The invention relates to novel polymers containing one or more repeating units based on 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene or derivatives thereof, methods for their preparation and monomers used therein, blends, mixtures and formulations containing them, the use of the polymers, blends, mixtures and formulations as semiconductor in organic electronic (OE) devices, especially in organic photovoltaic (OPV) devices, and to OE and OPV devices comprising these polymers, blends, mixtures or formulations.
In recent years there has been growing interest in the use of conjugated, semiconducting polymers for electronic applications. One particular area of importance is organic photovoltaics (OPV). Conjugated polymers have found use in OPVs as they allow devices to be manufactured by solution-processing techniques such as spin casting, dip coating or ink jet printing. Solution processing can be carried out cheaper and on a larger scale compared to the evaporative techniques used to make inorganic thin film devices. Currently, polymer based photovoltaic devices are achieving efficiencies up to 8%.
The conjugated polymer serves as the main absorber of the solar energy, therefore a low band gap is a basic requirement of the ideal polymer design to absorb the maximum of the solar spectrum. A commonly used strategy to provide conjugated polymers with narrow band gap is to utilize alternating copolymers consisting of both electron rich donor units and electron deficient acceptor units within the polymer backbone.
However, the conjugated polymers that have been suggested in prior art for use ion OPV devices do still suffer from certain drawbacks. For example many polymers suffer from limited solubility in commonly used organic solvents, which can inhibit their suitability for device manufacturing methods based on solution processing, or show only limited power conversion efficiency in OPV bulk-hetero-junction devices, or have only limited charge carrier mobility, or are difficult to synthesize and require synthesis methods which are unsuitable for mass production.
Therefore, there is still a need for organic semiconducting (OSC) materials that are easy to synthesize, especially by methods suitable for mass production, show good structural organization and film-forming properties, exhibit good electronic properties, especially a high charge carrier mobility, good processibility, especially a high solubility in organic solvents, and high stability in air. Especially for use in OPV cells, there is a need for OSC materials having a low bandgap, which enable improved light harvesting by the photoactive layer and can lead to higher cell efficiencies, compared to the polymers from prior art.
It was an aim of the present invention to provide compounds for use as organic semiconducting materials that do not have the drawbacks of prior art materials as described above, are easy to synthesize, especially by methods suitable for mass production, and do especially show good processibility, high stability, good solubility in organic solvents, high charge carrier mobility, and a low bandgap. Another aim of the invention was to extend the pool of OSC materials available to the expert. Other aims of the present invention are immediately evident to the expert from the following detailed description.
The inventors of the present invention have found that one or more of the above aims can be achieved by providing conjugated polymers containing 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene repeating units.
Polymers comprising a benzo[1,2-b:4,5-b′]dithiophene unit have been disclosed in U.S. Pat. No. 7,524,922 B2, US 2010/0078074 A1, WO 2010/135701 A1 and WO 2010/008672 A1. However these documents do not disclose or suggest polymers according to the present invention.
It was found that conjugated polymers based on these units show good processability and high solubility in organic solvents, and are thus especially suitable for large scale production using solution processing methods. At the same time, they show a low bandgap, high charge carrier mobility, high external quantum efficiency in BHJ solar cells, good morphology when used in p/n-type blends e.g. with fullerenes, high oxidative stability, and are promising materials for organic electronic OE devices, especially for OPV devices with high power conversion efficiency.
The addition of a 1,1-difluoralkyl) ketone substituent at the 4- and 8-position of the benzo[1,2-b:4,5-b′]dithiophene core unit yields the novel 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene unit according to the present invention, which show inter alia improved solubility and electronic properties.
Incorporation of one or more electron-accepting units in addition to the electron-donating benzo[1,2-b:4,5-b′]dithiophene unit yields a “donor-acceptor” co-polymer, enabling a reduction of the bandgap and thereby improved light harvesting properties in bulk heterojunction (BHJ) photovoltaic devices.
The invention relates to conjugated polymers comprising one or more divalent units of formula I
wherein
The invention further relates to conjugated polymers comprising one or more repeating units, wherein said repeating units contain a unit of formula I and/or one or more groups selected from aryl and heteroaryl groups that are optionally substituted, and wherein at least one repeating unit in the polymer contains at least one unit of formula I.
The invention further relates to monomers containing a unit of formula I and further containing one or more reactive groups, which can be used for the preparation of conjugated polymers as described above and below.
The invention further relates to the use of units of formula I as electron donor units in semiconducting polymers.
The invention further relates to a semiconducting polymer comprising one or more units of formula I as electron donor units, and preferably further comprising one or more units having electron acceptor properties.
The invention further relates to the use of the polymers according to the present invention as p-type semiconductors.
The invention further relates to the use of the polymers according to the present invention as electron donor component in semiconducting materials, formulations, blends, devices or components of devices.
The invention further relates to a semiconducting material, formulation, blend, device or component of a device comprising a polymer according to the present invention as electron donor component, and preferably further comprising one or more compounds or polymers having electron acceptor properties.
The invention further relates to a mixture or polymer blend comprising one or more polymers according to the present invention and one or more additional compounds or polymers which are preferably selected from compounds and polymers having one or more of semiconducting, charge transport, hole or electron transport, hole or electron blocking, electrically conducting, photoconducting or light emitting properties.
The invention further relates to a mixture or polymer blend as described above and below, which comprises one or more polymers according to of the present invention and one or more n-type organic semiconductor compounds, preferably selected from fullerenes or substituted fullerenes.
The invention further relates to a formulation comprising one or more polymers, mixtures or polymer blends according to the present invention and optionally one or more solvents, preferably selected from organic solvents.
The invention further relates to the use of polymers, mixtures, polymer blends and formulations according to the present invention as charge transport, semiconducting, electrically conducting, photoconducting or light emitting material in an optical, electrooptical, electronic, electroluminescent or photoluminescent device, or in a component of such a device, or in an assembly comprising such a device or component.
The invention further relates to a charge transport, semiconducting, electrically conducting, photoconducting or light emitting material or component comprising one or more polymers, mixtures, polymer blends or formulations according to the present invention.
The invention further relates to an optical, electrooptical, electronic, electroluminescent or photoluminescent device, or a component thereof, or an assembly comprising it, which comprises one or more polymers, mixtures, polymer blends or formulations according to the present invention, or comprises a charge transport, semiconducting, electrically conducting, photoconducting or light emitting material according to the present invention.
The optical, electrooptical, electronic, electroluminescent and photoluminescent devices include, without limitation, organic field effect transistors (OFETs), organic thin film transistors (OTFTs), organic light emitting diodes (OLEDs), organic light emitting transistors (OLETs), organic photovoltaic devices (OPVs), organic solar cells, laser diodes, organic plasmon-emitting diodes (OPEDs), Schottky diodes, organic photoconductors (OPCs) and organic photodetectors (OPDs).
The components of the above devices include, without limitation, charge injection layers, charge transport layers, interlayers, planarising layers, antistatic films, polymer electrolyte membranes (PEMs), conducting substrates and conducting patterns.
The assemblies comprising such devices or components include, without limitation, integrated circuits (ICs), radio frequency identification (RFID) tags or security markings or security devices containing them, flat panel displays or backlights thereof, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, biosensors and biochips.
In addition the compounds, polymers, mixtures, polymer blends and formulations of the present invention can be used as electrode materials in batteries and in components or devices for detecting and discriminating DNA sequences.
The monomers and polymers of the present invention are easy to synthesize and exhibit several advantageous properties, like a low bandgap, a high charge carrier mobility, a high solubility in organic solvents, a good processability for the device manufacture process, a high oxidative stability and a long lifetime in electronic devices.
The unit of formula I is especially suitable as (electron) donor unit in p-type semiconducting polymers or copolymers, in particular copolymers containing both donor and acceptor units, and for the preparation of blends of p-type and n-type semiconductors which are useful for application in bulk heterojunction photovoltaic devices.
In addition, they show the following advantageous properties:
The synthesis of the unit of formula I, its functional derivatives, homopolymer, and co-polymers can be achieved based on methods that are known to the skilled person and described in the literature, as will be further illustrated herein.
