temperature stress and at high flow velocities.


In order to avoid a higher dynamic pressure, it is advantageous if the average mesh width of the screen mesh is preferably more than 70 μm and preferably between 80 and 150 μm, particularly preferably between 100 and 120 μm. This size allows the separation of the particulate matter and at the same time the passage of the medium, especially the coolant.


The grid support structure, in particular a plastic grid support structure, can define an interior space for receiving a cooling medium to be filtered, the funnel being disposed in such a way that the particulate impurities can be axially discharged from the interior space.


The discharge of the particles to the collecting chamber can be advantageously supported because the filter element has a conical shape.


Additional stability at high flow velocities can be achieved by encapsulating and/or ovemolding the filter medium, in particular the screen mesh, with the material of the grid support structure. The material of the grid support structure can preferably be plastic. Typical methods for manufacturing the afore-mentioned arrangement consisting of filter medium and grid support structure are known, for example, from the fields of application of plastic injection molding.


Particularly preferably, the funnel can be a plastic component which can be designed as part of the grid support structure or as a component separated from the grid support structure.


Advantageously, the filter element can comprise at least two separate components, preferably at least the grid support structure with the filter medium and a flow guide component with the funnel. The flow guide component can thus be removed from the grid support structure or separated from it and cleaned. If the funnel limits the collecting chamber in conjunction with an end cap or end cap segment, the collecting chamber is released after removal of the funnel and can be cleaned. Thus, the filter element is advantageously reusable. Particularly preferably, the filter element should not comprise more than four components in order not to make the assembly of the filter element too complicated.


The filter element can advantageously feature an end cap segment, which can be designed in one piece with the grid support structure, preferably by providing the collecting chamber.


Alternatively, the end cap can be detachably disposed opposite the grid support structure and designed to form the collecting chamber. The filter element, in particular the collecting chamber, can thus be cleaned during maintenance, for example, by loosening the end cap without completely dismantling the filter element.


The funnel can feature one support member or several support members, preferably one or more support members disposed at the edge of the funnel, relative to the radially outer peripheral edge of the funnel. These support members can extend into the collecting chamber and be supported by the end cap or end cap segment. This can preferably be done on one or more stop surfaces formed inside the end cap or on the end cap segment. The support member or the support members can feature the backflush opening or backflush openings or can interact with the end cap and/or the end cap segment to form the backflush opening or the backflush openings.


As previously mentioned, these backflush openings can be used to return coolant from the collecting chamber to the interior space of the filter element. This improves the transport of the particles into the collecting chamber.


Advantageously, the funnel features an inlet diameter and an outlet diameter, wherein the inlet diameter can be at least 20%, preferably 25%, larger than the outlet diameter.


The funnel can feature a rounded funnel wall in its course or in its extension along the funnel axis in such a way that a convex curvature of the funnel results in the longitudinal extension of the funnel, which has fluidic advantages.


Furthermore, according to the invention is an arrangement with an electrochemical energy converter, in particular of a fuel cell, and with a cooling circuit for cooling the electrochemical energy converter by a coolant, the cooling circuit featuring the afore-mentioned filter element according to the invention, for filtering the coolant in order to remove particulate impurities from the coolant. The filter element is disposed in the cooling circuit in such a way that it can be flowed through in an axial direction. The filter element is preferably accommodated in an internal volume of at least one line of a fluid circuit, preferably of the cooling circuit for cooling the electrochemical energy converter. Due to its conical shape, the filter element does not require an accommodating area with extended cross-section to accommodate the filter element. Instead, the filter element can be easily integrated into an available continuous cross-section. The filter element is advantageously flowed through in the arrangement according to the invention in such a way that the main flow direction of the fluid circuit coincides with a taper direction of the grid support structure of the filter element from the first axial end to the second axial end, since in this case the particulate impurities are most effectively collected by the funnel.