Above and below, the term “polymer” generally means a molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass (PAC, 1996, 68, 2291). The term “oligomer” generally means a molecule of intermediate relative molecular mass, the structure of which essentially comprises a small plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass (PAC, 1996, 68, 2291). In a preferred sense according to the present invention a polymer means a compound having >1, i.e. at least 2 repeating units, preferably ≧5 repeating units, and an oligomer means a compound with >1 and <10, preferably <5, repeating units.
Above and below, in a formula showing a polymer or a repeating unit, like formula I and its subformulae, an asterisk (“*”) denotes a linkage to an adjacent repeating unit or a terminal group in the polymer chain.
The terms “repeating unit” and “monomeric unit” mean the constitutional repeating unit (CRU), which is the smallest constitutional unit the repetition of which constitutes a regular macromolecule, a regular oligomer molecule, a regular block or a regular chain (PAC, 1996, 68, 2291).
The terms “donor” and “acceptor”, unless stated otherwise, mean an electron donor or electron acceptor, respectively. “Electron donor” means a chemical entity that donates electrons to another compound or another group of atoms of a compound. “Electron acceptor” means a chemical entity that accepts electrons transferred to it from another compound or another group of atoms of a compound. (see also U.S. Environmental Protection Agency, 2009, Glossary of technical terms, http://www.epa.gov/oust/cat/TUMGLOSS.HTM).
The term “leaving group” means an atom or group (charged or uncharged) that becomes detached from an atom in what is considered to be the residual or main part of the molecule taking part in a specified reaction (see also PAC, 1994, 66, 1134).
The term “conjugated” means a compound containing mainly C atoms with sp2-hybridisation (or optionally also sp-hybridisation), which may also be replaced by hetero atoms. In the simplest case this is for example a compound with alternating C—C single and double (or triple) bonds, but does also include compounds with units like 1,3-phenylene. “Mainly” means in this connection that a compound with naturally (spontaneously) occurring defects, which may lead to interruption of the conjugation, is still regarded as a conjugated compound.
Unless stated otherwise, the molecular weight is given as the number average molecular weight Mn or weight average molecular weight MW, which is determined by gel permeation chromatography (GPC) against polystyrene standards in eluent solvents such as tetrahydrofuran, trichloromethane (TCM, chloroform), chlorobenzene or 1,2,4-trichlorobenzene. Unless stated otherwise, 1,2,4-trichlorobenzene is used as solvent. The degree of polymerization, also referred to as total number of repeating units, n, means the number average degree of polymerization given as n=Mn/MU, wherein Mn is the number average molecular weight and MU is the molecular weight of the single repeating unit, see J. M. G. Cowie, Polymers: Chemistry & Physics of Modern Materials, Blackie, Glasgow, 1991.
The term “carbyl group” as used above and below denotes any monovalent or multivalent organic radical moiety which comprises at least one carbon atom either without any non-carbon atoms (like for example —C≡C—), or optionally combined with at least one non-carbon atom such as N, O, S, P, Si, Se, As, Te or Ge (for example carbonyl etc.). The term “hydrocarbyl group” denotes a carbyl group that does additionally contain one or more H atoms and optionally contains one or more hetero atoms like for example N, O, S, P, Si, Se, As, Te or Ge.
The term “hetero atom” means an atom in an organic compound that is not a H- or C-atom, and preferably means N, O, S, P, Si, Se, As, Te or Ge.
A carbyl or hydrocarbyl group comprising a chain of 3 or more C atoms may be straight-chain, branched and/or cyclic, including spiro and/or fused rings.
Preferred carbyl and hydrocarbyl groups include alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy, each of which is optionally substituted and has 1 to 40, preferably 1 to 25, very preferably 1 to 18 C atoms, furthermore optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 C atoms, furthermore alkylaryloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy, each of which is optionally substituted and has 6 to 40, preferably 7 to 40 C atoms, wherein all these groups do optionally contain one or more hetero atoms, preferably selected from N, O, S, P, Si, Se, As, Te and Ge.
The carbyl or hydrocarbyl group may be a saturated or unsaturated acyclic group, or a saturated or unsaturated cyclic group. Unsaturated acyclic or cyclic groups are preferred, especially aryl, alkenyl and alkynyl groups (especially ethynyl). Where the C1-C40 carbyl or hydrocarbyl group is acyclic, the group may be straight-chain or branched. The C1-C40 carbyl or hydrocarbyl group includes for example: a C1-C40 alkyl group, a C1-C40 alkoxy or oxaalkyl group, a C2-C40 alkenyl group, a C2-C40 alkynyl group, a C3-C40 alkyl group, a C4-C40 alkyldienyl group, a C4-C40 polyenyl group, a C6-C18 aryl group, a C6-C40 alkylaryl group, a C6-C40 arylalkyl group, a C4-C40 cycloalkyl group, a C4-C40 cycloalkenyl group, and the like. Preferred among the foregoing groups are a C1-C20 alkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, a C3-C20 alkyl group, a C4-C20 alkyldienyl group, a C6-C12 aryl group, and a C4-C20 polyenyl group, respectively. Also included are combinations of groups having carbon atoms and groups having hetero atoms, like e.g. an alkynyl group, preferably ethynyl, that is substituted with a silyl group, preferably a trialkylsilyl group.
Aryl and heteroaryl preferably denote a mono-, bi- or tricyclic aromatic or heteroaromatic group with 4 to 30 ring C atoms that may also comprise condensed rings and is optionally substituted with one or more groups L, wherein L is selected from halogen, —CN, —NC, —NCO, —NCS, —OCN, —SCN, —C(═O)NR0R00, —C(═O)X0, —C(═O)R0, —NH2, —NR0R00, —SH, —SR0, —SO3H, —SO2R0, —OH, —NO2, —CF3, —SF5, P-Sp-, optionally substituted silyl, or carbyl or hydrocarbyl with 1 to 40 C atoms that is optionally substituted and optionally comprises one or more hetero atoms, and is preferably alkyl, alkoxy, thiaalkyl, alkylcarbonyl, alkoxycarbonyl or alkoxycarbonyloxy with 1 to 20 C atoms that is optionally fluorinated, and R0, R00, X0, P and Sp have the meanings given above and below.
Very preferred substituents L are selected from halogen, most preferably F, or alkyl, alkoxy, oxaalkyl, thioalkyl, fluoroalkyl and fluoroalkoxy with 1 to 12 C atoms or alkenyl, alkynyl with 2 to 12 C atoms.
Especially preferred aryl and heteroaryl groups are phenyl in which, in addition, one or more CH groups may be replaced by N, naphthalene, thiophene, selenophene, thienothiophene, dithienothiophene, fluorene and oxazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Very preferred rings are selected from pyrrole, preferably N-pyrrole, furan, pyridine, preferably 2- or 3-pyridine, pyrimidine, pyridazine, pyrazine, triazole, tetrazole, pyrazole, imidazole, isothiazole, thiazole, thiadiazole, isoxazole, oxazole, oxadiazole, thiophene preferably 2-thiophene, selenophene, preferably 2-selenophene, thieno[3,2-b]thiophene, indole, isoindole, benzofuran, benzothiophene, benzodithiophene, quinole, 2-methylquinole, isoquinole, quinoxaline, quinazoline, benzotriazole, benzimidazole, benzothiazole, benzisothiazole, benzisoxazole, benzoxadiazole, benzoxazole, benzothiadiazole, all of which can be unsubstituted, mono- or polysubstituted with L as defined above. Further examples of heteroaryl groups are those selected from the following formulae
An alkyl or alkoxy radical, i.e. where the terminal CH2 group is replaced by —O—, can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6, 7 or 8 carbon atoms and accordingly is preferably ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy, heptoxy, or octoxy, furthermore methyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy, for example.
An alkenyl group, wherein one or more CH2 groups are replaced by —CH═CH— can be straight-chain or branched. It is preferably straight-chain, has 2 to 10 C atoms and accordingly is preferably vinyl, prop-1-, or prop-2-enyl, but-1-, 2- or but-3-enyl, pent-1-, 2-, 3- or pent-4-enyl, hex-1-, 2-, 3-, 4- or hex-5-enyl, hept-1-, 2-, 3-, 4-, 5- or hept-6-enyl, oct-1-, 2-, 3-, 4-, 5-, 6- or oct-7-enyl, non-1-, 2-, 3-, 4-, 5-, 6-, 7- or non-8-enyl, dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or dec-9-enyl.
Especially preferred alkenyl groups are C2-C7-1E-alkenyl, C4-C7-3E-alkenyl, C5-C7-1E-alkenyl, C6-C7-3E-alkenyl and C7-6alkenyl, in particular C2-C7-1E-alkenyl, C4-C7-3E-alkenyl and C5-C7-4-alkenyl. Examples for particularly preferred alkenyl groups are vinyl, 1E-propenyl, 1E-butenyl, 1E-pentenyl, 1E-hexenyl, 1E-heptenyl, 3-butenyl, 3E-pentenyl, 3E-hexenyl, 3E-heptenyl, 4-pentenyl, 4Z-hexenyl, 4E-hexenyl, 4Z-heptenyl, 5-hexenyl, 6-heptenyl and the like. Groups having up to 5 C atoms are generally preferred.
An oxaalkyl group, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl(=methoxymethyl), 2-(=ethoxymethyl) or 3-oxabutyl(=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example. Oxaalkyl, i.e. where one CH2 group is replaced by —O—, is preferably straight-chain 2-oxapropyl(=methoxymethyl), 2-(=ethoxymethyl) or 3-oxabutyl(=2-methoxyethyl), 2-, 3-, or 4-oxapentyl, 2-, 3-, 4-, or 5-oxahexyl, 2-, 3-, 4-, 5-, or 6-oxaheptyl, 2-, 3-, 4-, 5-, 6- or 7-oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- or 8-oxanonyl or 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-oxadecyl, for example.
In an alkyl group wherein one CH2 group is replaced by —O— and one by —C(O)—, these radicals are preferably neighboured. Accordingly these radicals together form a carbonyloxy group —C(O)—O— or an oxycarbonyl group —O—C(O)—. Preferably this group is straight-chain and has 2 to 6 C atoms. It is accordingly preferably acetyloxy, propionyloxy, butyryloxy, pentanoyloxy, hexanoyloxy, acetyloxymethyl, propionyloxymethyl, butyryloxymethyl, pentanoyloxymethyl, 2-acetyloxyethyl, 2-propionyloxy-ethyl, 2-butyryloxyethyl, 3-acetyloxypropyl, 3-propionyloxypropyl, 4-acetyloxybutyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, methoxycarbonylmethyl, ethoxy-carbonylmethyl, propoxycarbonylmethyl, butoxycarbonylmethyl, 2-(methoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(propoxy-carbonyl)ethyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl, 4-(methoxycarbonyl)-butyl.
An alkyl group wherein two or more CH2 groups are replaced by —O— and/or —C(O)O— can be straight-chain or branched. It is preferably straight-chain and has 3 to 12 C atoms. Accordingly it is preferably bis-carboxy-methyl, 2,2-bis-carboxy-ethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxy-pentyl, 6,6-bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxy-octyl, 9,9-bis-carboxy-nonyl, 10,10-bis-carboxy-decyl, bis-(methoxycarbonyl)-methyl, 2,2-bis-(methoxycarbonyl)-ethyl, 3,3-bis-(methoxycarbonyl)-propyl, 4,4-bis-(methoxycarbonyl)-butyl, 5,5-bis-(methoxycarbonyl)-pentyl, 6,6-bis-(methoxycarbonyl)-hexyl, 7,7-bis-(methoxycarbonyl)-heptyl, 8,8-bis-(methoxycarbonyl)-octyl, bis-(ethoxycarbonyl)-methyl, 2,2-bis-(ethoxycarbonyl)-ethyl, 3,3-bis-(ethoxycarbonyl)-propyl, 4,4-bis-(ethoxycarbonyl)-butyl, 5,5-bis-(ethoxycarbonyl)-hexyl.
A thioalkyl group, i.e where one CH2 group is replaced by —S—, is preferably straight-chain thiomethyl (—SCH3), 1-thioethyl (—SCH2CH3), 1-thiopropyl (═—SCH2CH2CH3), 1-(thiobutyl), 1-(thiopentyl), 1-(thiohexyl), 1-(thioheptyl), 1-(thiooctyl), 1-(thiononyl), 1-(thiodecyl), 1-(thioundecyl) or 1-(thiododecyl), wherein preferably the CH2 group adjacent to the sp2 hybridised vinyl carbon atom is replaced.
A fluoroalkyl group is preferably straight-chain perfluoroalkyl CiF2i+1, wherein i is an integer from 1 to 15, in particular CF3, C2F5, C3F7, C4F9, C5F11, C6F13, C7F15 or C8F17, very preferably C6F13.
The above-mentioned alkyl, alkoxy, alkenyl, oxaalkyl, thioalkyl, carbonyl and carbonyloxy groups can be achiral or chiral groups. Particularly preferred chiral groups are 2-butyl(=1-methylpropyl), 2-methylbutyl, 2-methylpentyl, 3-methylpentyl, 2-ethylhexyl, 2-propylpentyl, in particular 2-methylbutyl, 2-methylbutoxy, 2-methylpentoxy, 3-methylpentoxy, 2-ethyl-hexoxy, 1-methylhexoxy, 2-octyloxy, 2-oxa-3-methylbutyl, 3-oxa-4-methylpentyl, 4-methylhexyl, 2-hexyl, 2-octyl, 2-nonyl, 2-decyl, 2-dodecyl, 6-meth-oxyoctoxy, 6-methyloctoxy, 6-methyloctanoyloxy, 5-methylheptyloxy-carbonyl, 2-methylbutyryloxy, 3-methylvaleroyloxy, 4-methylhexanoyloxy, 2-chloropropionyloxy, 2-chloro-3-methylbutyryloxy, 2-chloro-4-methyl-valeryl-oxy, 2-chloro-3-methylvaleryloxy, 2-methyl-3-oxapentyl, 2-methyl-3-oxahexyl, 1-methoxypropyl-2-oxy, 1-ethoxypropyl-2-oxy, 1-propoxypropyl-2-oxy, 1-butoxypropyl-2-oxy, 2-fluorooctyloxy, 2-fluorodecyloxy, 1,1,1-trifluoro-2-octyloxy, 1,1,1-trifluoro-2-octyl, 2-fluoromethyloctyloxy for example. Very preferred are 2-hexyl, 2-octyl, 2-octyloxy, 1,1,1-trifluoro-2-hexyl, 1,1,1-trifluoro-2-octyl and 1,1,1-trifluoro-2-octyloxy.
Preferred achiral branched groups are isopropyl, isobutyl(=methylpropyl), isopentyl(=3-methylbutyl), tert. butyl, isopropoxy, 2-methyl-propoxy and 3-methylbutoxy.
In another preferred embodiment of the present invention, R3 and R4 are independently of each other selected from primary, secondary or tertiary alkyl or alkoxy with 1 to 30 C atoms, wherein one or more H atoms are optionally replaced by F, or aryl, aryloxy, heteroaryl or heteroaryloxy that is optionally alkylated or alkoxylated and has 4 to 30 ring atoms. Very preferred groups of this type are selected from the group consisting of the following formulae
wherein “ALK” denotes optionally fluorinated, preferably linear, alkyl or alkoxy with 1 to 20, preferably 1 to 12 C-atoms, in case of tertiary groups very preferably 1 to 9 C atoms, and the dashed line denotes the link to the ring to which these groups are attached. Especially preferred among these groups are those wherein all ALK subgroups are identical.
—CY1═CY2— is preferably —CH═CH—, —CF═CF— or —CH═C(CN)—.
Halogen is F, Cl, Br or I, preferably F, Cl or Br.
—CO—, —C(═O)— and —C(O)— denote a carbonyl group, i.e.
The units and polymers may also be substituted with a polymerisable or crosslinkable reactive group, which is optionally protected during the process of forming the polymer. Particular preferred units polymers of this type are those comprising one or more units of formula I wherein one or more of R1-4 denote or contain a group P-Sp-. These units and polymers are particularly useful as semiconductors or charge transport materials, as they can be crosslinked via the groups P, for example by polymerisation in situ, during or after processing the polymer into a thin film for a semiconductor component, to yield crosslinked polymer films with high charge carrier mobility and high thermal, mechanical and chemical stability.