BRIEF DESCRIPTION OF DRAWINGS

In the following, the subject of this invention is explained in more detail using several examples of an embodiment and with the aid of the accompanying figures. The examples of an embodiment shown are particularly advantageous, but are not to be understood in a restrictive way of the subject matter of the present invention. Individual features can be transferred to different variants of a filter element that are not displayed. It is shown in:



FIG. 1: a perspective representation of the cooling circuit of an electrochemical energy converter, in particular of a fuel cell;



FIG. 2: a lateral sectional view of a first variant of an embodiment of a filter element according to the invention;



FIG. 3: a perspective view of the filter element with removed flow guidance;



FIG. 4: a perspective sectional view of the filter element with removed flow guidance;



FIG. 5: a perspective sectional view of the filter element with integrated flow guidance;



FIG. 6: a perspective sectional view of the flow guidance;



FIG. 7: a sectional view of a second variant of an embodiment of a filter element according to the invention; and



FIG. 8: a perspective view of the filter element of FIG. 7.





EMBODIMENT(S) OF THE INVENTION


FIG. 1 shows a cooling circuit 100 for cooling an electrochemical energy converter, preferably in the form of a fuel cell 102 or a stack of several fuel cells. Other electrochemical energy converters can also be cooled in this way. The structure of a fuel cell is known per se. It comprises an anode 104 and a cathode 105 separated by an electrolyte, e.g. a semi-permeable membrane. This semi-permeable membrane can be permeable to protons. Energy is generated by a reaction of hydrogen with oxygen.


The oxygen can be provided by an air inlet 111, e.g. as pure oxygen or as ambient air, or by a liquid medium, e.g. water. The oxygen or air can be moistened with water, for example, before it is fed into the fuel cell 102. To increase the humidity of the gas introduced, e.g. air or oxygen, the cooling circuit features a humidifier 103, which increases the air humidity before introducing it into the fuel cell 102.


In addition to the air inlet 111, the fuel cell 102 features also an inlet for fuel 106, in particular hydrogen. Furthermore, the fuel cell 102 features a supply line 114 for a coolant, e.g. deionized water. The supply line 111 is part of the cooling circuit 100.


The fuel cell 102 features also a discharge line 112 for exhaust gas or exhaust air and a discharge line 115 for the coolant from the fuel cell 102. The discharge line features a three-way valve 113. Depending on the circuit of the three-way valve 113, the coolant can be supplied to a heat exchanger 108 or to a bypass line 107 bypassing the heat exchanger 108. Furthermore, a cooling tank 109 can be provided on the discharge line 115 for the expansion of the coolant, which compensates for temperature-related pressure fluctuations of the coolant. A coolant pump 110 increases the coolant pressure before it is introduced into the fuel cell 102.


The above-mentioned example of an embodiment of a fuel cell 102 and an associated cooling circuit 100 is only to be understood as an example. A hydrocarbon such as alcohols, e.g. methanol or ethanol, can also be used as fuel instead of hydrogen.


A filter element 101, which filters out particulate impurities from the coolant, especially during commissioning or after refilling with coolant, is disposed on the supply line of the coolant to the fuel cell.


Current filter elements used for the application often include a filter medium for depth filtration allowing the dirt contained in the fluid to be filtered out of the coolant or coolant liquid. As a result, the dirt adheres firmly both inside and on the surface of the medium to the fibers located there and thus reduces the free cross-section of the medium above a certain amount of dirt, so that less flow cross-section is available for the volume flow and the pressure loss of the cooling medium due to the filter element increases over the course of time the filter element is in operation.


The filter element according to the invention, for example in the variants of an embodiment of FIGS. 2 to 6 and FIGS. 7 to 8, feature a clearly lower pressure loss over the operating time.



FIGS. 2 to 8 show a first variant of an embodiment of a filter element 1 according to the invention which is arranged in a pipe 2. Pipe 2 has a terminal protrusion 20 for connection to filter element 1. In addition, the pipe 2 features a pipe connection 21 for connecting the pipe 2 to a process line of a cooling circuit, e.g. the cooling circuit 100 of FIG. 1. The connection can be made, for example, by slipping a hose over it and then fastening it using hose clamps.