Preferably the polymerisable or crosslinkable group P is selected from CH2═CW1—C(O)—O—, CH2═CW1—C(O)—,
CH2═CW2—(O)k1—, CW1═CH—C(O)—(O)k3—, CW1═CH—C(O)—NH—, CH2═CW1—C(O)—NH—, CH3—CH═CH—O—, (CH2═CH)2CH—OC(O)—, (CH2═CH—CH2)2CH—O—C(O)—, (CH2═CH)2CH—O—, (CH2═CH—CH2)2N—, (CH2═CH—CH2)2N—C(O)—, HO—CW2W3—, HS—CW2W3—, HW2N—, HO—CW2W3—NH—, CH2═CH—(C(O)—O)k1-Phe-(O)k2—, CH2═CH—(C(O))k1-Phe-(O)k2—, Phe-CH═CH—, HOOC—, OCN—, and W4W5W6Si—, with W1 being H, F, Cl, CN, CF3, phenyl or alkyl with 1 to 5 C-atoms, in particular H, Cl or CH3, W2 and W3 being independently of each other H or alkyl with 1 to 5 C-atoms, in particular H, methyl, ethyl or n-propyl, W4, W5 and W6 being independently of each other Cl, oxaalkyl or oxacarbonylalkyl with 1 to 5 C-atoms, W7 and W8 being independently of each other H, Cl or alkyl with 1 to 5 C-atoms, Phe being 1,4-phenylene that is optionally substituted by one or more groups L as defined above, k1, k2 and k3 being independently of each other 0 or 1, k3 preferably being 1, and k4 being an integer from 1 to 10.
Alternatively P is a protected derivative of these groups which is non-reactive under the conditions described for the process according to the present invention. Suitable protective groups are known to the ordinary expert and described in the literature, for example in Green, “Protective Groups in Organic Synthesis”, John Wiley and Sons, New York (1981), like for example acetals or ketals.
Especially preferred groups P are CH2═CH—C(O)—O—, CH2═C(CH3)—C(O)—O—, CH2═CF—C(O)—O—, CH2═CH—O—, (CH2═CH)2CH—O—C(O)—, (CH2═CH)2CH—O—,
or protected derivatives thereof. Further preferred groups P are selected from the group consisting of vinyloxy, acrylate, methacrylate, fluoroacrylate, chloracrylate, oxetan and epoxy groups, very preferably from an acrylate or methacrylate group.
Polymerisation of group P can be carried out according to methods that are known to the ordinary expert and described in the literature, for example in D. J. Broer; G. Challa; G. N. Mol, Macromol. Chem, 1991, 192, 59.
The term “spacer group” is known in prior art and suitable spacer groups Sp are known to the ordinary expert (see e.g. Pure Appl. Chem. 73(5), 888 (2001). The spacer group Sp is preferably of formula Sp′-X′, such that P-Sp- is P-Sp′-X′—, wherein
Typical groups Sp′ are, for example, —(CH2)p—, —(CH2CH2O)q—CH2CH2, —CH2CH2—S—CH2CH2— or —CH2CH2—NH—CH2CH2— or —(SiR0R00—O)p—, with p being an integer from 2 to 12, q being an integer from 1 to 3 and R0 and R00 having the meanings given above.
Preferred groups Sp′ are ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, octadecylene, ethyleneoxyethylene, methyleneoxybutylene, ethylene-thioethylene, ethylene-N-methyl-iminoethylene, 1-methylalkylene, ethenylene, propenylene and butenylene for example.
Preferably the units of formula I are selected from the group consisting of the following subformulae
wherein R1, R2, R3 and R4 have the meanings given in formula I or one of the preferred meanings given above and below.
Very preferably the units of formula I are selected of subformula IA.
Preferred polymers according to the present invention comprise one or more repeating units of formula II:
—[(Ar1)a—(U)b—(Ar2)c—(Ar3)d]— II
wherein
Further preferred polymers according to the present invention comprise, in addition to the units of formula I or II, one or more repeating units selected from monocyclic or polycyclic aryl or heteroaryl groups that are optionally substituted.
These additional repeating units are preferably selected of formula III
—[(Ar1)a-(A1)b-(Ar2)c—(Ar3)d]— III
wherein Ar1, Ar2, Ar3, a, b, c and d are as defined in formula II, and A1 is an aryl or heteroaryl group that is different from U and Ar1-3, preferably has to 30 ring atoms, is optionally substituted by one or more groups RS as defined above and below, and is preferably selected from aryl or heteroaryl groups having electron acceptor properties, wherein the polymer comprises at least one repeating unit of formula III wherein b is at least 1
The conjugated polymers according to the present invention are preferably selected of formula IV:
*(A)x-(B)yn* IV
wherein
Preferred polymers of formula IV are selected of the following formulae
*—[(Ar1—U—Ar2)x—(Ar3)y]n—* IVa
*—[(Ar1—U—Ar2)x—(Ar3—Ar3)]n—* IVb
*—[(Ar1—U—Ar2)x—(Ar3—Ar3—Ar3)y]n—* IVc
*—[(Ar1)a—(U)b—(Ar2)c—(Ar3)d]n—* IVd
*—([(Ar1)a—(U)b—(Ar2)c—(Ar3)d]x—[(Ar1)a-(A1)b-(Ar2)c—(Ar3)d]y)n—* IVe
wherein U, Ar1, Ar2, Ar3, a, b, c and d have in each occurrence identically or differently one of the meanings given in formula II, A1 has on each occurrence identically or differently one of the meanings given in formula III, and x, y and n are as defined in formula IV, wherein these polymers can be alternating or random copolymers, and wherein in formula IVd and IVe in at least one of the repeating units [(Ar1)a—(U)b—(Ar2)c—(Ar3)d] and in at least one of the repeating units [(Ar1)a-(A1)b-(Ar2)c—(Ar3)d]b is at least 1.
In the polymers according to the present invention, the total number of repeating units n is preferably from 2 to 10,000. The total number of repeating units n is preferably ≧5, very preferably ≧10, most preferably ≧50, and preferably ≦500, very preferably ≦1,000, most preferably ≦2,000, including any combination of the aforementioned lower and upper limits of n.
The polymers of the present invention include homopolymers and copolymers, like statistical or random copolymers, alternating copolymers and block copolymers, as well as combinations thereof.
Especially preferred are polymers selected from the following groups:
Preferred polymers of formula IV and IVa to IVe are selected of formula V
R5-chain-R6 V
wherein “chain” denotes a polymer chain of formulae IV or IVa to IVe, and R5 and R6 have independently of each other one of the meanings of R3 as defined above, or denote, independently of each other, H, F, Br, Cl, I, —CH2Cl, —CHO, —CR′═CR″2, —SiR′R″R′″, —SiR′X′X″, —SiR′R″X″, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, —O—SO2—R′, —C≡CH, —C≡C—SiR′3, —ZnX′, P-Sp- or an endcap group, wherein P and Sp are as defined in formula II, X′ and X″ denote halogen, R′, R″ and R′″ have independently of each other one of the meanings of R0 given in formula II, and two of R′, R″ and R′″ may also form a ring together with the hetero atom to which they are attached.
Preferred endcap groups R5 and R6 are H, C1-20 alkyl, or optionally substituted C6-12 aryl or C2-10 heteroaryl, very preferably H or phenyl.
In the polymers represented by formula IV, IVa to IVe and V, x denotes the mole fraction of units A, y denotes the mole fraction of units B, and n denotes the degree of polymerisation or total number of units A and B. These formulae includes block copolymers, random or statistical copolymers and alternating copolymers of A and B, as well as homopolymers of A for the case when x is >0 and y is 0.
Another aspect of the invention relates to monomers of formula VI
R7—(Ar1)a—U—(Ar2)c—R8 VI
wherein U, Ar1, Ar2, a and c have the meanings of formula II, or one of the preferred meanings as described above and below, and R7 and R8 are, preferably independently of each other, selected from the group consisting of Cl, Br, I, O-tosylate, O-triflate, O-mesylate, O-nonaflate, —SiMe2F, —SiMeF2, —O—SO2Z1, —B(OZ2)2, —CZ3═C(Z3)2, —C≡CH, —C≡CSi(Z1)3, —ZnX0 and —Sn(Z4)3, wherein X0 is halogen, preferably Cl, Br or I, Z1-4 are selected from the group consisting of alkyl and aryl, each being optionally substituted, and two groups Z2 may also together form a cyclic group.
Especially preferred are monomers of the following formulae
R7—Ar1—U—Ar2—R8 VI1
R7—U—R8 VI2
R7—Ar1—U—R8 VI3
R7—U—Ar2—R8 VI4
wherein U, Ar1, Ar2, R7 and R8 are as defined in formula VI.
Preferably R1 and/or R2 denote independently of each other straight-chain or branched alkyl with 1 to 20 C atoms which is unsubstituted or substituted by one or more F atoms.
Especially preferred are repeating units, monomers and polymers of formulae I, II, III, IV, IVa to IVe, V, VI and their subformulae wherein one or more of Ar1, Ar2 and Ar3 denote aryl or heteroaryl, preferably having electron donor properties, selected from the group consisting of the following formulae
wherein one of X11 and X12 is S and the other is Se, and R11, R12, R13, R14, R15, R16, R17 and R18 independently of each other denote H or have one of the meanings of R3 as defined above and below.
In a preferred embodiment of the present invention in formula D1 R11 and R12 denote H. In another preferred embodiment of the present invention in formulae D2, D5, D6, D15, D16 and D24 R1 and R12 denote H.
Preferably one or more of Ar1, Ar2 and Ar3 are selected from the group consisting of formulae D1, D2, D3, D4, D5, D6, D7, D15, D17, D19, D24, D25, D29 and D26, very preferably from formulae D1, D2, D3, D5, D15, D24 and D29.
Further preferred are repeating units, monomers and polymers of formulae I, II, III, IV, IVa to IVe, V, VI and their subformulae wherein one or more of Ar3 and A1 denote aryl or heteroaryl, preferably having electron acceptor properties, selected from the group consisting of the following formulae
wherein one of X1 and X12 is S and the other is Se, and R11, R12, R13, R14 and R15 independently of each other denote H or have one of the meanings of R3 as defined above and below.
Preferably A1 and/or Ar3 is selected from the group consisting of formulae A1, A2, A3, A4, A5, A10, A34, A44, very preferably from formula A2 and A3.
Further preferred are repeating units, monomers and polymers of formulae I, II, III, IV, IVa to IVe, V, VI and their subformulae selected from the following list of preferred embodiments:
R9 is primary alkyl with 1 to 30 C atoms, very preferably with 1 to 15 C atoms, secondary alkyl with 3 to 30 C atoms, or tertiary alkyl with 4 to 30 C atoms, wherein in all these groups one or more H atoms are optionally replaced by F,
R0 and R00 are selected from H or C1-C10-alkyl,
R5 and R6 are selected from H, halogen, —CH2Cl, —CHO, —CH═CH2—SiR′R″R′″, —SnR′R″R′″, —BR′R″, —B(OR′)(OR″), —B(OH)2, P-Sp, C1-C20-alkyl, C1-C20-alkoxy, C2-C20-alkenyl, C1-C20-fluoroalkyl and optionally substituted aryl or heteroaryl,
Further preferred are copolymers selected from the following subformulae
wherein n, x and y are as defined in formula IV, R21, and R22, have one of the meanings given for R1 in formula I or its preferred meanings given above, R31, R32, R41 and R42 have one of the meanings of R3 in formula I or its preferred meanings given above, and the thiophene rings in formulae IV1, IV2, IV4, IV5 are optionally substituted by one or two groups R31.
The polymers of the present invention can be synthesized according to or in analogy to methods that are known to the skilled person and are described in the literature. Other methods of preparation can be taken from the examples. For example, they can be suitably prepared by aryl-aryl coupling reactions, such as Yamamoto coupling, Suzuki coupling, Stille coupling, Sonogashira coupling, Heck coupling or Buchwald coupling. Suzuki coupling and Yamamoto coupling are especially preferred.
The monomers which are polymerised to form the repeat units of the polymers can be prepared according to methods which are known to the person skilled in the art.
Preferably the polymers are prepared from monomers of formula Ia or its preferred embodiments as described above and below.
Another aspect of the invention is a process for preparing a polymer by coupling one or more identical or different monomeric units of formula I or monomers of formula Ia with each other and/or with one or more comonomers in a polymerisation reaction, preferably in an aryl-aryl coupling reaction.
Suitable and preferred comonomers are selected from the following formulae
R7—(Ar1)a-A1-(Ar2)c—R8 C
R7—Ar1—R8 D
R7—Ar3—R8 E
wherein Ar1, Ar2, Ar3 a and c have one of the meanings of formula II or one of the preferred meanings given above and below, A1 has one of the meanings of formula III or one of the preferred meanings given above and below, and R7 and R8 have the meanings of formula VI or one of the preferred meanings given above and below.
Preferred methods for polymerisation are those leading to C—C-coupling or C—N-coupling, like Suzuki polymerisation, as described for example in WO 00/53656, Yamamoto polymerisation, as described in for example in T. Yamamoto et al., Progress in Polymer Science 1993, 17, 1153-1205 or in WO 2004/022626 A1, and Stille coupling. For example, when synthesizing a linear polymer by Yamamoto polymerisation, monomers as described above having two reactive halide groups R7 and R8 is preferably used. When synthesizing a linear polymer by Suzuki polymerisation, preferably a monomer as described above is used wherein at least one reactive group R7 or R8 is a boronic acid or boronic acid derivative group.
Suzuki polymerisation may be used to prepare homopolymers as well as statistical, alternating and block random copolymers. Statistical or block copolymers can be prepared for example from the above monomers of formula V wherein one of the reactive groups R7 and R8 is halogen and the other reactive group is a boronic acid or boronic acid derivative group. The synthesis of statistical, alternating and block copolymers is described in detail for example in WO 03/048225 A2 or WO 2005/014688 A2.
Suzuki polymerisation employs a Pd(0) complex or a Pd(II) salt. Preferred Pd(0) complexes are those bearing at least one phosphine ligand such as Pd(Ph3P)4. Another preferred phosphine ligand is tris(ortho-tolyl)phosphine, i.e. Pd(o-Tol)4. Preferred Pd(II) salts include palladium acetate, i.e. Pd(OAc)2. Suzuki polymerisation is performed in the presence of a base, for example sodium carbonate, potassium phosphate or an organic base such as tetraethylammonium carbonate. Yamamoto polymerisation employs a Ni(0) complex, for example bis(1,5-cyclooctadienyl) nickel(0).
As alternatives to halogens as described above, leaving groups of formula —O—SO2Z1 can be used wherein Z1 is as described above. Particular examples of such leaving groups are tosylate, mesylate and triflate.
Especially suitable and preferred synthesis methods of the repeating units, monomers, and polymers of formula I, II, III, IV, V and VI are illustrated in the synthesis schemes shown hereinafter, wherein R1-4, Ar1-3 are as defined in formula II, and R is an alkyl, aryl or heteroaryl group,
The synthesis of the 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene dibromide monomer is shown below in Scheme 1.
A fluorination agent such as diethylaminosulfur trifluoride (DAST), bis(2-methoxyethyl)amino]sulfur trifluoride (Deoxo-Fluor) or related amino-fluorosulfuranes can be use to convert the alkyl ketone to the 1,1-difluoralkyl.
The electrophilic bromation via a lithiated intermediate can be complete using, for example, tetrabromomethane, bromine, dibromoethane, dibromotetrachloroethane, N-bromosuccimide or brominil as Br+ source.
An alternative synthesis of the 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene dibromide monomer is shown below in Scheme 2. The 2,6-bis(trimethylsilyl)-dibromobenzo[1,2-b:4,5-b′]dithiophene synthesis has been described for example in Ralph Rieger et al., Chem. Mater. 2010, 22, 5314-5318.
Another alternative synthesis of the 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene dibromide monomer are shown below in Scheme 3. The LiCF2CHCH2 synthesis has been described, for example, in J. Org. Chem. 1980, 45, 2273-2274.
The synthesis for the alternating co-polymerisation of the 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene is exemplarily shown in Scheme 4.
The synthesis for the random co-polymerisation of the 4,8-bis(1,1-difluoralkyl)-benzo[1,2-b:4,5-b′]dithiophene is exemplarily shown in Scheme 5.
The novel methods of preparing monomers and polymers as described above and below are another aspect of the invention.