The filter element 1 features a grid support structure 3 with a cone-shaped course along its longitudinal axis A. The grid support structure 3 defines several grid windows 14 in which the filter medium 4 is disposed. The filter medium 4 is a screen mesh for separating particulate impurities in an interior space 10 of the filter element 1, which is limited by the grid support structure 3.


The grid support structure 3 features an end cap segment 8 closed to the exterior side of the filter element, which is an integral part of the grid support structure 3 in FIGS. 2 to 6. However, it is possible and advantageous to return the cooling medium towards the interior space 10.


The grid support structure 3 features annular struts 5, which extend transversely, in particular vertically, to the longitudinal axis A, and which decrease in ring diameter in the course of the longitudinal axis A towards the end cap segment 8. The annular struts 5 are connected to each other by longitudinal struts 15 and form a circumferential surface with a conical course.


Opposite the closed-wall end cap segment 8, the filter element 1 features at the end a union 7 with a supply opening 23 for connection to a process line of the aforementioned cooling circuit and for supplying coolant to filter element 1. This union 7 extends from an annular closed-wall pipe segment 22. This pipe segment 22 features an annular circumferential projection 6 to the stop and to the circumferential mould closure with the protrusion 20 of pipe 2. The projection 6 can be connected, e.g. by welding, to the protrusion 20 of the pipe 2 in a circumferential material-locking manner.


Between the end cap segment 8 and the pipe segment 22 are disposed the grid windows 14 with the filter medium 4. The end cap segment 8 features stop surfaces 12 for the stop of a flow guidance 9 inserted in the end cap segment 8.


This flow guidance 9 is shown in detail in FIG. 6. It can preferably be disposed detachably in the end cap segment 8. It features a funnel 16 with a funnel axis extending coaxially to the longitudinal axis A of the grid support structure. The funnel features a larger first funnel opening 17 and a smaller second funnel opening 18. The funnel 16 together with the end cap segment 8 defines a collecting chamber 13 to receive the filtered particulate impurities.


The larger funnel opening 17 is disposed in an inlet area of the end cap segment 8 and the smaller funnel opening 18 leads into the collecting chamber 13.


Support members 11, which extend parallel to the funnel axis at the edge of the funnel 16, relative to its radially outer circumferential edge, and which are preferably connected to the funnel 16 in a material-locking manner, are disposed on the funnel 16. In FIGS. 2 to 6, the support members 11 are designed as support feet spaced apart from each other. The gaps 19 between the support feet also serve as backflush openings for the medium to flow out of the collecting chamber 13 while the particles remain in the collecting chamber 13. The support members 11 rest on the stop surfaces 12.


The funnel serves as separation 16 between the collecting chamber 13 for particles or dirt and the actual filter medium 4. This funnel allows the particles arriving in the fluid to enter the collecting chamber in its funnel center and at the same time prevents the particles from being flushed back towards the filter medium 4.



FIGS. 7 and 8 feature a second variant of an embodiment of a filter element 31 according to the invention. It is clamped between two pipes 51 and 52, which are connected to each other via a flange connection 54. The flange connection 54 features a first sealing ring 53 for radial sealing. Terminally, i.e. at an opposite end to the flange connection 54, one pipe flange 55, 56 is disposed at each pipe 51, 52 for the connection to a process line.


The filter element 31 itself can be designed in three parts, comprising a grid support structure 33 with a longitudinal axis A with circumferential struts 35, which are connected to each other by longitudinal struts and define a circumferential surface as well as an interior space 41 enclosed by it. In the grid windows of the grid support structure or along the circumferential surface, a filter medium 34, in particular a screen mesh, is disposed.


Terminally, the grid support structure 33 features a closed-wall pipe segment 37 with an annular circumferential projection 36. This projection can feature an annular groove to accommodate a sealing ring for the radial seal, as shown in FIGS. 7 and 8.


The grid support structure 33 is terminally open on one side and features on the other side an interface 32 to an end cap 38, which is detachably disposed on the grid support structure 33. The interface 32 is in this case a screw thread. The end cap, in conjunction with the grid support structure 33, forms a collecting chamber 43 for particles.


Between the grid support structure 33 and the end cap 38 a flow guide component 39 is disposed, in particular clamped or screwed.


In analogy to FIGS. 2 to 6, this flow guidance also features a funnel 40, which enables dirt to be discharged towards the collecting chamber.


The grid support structure 33 features a supply opening 49 into the filter element 31 and a discharge opening at the transition to the flow guidance 39. Preferably, the diameter of the supply opening 49 is at least twice as large as the diameter of the discharge opening 50.


The funnel 40 features a circumferential cylindrical support member 42 at the edge, which can support itself on a stop surface 46 of the end cap 38 against axial displacement in the mounted state.


The support member 42 features return flow openings 43 at the edge, which serve to return the medium flowing in through the funnel 40, while the particles remain in the collecting chamber 43. Accordingly, the return flow openings 43 should be advantageously at least smaller than the inflow opening of the funnel 40.


In FIGS. 2 to 8, the funnel 16, 40 features an inwardly rounded shape, which has additional fluidic advantages.


The funnel 16, 40 shown in FIGS. 2 to 8 can, for example, feature an inlet diameter of 35-45 mm and an outlet diameter of 20-30 mm for the exit into the collecting chamber 13, 43. The inlet diameter is particularly preferably to be at least 20%, preferably at least 25% larger than the outlet diameter.


The internal diameter of the end cap or end cap segment can be between 40-50 mm. It is advantageously at least 30% larger than the outlet diameter.


The length of the filter element 1, 31 can preferably be between 100 mm and 230 mm, preferably between 130 mm and 200 mm.


The supply opening 49 into the filter element 31 and in analogy also the supply opening 23 for the filter element 1 can preferably feature a diameter between 14 and 20 mm, preferably between 15 and 18 mm.


The filter medium 4, 34 can be particularly preferably designed as screen mesh, preferably made of stainless steel, e.g. high-grade steel. The average mesh width of the filter medium, in particular of the screen mesh, can preferably be more than 70 μm, in particular between 80 and 150 μm, in particular between 100 and 120 μm.



FIGS. 2 to 8 show only two preferred design variants of an embodiment. It is also conceivable that the funnel is part of the filter medium 4, 34, which can be inserted as a separate component of the filter element into the grid support structure.


The filter elements shown in FIGS. 2 to 8 each provide a collecting chamber 13, 43 for the dirt which is located outside the flow cross-section and thus does not restrict it. Thus, more dirt can be filtered out than with a conventional filter medium. An increase in pressure during operation does not occur or occurs only to a very small extent.


This means that a relatively large dirt capacity can be made available in a smaller installation space with relatively little filtration area. In addition, the mesh used as screen mesh without depth filtration offers an advantage in pressure loss for the high volume flows that can occur in a cooling circuit of an electrochemical energy converter, for example in the 250 l/min range.


The conical shape of the filter is also advantageous for the dirt particles. They slide along the mesh and then are flushed into the collecting chamber, in addition to the particles that have already reached it directly.