The polymers according to the present invention can also be used in mixtures or polymer blends, for example together with monomeric compounds or together with other polymers having charge-transport, semiconducting, electrically conducting, photoconducting and/or light emitting semiconducting properties, or for example with polymers having hole blocking or electron blocking properties for use as interlayers or charge blocking layers in OLED devices. Thus, another aspect of the invention relates to a polymer blend comprising one or more polymers according to the present invention and one or more further polymers having one or more of the above-mentioned properties. These blends can be prepared by conventional methods that are described in prior art and known to the skilled person. Typically the polymers are mixed with each other or dissolved in suitable solvents and the solutions combined.
Another aspect of the invention relates to a formulation comprising one or more polymers, mixtures or polymer blends as described above and below and one or more organic solvents.
Preferred solvents are aliphatic hydrocarbons, chlorinated hydrocarbons, aromatic hydrocarbons, ketones, ethers and mixtures thereof. Additional solvents which can be used include 1,2,4-trimethylbenzene, 1,2,3,4-tetramethyl benzene, pentylbenzene, mesitylene, cumene, cymene, cyclohexylbenzene, diethylbenzene, tetralin, decalin, 2,6-lutidine, 2-fluoro-m-xylene, 3-fluoro-o-xylene, 2-chlorobenzotrifluoride, dimethylformamide, 2-chloro-6-fluorotoluene, 2-fluoroanisole, anisole, 2,3-dimethylpyrazine, 4-fluoroanisole, 3-fluoroanisole, 3-trifluoro-methylanisole, 2-methylanisole, phenetol, 4-methylanisole, 3-methylanisole, 4-fluoro-3-methylanisole, 2-fluorobenzonitrile, 4-fluoroveratrol, 2,6-dimethylanisole, 3-fluorobenzonitrile, 2,5-dimethylanisole, 2,4-dimethylanisole, benzonitrile, 3,5-dimethylanisole, N,N-dimethylaniline, ethyl benzoate, 1-fluoro-3,5-dimethoxybenzene, 1-methylnaphthalene, N-methylpyrrolidinone, 3-fluorobenzotrifluoride, benzotrifluoride, benzotrifluoride, diosane, trifluoromethoxybenzene, 4-fluorobenzotrifluoride, 3-fluoropyridine, toluene, 2-fluorotoluene, 2-fluorobenzotrifluoride, 3-fluorotoluene, 4-isopropylbiphenyl, phenyl ether, pyridine, 4-fluorotoluene, 2,5-difluorotoluene, 1-chloro-2,4-difluorobenzene, 2-fluoropyridine, 3-chlorofluorobenzene, 3-chlorofluorobenzene, 1-chloro-2,5-difluorobenzene, 4-chlorofluorobenzene, chlorobenzene, o-dichlorobenzene, 2-chlorofluorobenzene, p-xylene, m-xylene, o-xylene or mixture of o-, m-, and p-isomers. Solvents with relatively low polarity are generally preferred. For inkjet printing solvents with high boiling temperatures and solvent mixtures are preferred. For spin coating alkylated benzenes like xylene and toluene are preferred.
Examples of especially preferred solvents include, without limitation, dichloromethane, trichloromethane, monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4-dioxane, acetone, methylethylketone, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetraline, decaline, indane, methyl benzoate, ethyl benzoate, mesitylene and/or mixtures thereof.
The concentration of the polymers in the solution is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight. Optionally, the solution also comprises one or more binders to adjust the rheological properties, as described for example in WO 2005/055248 A1.
After the appropriate mixing and ageing, solutions are evaluated as one of the following categories: complete solution, borderline solution or insoluble. The contour line is drawn to outline the solubility parameter-hydrogen bonding limits dividing solubility and insolubility. ‘Complete’ solvents falling within the solubility area can be chosen from literature values such as published in “Crowley, J. D., Teague, G. S. Jr and Lowe, J. W. Jr., Journal of Paint Technology, 38, No 496, 296 (1966)”. Solvent blends may also be used and can be identified as described in “Solvents, W. H. Ellis, Federation of Societies for Coatings Technology, p 9-10, 1986”. Such a procedure may lead to a blend of ‘non’ solvents that will dissolve both the polymers of the present invention, although it is desirable to have at least one true solvent in a blend.
The polymers according to the present invention can also be used in patterned OSC layers in the devices as described above and below. For applications in modern microelectronics it is generally desirable to generate small structures or patterns to reduce cost (more devices/unit area), and power consumption. Patterning of thin layers comprising a polymer according to the present invention can be carried out for example by photolithography, electron beam lithography or laser patterning.
For use as thin layers in electronic or electrooptical devices the polymers, polymer blends or formulations of the present invention may be deposited by any suitable method. Liquid coating of devices is more desirable than vacuum deposition techniques. Solution deposition methods are especially preferred. The formulations of the present invention enable the use of a number of liquid coating techniques. Preferred deposition techniques include, without limitation, dip coating, spin coating, ink jet printing, letter-press printing, screen printing, doctor blade coating, roller printing, reverse-roller printing, offset lithography printing, flexographic printing, web printing, spray coating, brush coating or pad printing. Ink-jet printing is particularly preferred as it allows high resolution layers and devices to be prepared.
Selected formulations of the present invention may be applied to prefabricated device substrates by ink jet printing or microdispensing. Preferably industrial piezoelectric print heads such as but not limited to those supplied by Aprion, Hitachi-Koki, InkJet Technology, On Target Technology, Picojet, Spectra, Trident, Xaar may be used to apply the organic semiconductor layer to a substrate. Additionally semi-industrial heads such as those manufactured by Brother, Epson, Konica, Seiko Instruments Toshiba TEC or single nozzle microdispensers such as those produced by Microdrop and Microfab may be used.
In order to be applied by ink jet printing or microdispensing, the polymers should be first dissolved in a suitable solvent. Solvents must fulfil the requirements stated above and must not have any detrimental effect on the chosen print head. Additionally, solvents should have boiling points >100° C., preferably >140° C. and more preferably >150° C. in order to prevent operability problems caused by the solution drying out inside the print head. Apart from the solvents mentioned above, suitable solvents include substituted and non-substituted xylene derivatives, di-C1-2-alkyl formamide, substituted and non-substituted anisoles and other phenol-ether derivatives, substituted heterocycles such as substituted pyridines, pyrazines, pyrimidines, pyrrolidinones, substituted and non-substituted N,N-di-C1-2-alkylanilines and other fluorinated or chlorinated aromatics.
A preferred solvent for depositing a polymer according to the present invention by ink jet printing comprises a benzene derivative which has a benzene ring substituted by one or more substituents wherein the total number of carbon atoms among the one or more substituents is at least three. For example, the benzene derivative may be substituted with a propyl group or three methyl groups, in either case there being at least three carbon atoms in total. Such a solvent enables an ink jet fluid to be formed comprising the solvent with the polymer, which reduces or prevents clogging of the jets and separation of the components during spraying. The solvent(s) may include those selected from the following list of examples: dodecylbenzene, 1-methyl-4-tert-butylbenzene, terpineol limonene, isodurene, terpinolene, cymene, diethylbenzene. The solvent may be a solvent mixture, that is a combination of two or more solvents, each solvent preferably having a boiling point >100° C., more preferably >140° C. Such solvent(s) also enhance film formation in the layer deposited and reduce defects in the layer.
The ink jet fluid (that is mixture of solvent, binder and semiconducting compound) preferably has a viscosity at 20° C. of 1-100 mPa·s, more preferably 1-50 mPa·s and most preferably 1-30 mPa·s.
The polymers or formulations according to the present invention can additionally comprise one or more further components or additives selected for for example from surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents which may be reactive or non-reactive, auxiliaries, colourants, dyes or pigments, sensitizers, stabilizers, nanoparticles or inhibitors.
The polymers according to the present invention are useful as charge transport, semiconducting, electrically conducting, photoconducting or light mitting materials in optical, electrooptical, electronic, electroluminescent or photoluminescent components or devices. In these devices, the polymers of the present invention are typically applied as thin layers or films.
Thus, the present invention also provides the use of the semiconducting polymer, polymer blend, formulation or layer in an electronic device. The formulation may be used as a high mobility semiconducting material in various devices and apparatus. The formulation may be used, for example, in the form of a semiconducting layer or film. Accordingly, in another aspect, the present invention provides a semiconducting layer for use in an electronic device, the layer comprising a polymer, polymer blend or formulation according to the invention. The layer or film may be less than about 30 microns. For various electronic device applications, the thickness may be less than about 1 micron thick. The layer may be deposited, for example on a part of an electronic device, by any of the aforementioned solution coating or printing techniques.