Claims
  • 1. A conical particulate filter element comprising: a conically shaped grid support structure tapering from a first open end to a second end, and defining an interior space;a filter medium fixedly supported by said conically shaped grid support structure;a collection chamber disposed at, and closing, said second end of said of said conically shaped grid support structure; anda funnel having a solid frustoconical sidewall with openings at either end, is disposed within said interior space and positioned to direct particulate through said funnel and into said collection chamber;wherein a fluid to be filtered is introduced into said interior space through said open end, with particulates above a predetermined size being prevented from passing through said filter medium, and at least some particulates entering said funnel and being directed into said collection chamber.
  • 2. The conical particulate filter element according to claim 1, wherein the filter medium is a screen mesh selected from the group consisting of: a metal mesh or a steel screen mesh.
  • 3. The conical particulate filter element according to claim 2, wherein an average mesh width of the screen mesh is between 70 μm and 120 μm.
  • 4. The conical particulate filter element according to claim 1, wherein the collection chamber is within an end cap or an end cap segment.
  • 5. The conical particulate filter element according to claim 4, wherein the end cap or end cap segment is integrally formed with said conically shaped grid support structure.
  • 6. The conical particulate filter element according to claim 4, wherein the end cap or end cap segment is detachably connected with said conically shaped grid support structure.
  • 7. The conical particulate filter element according to claim 6, wherein the end cap or end cap segment is threadably connected to said conically shaped grid support structure.
  • 8. The conical particulate filter element according to claim 1, wherein the funnel consists of a plastic material.
  • 9. The conical particulate filter element according to claim 1, wherein the funnel includes at least one support member extending downwardly from its radially outer circumferential edge and substantially parallel to a central longitudinal axis of said funnel.
  • 10. The conical particulate filter element according to claim 9, wherein said at least one support member comprises a plurality of support feet spaced apart from each other.
  • 11. The conical particulate filter element according to claim 9, wherein said at least one support member comprises a cylinder.
  • 12. The conical particulate filter element according to claim 11, wherein said cylinder includes at least one return flow opening, which serves to return any fluid flowing into the collection chamber through the funnel back to the interior space, while particles remain in the collecting chamber.
  • 13. The conical particulate filter element according to claim 1, wherein said funnel openings include a first inlet opening having an inlet diameter and a second outlet opening having an outlet diameter; wherein the inlet diameter is at least 20% larger than the outlet diameter.