The invention additionally provides an electronic device comprising a polymer, polymer blend, formulation or organic semiconducting layer according to the present invention. Especially preferred devices are OFETs, TFTs, ICs, logic circuits, capacitors, RFID tags, OLEDs, OLETs, OPEDs, OPVs, solar cells, laser diodes, photoconductors, photodetectors, electrophotographic devices, electrophotographic recording devices, organic memory devices, sensor devices, charge injection layers, Schottky diodes, planarising layers, antistatic films, conducting substrates and conducting patterns.
Especially preferred electronic device are OFETs, OLEDs and OPV devices, in particular bulk heterojunction (BHJ) OPV devices. In an OFET, for example, the active semiconductor channel between the drain and source may comprise the layer of the invention. As another example, in an OLED device, the charge (hole or electron) injection or transport layer may comprise the layer of the invention.
For use in OPV devices the compound or polymer according to the present invention is preferably used as photo-active layer. This implies the use in a formulation that comprises or contains, more preferably consists essentially of, very preferably exclusively of, a p-type (electron donor) semiconductor and an n-type (electron acceptor) semiconductor. The p-type semiconductor is constituted by a compound, preferably a polymer according to the present invention. The n-type semiconductor can be an inorganic material such as zinc oxide or cadmium selenide, or an organic material such as graphene or a fullerene or substituted fullerene, for example an indene-C60-fullerene bisaduct like ICBA, or a (6,6)-phenyl-butyric acid methyl ester derivatized methano C60 fullerene, also known as “PCBM” or “C60PCBM”, as disclosed for example in G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 1995, 270, 1789 and having the structure shown below, or structural analogous compounds with e.g. a C61 fullerene group, a C70 fullerene group, or a C71 fullerene group, or an organic polymer (see for example Coakley, K. M. and McGehee, M. D. Chem. Mater., 2004, 16, 4533).
Very preferred is a blend or mixture of a polymer according to the present invention with a C60, C61, C70 or C71 fullerene or substituted fullerene like C60PCBM, C61PCBM, C70PCBM, C71PCBM, bis-PCBM-C61, bis-PCBM-C71, graphene or ICBA. Preferably the ratio polymer:fullerene is from 2:1 to 1:2 by weight, more preferably from 1.2:1 to 1:1.2 by weight, most preferably 1:1 by weight. For the blended mixture, an optional annealing step may be necessary to optimize blend morpohology and consequently OPV device performance.
The OPV device can for example be of any type known from the literature (see for example Waldauf et al., Appl. Phys. Lett. 89, 233517 (2006), or Coakley, K. M. and McGehee, M. D. Chem. Mater. 2004, 16, 4533).
A first preferred OPV device according to the invention comprises the following layers (in the sequence from bottom to top):
A second preferred OPV device according to the invention is an inverted OPV device and comprises the following layers (in the sequence from bottom to top):
In the OPV devices of the present invent invention the p-type and n-type semiconductor materials are preferably selected from materials like the polymer/fullerene systems as described above. If the bilayer is a blend an optional annealing step may be necessary to optimize device performance.
The compound, formulation and layer of the present invention are also suitable for use in an OFET as the semiconducting channel. Accordingly, the invention also provides an OFET comprising a gate electrode, an insulating (or gate insulator) layer, a source electrode, a drain electrode and an organic semiconducting channel connecting the source and drain electrodes, wherein the organic semiconducting channel comprises a polymer, polymer blend, formulation or organic semiconducting layer according to the present invention. Other features of the OFET are well known to those skilled in the art.
OFETs where an OSC material is arranged as a thin film between a gate dielectric and a drain and a source electrode, are generally known, and are described for example in U.S. Pat. No. 5,892,244, U.S. Pat. No. 5,998,804, U.S. Pat. No. 6,723,394 and in the references cited in the background section. Due to the advantages, like low cost production using the solubility properties of the compounds according to the invention and thus the processibility of large surfaces, preferred applications of these FETs are such as integrated circuitry, TFT displays and security applications.
The gate, source and drain electrodes and the insulating and semiconducting layer in the OFET device may be arranged in any sequence, provided that the source and drain electrode are separated from the gate electrode by the insulating layer, the gate electrode and the semiconductor layer both contact the insulating layer, and the source electrode and the drain electrode both contact the semiconducting layer.
An OFET device according to the present invention preferably comprises:
The OFET device can be a top gate device or a bottom gate device. Suitable structures and manufacturing methods of an OFET device are known to the skilled in the art and are described in the literature, for example in US 2007/0102696 A1.
The gate insulator layer preferably comprises a fluoropolymer, like e.g. the commercially available Cytop 809M® or Cytop 107M® (from Asahi Glass). Preferably the gate insulator layer is deposited, e.g. by spin-coating, doctor blading, wire bar coating, spray or dip coating or other known methods, from a formulation comprising an insulator material and one or more solvents with one or more fluoro atoms (fluorosolvents), preferably a perfluorosolvent. A suitable perfluorosolvent is e.g. FC75® (available from Acros, catalogue number 12380). Other suitable fluoropolymers and fluorosolvents are known in prior art, like for example the perfluoropolymers Teflon AF® 1600 or 2400 (from DuPont) or Fluoropel® (from Cytonix) or the perfluorosolvent FC 43® (Acros, No. 12377). Especially preferred are organic dielectric materials having a low permittivity (or dielectric constant) from 1.0 to 5.0, very preferably from 1.8 to 4.0 (“low k materials”), as disclosed for example in US 2007/0102696 A1 or U.S. Pat. No. 7,095,044.
In security applications, OFETs and other devices with semiconducting materials according to the present invention, like transistors or diodes, can be used for RFID tags or security markings to authenticate and prevent counterfeiting of documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with monetry value, like stamps, tickets, shares, cheques etc.
Alternatively, the materials according to the invention can be used in OLEDs, e.g. as the active display material in a flat panel display applications, or as backlight of a flat panel display like e.g. a liquid crystal display. Common OLEDs are realized using multilayer structures. An emission layer is generally sandwiched between one or more electron-transport and/or hole-transport layers. By applying an electric voltage electrons and holes as charge carriers move towards the emission layer where their recombination leads to the excitation and hence luminescence of the lumophor units contained in the emission layer. The inventive compounds, materials and films may be employed in one or more of the charge transport layers and/or in the emission layer, corresponding to their electrical and/or optical properties. Furthermore their use within the emission layer is especially advantageous, if the compounds, materials and films according to the invention show electroluminescent properties themselves or comprise electroluminescent groups or compounds. The selection, characterization as well as the processing of suitable monomeric, oligomeric and polymeric compounds or materials for the use in OLEDs is generally known by a person skilled in the art, see, e.g., Meerholz, Synthetic Materials, 111-112, 2000, 31-34, Alcala, J. Appl. Phys., 88, 2000, 7124-7128 and the literature cited therein.
According to another use, the materials according to this invention, especially those showing photoluminescent properties, may be employed as materials of light sources, e.g. in display devices, as described in EP 0 889 350 A1 or by C. Weder et al., Science, 279, 1998, 835-837.
A further aspect of the invention relates to both the oxidised and reduced form of the compounds according to this invention. Either loss or gain of electrons results in formation of a highly delocalised ionic form, which is of high conductivity. This can occur on exposure to common dopants. Suitable dopants and methods of doping are known to those skilled in the art, e.g. from EP 0 528 662, U.S. Pat. No. 5,198,153 or WO 96/21659.
The doping process typically implies treatment of the semiconductor material with an oxidating or reducing agent in a redox reaction to form delocalised ionic centres in the material, with the corresponding counterions derived from the applied dopants. Suitable doping methods comprise for example exposure to a doping vapor in the atmospheric pressure or at a reduced pressure, electrochemical doping in a solution containing a dopant, bringing a dopant into contact with the semiconductor material to be thermally diffused, and ion-implantation of the dopant into the semiconductor material.