  • 14. The conical particulate filter element according to claim 1, wherein the screen mesh is encapsulated and/or over-molded with a material of the grid support structure.
Priority Claims (1)
Number Date Country Kind
102018119824.8 Aug 2018 DE national
US Referenced Citations (318)
Number Name Date Kind
4386 Jennison Feb 1846 A
134077 Large Dec 1872 A
169092 Dillon Oct 1875 A
381990 Driller May 1888 A
401186 Love Apr 1889 A
417127 Williams Dec 1889 A
427447 Thomson May 1890 A
429112 Bowden Jun 1890 A
470192 Gross Mar 1892 A
513215 Strater Jan 1894 A
538369 Farmer Apr 1895 A
557075 Langer Mar 1896 A
584406 Rowan Jun 1897 A
711535 Scholl Oct 1902 A
730356 Emond Jun 1903 A
739621 Selg et al. Sep 1903 A
744060 Frye Nov 1903 A
751918 Jagger Feb 1904 A
763981 Hupchen Jul 1904 A
769001 Lawrence Aug 1904 A
938607 Reed Nov 1909 A
1022277 Taack Apr 1912 A
1040283 Crum Oct 1912 A
1107485 Bowser Aug 1914 A
1115016 Pheils Oct 1914 A
1144306 Mock Jun 1915 A
1192134 Setevens Jul 1916 A
1225993 Mullaney May 1917 A
1389401 Van Aug 1921 A
1436294 Scott Nov 1922 A
1458464 Byers Jun 1923 A
1471807 Roosevelt et al. Oct 1923 A
1573067 Holland Feb 1926 A
1585418 Rosenberg May 1926 A
1590128 Staples Jun 1926 A
1704634 Snider Mar 1929 A
1782531 Fokker Nov 1930 A
1804836 Loranger May 1931 A
1832776 Hudson Nov 1931 A
1835429 Rice Dec 1931 A
1931988 Hromadka Oct 1933 A
1933409 Berman Oct 1933 A
1950254 Lien Mar 1934 A
1961498 Krueger Jun 1934 A
1971120 Rice Aug 1934 A
1987847 Flood Jan 1935 A
1991644 Wolters Feb 1935 A
1992472 Craig Feb 1935 A
2019094 Rice Oct 1935 A
2028520 Phillips Jan 1936 A
2068837 Aronson Jan 1937 A
2068858 Jones Jan 1937 A
2070201 Geary Feb 1937 A
2095407 Baucom Oct 1937 A
2237964 Haught Apr 1941 A
2247040 Whitsett Jun 1941 A
2384057 Wetherell Sep 1945 A
2427320 Zech Sep 1947 A
2465404 Sonntag Mar 1949 A
2491796 Baume Dec 1949 A
2505305 Schaefer Apr 1950 A
2640789 Hausner Jun 1953 A
2647636 Rafferty Aug 1953 A
2658625 Rafferty Nov 1953 A
2730242 Burnette Jan 1956 A
2732946 Schaub Jan 1956 A
2733775 Dupure Feb 1956 A
2779478 Wahlin Jan 1957 A
2797704 McDermott Jul 1957 A
2893563 Bottum Jul 1959 A
3109459 Lee, II Nov 1963 A
3179253 McNeal Apr 1965 A
3229456 Gratzmuller Jan 1966 A
3245540 Johnson Apr 1966 A
3280982 Barto Oct 1966 A
3305093 Brubaker Feb 1967 A
3317042 Botstiber May 1967 A
3322282 Lyman May 1967 A
3332557 Pall Jul 1967 A
3374673 Trageser Mar 1968 A
3392842 Anderson Jul 1968 A
3450207 Hirsch Jun 1969 A
3474911 Olsen Oct 1969 A
3481475 Domenech Dec 1969 A
3592768 Parker Jul 1971 A
3622006 Brunner Nov 1971 A
3665526 Hoffman May 1972 A
3682308 Moon Aug 1972 A
3726262 Moon Apr 1973 A
3731815 Collingwood May 1973 A
3746595 Leason Jul 1973 A
3762564 Weedon Oct 1973 A
3794180 Blocker Feb 1974 A
3825124 Davis Jul 1974 A
3841489 Combest Oct 1974 A
3872012 Endicott Mar 1975 A
3890235 Davis Jun 1975 A
3912638 Beaubien Oct 1975 A
3941697 Johnson Mar 1976 A
3992886 Scott Nov 1976 A
4003836 Stearns Jan 1977 A
4033872 Mori Jul 1977 A
4052308 Higgs Oct 1977 A
4052315 Lindsay, Jr. Oct 1977 A
4057968 Scott Nov 1977 A
4130622 Pawlak Dec 1978 A
4135899 Gauer Jan 1979 A
4149974 Bolton Apr 1979 A
4169795 Raines Oct 1979 A
4198220 Keller Apr 1980 A
4207631 Baggey Jun 1980 A
4271016 Albertson Jun 1981 A
4278455 Nardi Jul 1981 A
4287067 Dyner Sep 1981 A
4333826 Albertson Jun 1982 A
4343353 Tsopelas Aug 1982 A
4413675 Gano Nov 1983 A
4418722 Kendall Dec 1983 A
4460469 Francesconi, Jr. Jul 1984 A
4469594 Poetter Sep 1984 A
4495073 Beimgraben Jan 1985 A
4500332 Gillingham Feb 1985 A
4550896 Hansen, III Nov 1985 A
4582605 Rea Apr 1986 A
4608166 Cain Aug 1986 A
4640771 Whalen Feb 1987 A
4702754 Blocker Oct 1987 A
4725364 Hurley Feb 1988 A
4743369 Geermans May 1988 A
4758256 Machado Jul 1988 A
4788943 Hayashi Dec 1988 A
4801094 Gonzalez Jan 1989 A
4839038 McLain, II Jun 1989 A
4849105 Borchert Jul 1989 A
4860805 Townsend Aug 1989 A
4861478 Hall Aug 1989 A
4882055 Stamstad Nov 1989 A
4894156 Murken Jan 1990 A
4949682 Klein Aug 1990 A
4995452 Franck Feb 1991 A
5011023 Arai Apr 1991 A
5025946 Butkovich Jun 1991 A
5132013 Thompson Jul 1992 A
5197455 Tessien Mar 1993 A
5252204 Chiodo Oct 1993 A
5266194 Chiodo Nov 1993 A
5269824 Takita Dec 1993 A
5279264 Simmons Jan 1994 A
5281331 Golan Jan 1994 A
5300224 Farley Apr 1994 A
5382355 Arlozynski Jan 1995 A
5417906 Chiodo May 1995 A
5490868 Whitlock Feb 1996 A
5492143 Cooper Feb 1996 A
5500115 Nehm Mar 1996 A
5536402 Kluhsman Jul 1996 A
5545318 Richmond Aug 1996 A
5588635 Hartman Dec 1996 A
5662791 Hurst Sep 1997 A
5717137 Singleterry Feb 1998 A
5718281 Bartalone Feb 1998 A
5820715 Singleterry Oct 1998 A
5888260 Sica Mar 1999 A
5897787 Keller Apr 1999 A
5916435 Spearman Jun 1999 A
5972059 Morgan Oct 1999 A
6000433 Carroll Dec 1999 A
6132483 Andrews Oct 2000 A
6149703 Parker Nov 2000 A
6196301 Sabin Mar 2001 B1
6267881 Covington Jul 2001 B1
6352645 Wilfong Mar 2002 B1
6402962 Bruntz Jun 2002 B1
6455818 Arntz Sep 2002 B1
6458303 Fuehrer Oct 2002 B1
6461506 Bradford Oct 2002 B1
6468427 Frey Oct 2002 B1
6487729 Delanzo Dec 2002 B2
6494325 Mizrahi Dec 2002 B1
6540806 Reinhold Apr 2003 B2
6619331 Suchdev Sep 2003 B1
6620223 Bloomer Sep 2003 B2
6722508 Parker Apr 2004 B2
6766825 Antunez Jul 2004 B2
6808552 Borla Oct 2004 B2
6810683 Eustice Nov 2004 B2
6833023 Vandenberghe Dec 2004 B1
6836963 Wnuk Jan 2005 B2
6939465 Dupre Sep 2005 B2
6949214 Frey Sep 2005 B2
6955266 Ballet Oct 2005 B2
6994738 Taddey Feb 2006 B2
7063783 Ballet Jun 2006 B2
7105090 Choo Sep 2006 B2
7176034 Efthimiadis Feb 2007 B2
7282140 Boast Oct 2007 B2
7347223 Richter Mar 2008 B2
7376983 Sciarrino May 2008 B1
RE40481 Borla Sep 2008 E
7473359 Barrett, II Jan 2009 B1
7510084 Bishop Mar 2009 B2
7615148 Gentry Nov 2009 B1
7694942 Genera Apr 2010 B1
7730907 Richter Jun 2010 B2
7828870 Rech Nov 2010 B1
7832567 Joseph Nov 2010 B2
7875178 Ashliman Jan 2011 B2
8038872 Jokschas Oct 2011 B2
8038878 Hewkin Oct 2011 B2
8083940 Durocher Dec 2011 B2
8114278 Lorente Feb 2012 B2
8182702 Al-Sannaa May 2012 B2
8202495 Smith Jun 2012 B1
8231779 Jokschas Jul 2012 B2
8282700 Walz Oct 2012 B2
8377295 Strassenberger Feb 2013 B2
8404015 Moser Mar 2013 B2
8500672 Caleffi Aug 2013 B2
8501012 Himmel Aug 2013 B2
8534467 Haas Sep 2013 B2
8557200 Smith Oct 2013 B1
8641657 Ribolzi Feb 2014 B2
8641892 Winther Feb 2014 B2
8707855 DeMiglio Apr 2014 B2
8858795 McLane Oct 2014 B2
9142843 Beylich Sep 2015 B2
9194343 Thienel Nov 2015 B2
9238187 Kawaguchi Jan 2016 B2
9421481 Sakraschinsky Aug 2016 B2
9427685 Pekarsky Aug 2016 B2
9581074 Harkey Feb 2017 B2
9675911 Yazykov Jun 2017 B2
9808750 Klein Nov 2017 B2
D812183 McGavin Mar 2018 S
D815895 Roth Apr 2018 S
9982418 Bennett May 2018 B2
D820638 Chitayat Jun 2018 S
9997754 Beylich Jun 2018 B2
10029132 Cray Jul 2018 B2
10046258 Provenziani Aug 2018 B2
10124281 Heilman Nov 2018 B2
10293910 Torgerud May 2019 B1
10307701 Klein Jun 2019 B2
10441902 Tange Oct 2019 B2
10463999 Washington Nov 2019 B2
10486167 Willigan Nov 2019 B2
10495390 Huang Dec 2019 B2
10507419 Holzmann Dec 2019 B2
D873972 Hayes Jan 2020 S
10626707 Gao Apr 2020 B2
10662907 Dirnberger May 2020 B2
10688430 Holzmann Jun 2020 B2
10744428 Wyhler Aug 2020 B2
10794794 Bowdle Oct 2020 B2
10815141 Timmons Oct 2020 B2
10858816 Montague Dec 2020 B2
10982425 Grumbach Apr 2021 B1
20010017283 Ostrowski Aug 2001 A1
20010054589 Ostrowski Dec 2001 A1
20020046654 Bloomer Apr 2002 A1
20030006187 Frey Jan 2003 A1
20030178349 Bacon Sep 2003 A1
20030213127 Wnuk Nov 2003 A1
20040005246 Efthimiadis Jan 2004 A1
20040011726 Weh Jan 2004 A1
20040031747 Dupre Feb 2004 A1
20040069704 Yamaguchi Apr 2004 A1
20040144105 Ballet Jul 2004 A1
20040255660 Abdolhosseini Dec 2004 A1
20050017019 Richter Jan 2005 A1
20050023196 Ku Feb 2005 A1
20050145551 Ballet Jul 2005 A1
20070000279 Koo Jan 2007 A1
20070125699 Hendee Jun 2007 A1
20070181486 Ashliman Aug 2007 A1
20070215226 Richter Sep 2007 A1
20070221554 Wright Sep 2007 A1
20080047888 Durocher Feb 2008 A1
20080191382 Sato Aug 2008 A1
20080290017 Farace Nov 2008 A1
20090255878 Himmel Oct 2009 A1
20100116732 Jung May 2010 A1
20100155336 Simonson Jun 2010 A1
20100155345 Al-Sannaa Jun 2010 A1
20100192777 Walz Aug 2010 A1
20100230356 Chhoa Sep 2010 A1
20110114195 Haas May 2011 A1
20110132817 Gardner Jun 2011 A1
20110253644 Kolp, Jr. Oct 2011 A1
20110265438 Ryan Nov 2011 A1
20120148930 Beylich Jun 2012 A1
20120211410 Wnuk Aug 2012 A1
20120241369 McLane Sep 2012 A1
20120298568 Winther Nov 2012 A1
20130126446 Kozar May 2013 A1
20130206679 Kawaguchi Aug 2013 A1
20140001744 Haas Jan 2014 A1
20140008308 Guy Jan 2014 A1
20140054236 Bennett Feb 2014 A1
20140076794 Sakraschinsky Mar 2014 A1
20140076795 Pekarsky Mar 2014 A1
20150021259 Dirkers Jan 2015 A1
20150190741 Washington Jul 2015 A1
20150209697 Yazykov Jul 2015 A1
20150354242 Saccoccio Dec 2015 A1
20160059164 Plickys Mar 2016 A1
20160263495 Wyhler Sep 2016 A1
20170204820 Dirnberger Jul 2017 A1
20180001235 Tange Jan 2018 A1
20180015484 Willigan Jan 2018 A1
20180028950 Heilman Feb 2018 A1
20190177962 Montague Jun 2019 A1
20200054973 Wildermuth Feb 2020 A1
20200406169 Betcher Dec 2020 A1
20210001251 Nodomi Jan 2021 A1
20210113951 Oh Apr 2021 A1
20210207356 Grumbach Jul 2021 A1
20210222524 Nath Jul 2021 A1
Foreign Referenced Citations (10)
Number Date Country
10101828 Jul 2002 DE
102005036664 Feb 2006 DE
102016111562 Dec 2017 DE
102019121342 Feb 2020 DE
102019121342 Mar 2021 DE
2848293 Mar 2015 EP
2848293 Nov 2017 EP
2507728 May 2014 GB
2512385 Oct 2014 GB
WO2016200850 Dec 2016 WO
Related Publications (1)
Number Date Country
20200054973 A1 Feb 2020 US