When electrons are used as carriers, suitable dopants are for example halogens (e.g., I2, Cl2, Br2, ICl, ICl3, IBr and IF), Lewis acids (e.g., PF5, AsF5, SbF5, BF3, BCl3, SbCl5, BBr3 and SO3), protonic acids, organic acids, or amino acids (e.g., HF, HCl, HNO3, H2SO4, HClO4, FSO3H and ClSO3H), transition metal compounds (e.g., FeCl3, FeOCl, Fe(ClO4)3, Fe(4-CH3C6H4SO3)3, TiCl4, ZrCl4, HfCl4, NbF5, NbCl5, TaCl5, MoF5, MoCl5, WF5, WCl6, UF6 and LnCl3 (wherein Ln is a lanthanoid), anions (e.g., Cl−, Br−, I−, I3−, HSO4−, SO42−, NO3−, ClO4−, BF4−, PF6−, AsF6−, SbF6−, FeCl4−, Fe(CN)63−, and anions of various sulfonic acids, such as aryl-SO3−). When holes are used as carriers, examples of dopants are cations (e.g., H+, Li+, Na+, K+, Rb+ and Cs+), alkali metals (e.g., Li, Na, K, Rb, and Cs), alkaline-earth metals (e.g., Ca, Sr, and Ba), O2, XeOF4, (NO2+) (SbF6−), (NO2+) (SbCl6−), (NO2+) (BF4−), AgClO4, H2IrCl6, La(NO3)3.6H2O, FSO2OOSO2F, Eu, acetylcholine, R4N+, (R is an alkyl group), R4P+ (R is an alkyl group), R6As+ (R is an alkyl group), and R3S+ (R is an alkyl group).
The conducting form of the compounds of the present invention can be used as an organic “metal” in applications including, but not limited to, charge injection layers and ITO planarising layers in OLED applications, films for flat panel displays and touch screens, antistatic films, printed conductive substrates, patterns or tracts in electronic applications such as printed circuit boards and condensers.
The compounds and formulations according to the present invention any also be suitable for use in organic plasmon-emitting diodes (OPEDs), as described for example in Koller et al., Nature Photonics 2008 (published online Sep. 28, 2008).
According to another use, the materials according to the present invention can be used alone or together with other materials in or as alignment layers in LCD or OLED devices, as described for example in US 2003/0021913. The use of charge transport compounds according to the present invention can increase the electrical conductivity of the alignment layer. When used in an LCD, this increased electrical conductivity can reduce adverse residual dc effects in the switchable LCD cell and suppress image sticking or, for example in ferroelectric LCDs, reduce the residual charge produced by the switching of the spontaneous polarisation charge of the ferroelectric LCs. When used in an OLED device comprising a light emitting material provided onto the alignment layer, this increased electrical conductivity can enhance the electroluminescence of the light emitting material. The compounds or materials according to the present invention having mesogenic or liquid crystalline properties can form oriented anisotropic films as described above, which are especially useful as alignment layers to induce or enhance alignment in a liquid crystal medium provided onto said anisotropic film. The materials according to the present invention may also be combined with photoisomerisable compounds and/or chromophores for use in or as photoalignment layers, as described in US 2003/0021913.
According to another use the materials according to the present invention, especially their water-soluble derivatives (for example with polar or ionic side groups) or ionically doped forms, can be employed as chemical sensors or materials for detecting and discriminating DNA sequences. Such uses are described for example in L. Chen, D. W. McBranch, H. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12287; D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 49; N. DiCesare, M. R. Pinot, K. S. Schanze and J. R. Lakowicz, Langmuir 2002, 18, 7785; D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev. 2000, 100, 2537.
Unless the context clearly indicates otherwise, as used herein plural forms of the terms herein are to be construed as including the singular form and vice versa.
Throughout the description and claims of this specification, the words “comprise” and “contain” and variations of the words, for example “comprising” and “comprises”, mean “including but not limited to”, and are not intended to (and do not) exclude other components.
It will be appreciated that variations to the foregoing embodiments of the invention can be made while still falling within the scope of the invention. Each feature disclosed in this specification, unless stated otherwise, may be replaced by alternative features serving the same, equivalent or similar purpose. Thus, unless stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
All of the features disclosed in this specification may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. In particular, the preferred features of the invention are applicable to all aspects of the invention and may be used in any combination. Likewise, features described in non-essential combinations may be used separately (not in combination).
It will be appreciated that many of the features described above, particularly of the preferred embodiments, are inventive in their own right and not just as part of an embodiment of the present invention.
Independent protection may be sought for these features in addition to or alternative to any invention presently claimed.
Above and below, unless stated otherwise percentages are percent by weight and temperatures are given in degrees Celsius. The values of the dielectric constant ∈ (“permittivity”) refer to values taken at 20° C. and 1,000 Hz.
The invention will now be described in more detail by reference to the following examples, which are illustrative only and do not limit the scope of the invention.
To a solution of dodec-1-yn (38.7 mL, 182 mmol) in tetrahydrofuran (160 cm3) is added dropwise n-butyllithium (68 cm3, 2.5 M in hexanes, 170 mmol) at 23° C. and the mixture is stirred for 30 minutes. Benzo[1,2-b; 4,5-b′]dithiophene-4,8-dione (10.0 g, 45.4 mmol) is added and the resulting mixture is stirred at 60° C. for 1 hour and then cooled to room temperature. A solution of tin chloride (II) (66.7 g, 351.8 mmol) in 10% aqueous hydrochloridic acid (170 cm3) is added dropwise and the reaction mixture is heated to 60° C. for 1 hour. The cooled reaction mixture is poured into water (200 cm3) and extracted with diethyl ether (3×100 cm3), the combined organic phases are dried over magnesium sulfate and concentrated in vacuo. The residue is triturated in isopropyl alcohol, collected by filtration and washed with isopropyl alcohol and acetonitrile to give a yellow solid (18.1 g, 34.9 mmol, 77%). 1H NMR (300 MHz, CDCl3): 0.89 (3H, t, J=6.9 Hz), 1.24-1.45 (12H, m), 1.58 (2H, quin, J=6.8 Hz), 1.74 (2H, quin, J=7.0 Hz), 2.64 (2H, t, J=6.9 Hz), 7.50 (1H, d, J=5.5 Hz), 7.58 (1H, d, J=5.6 Hz).
Concentrated sulfuric acid (76 cm3) is added dropwise to a stirred solution of 4,8-di-dodec-1-ynyl-benzo[1,2-b; 4,5-b′]dithiophene (18.0 g, 34.7 mmol) in 1,4-dioxane (760 cm3) at room temperature. After 30 minutes the reaction mixture is heated to 70° C. for 24 hours followed by 90° C. for a further 24 hours. The cooled reaction mixture is poured into ice and the resultant oil is extracted with dichloromethane (3×50 cm3). The combined organic phases are dried over magnesium sulfate and concentrated in vacuo. The residue is triturated in acetone and solid collected by filtration to give a yellow solid (11.0 g, 19.9 mmol, 57%). 1H NMR (300 MHz, CDCl3): 0.89 (6H, t, J=7.0 Hz), 1.20-1.46 (32H, m), 1.88 (4H, quin, J=7.4 Hz), 3.26 (4H, t, J=7.4 Hz), 7.78 (4H, s).
To a stirred suspension of 1-(8-Dodecanoyl-benzo[1,2-b; 4,5-b′]dithiophen-4-yl)-dodecan-1-one (8.89 g, 16.00 mmol) in anhydrous THF (180 mL) is added DAST (4.24 cm3, 32.00 mmol) at room temperature and the resulting mixture is stirred at 80° C. for 90 minutes. The mixture is cooled for 5 minutes and then more diethylaminosulfur trifluoride (DAST) (4.2 cm3, 32.00 mmol) is added and the mixture is heated at 80° C. for a further 90 minutes. This process is repeated a further four times on day 1 and the mixture stirred overnight at 80° C. The procedure is repeated on day 2 a further six times until the total volume of diethylaminosulfur trifluoride used is (51 cm3, 24 equivalents). The reaction mixture is cooled to room temperature and poured carefully into saturated sodium bicarbonate solution (1000 cm3). The mixture is then extracted with dichloromethane (3×300 cm3) and the combined organic layers are dried over sodium sulfate, filtered and the volatile is evaporated under vacuo to give a black solid. This solid is dry loaded onto silica and purified by flash column chromatography on silica using light petroleum as eluent to give a pale yellow solid (2.71 g, 8.51 mmol, 28%). 1H NMR (400 MHz, CDCl3): δ 0.80 (m, 6H), 1.14-1.22 (m, 32H), 1.45 (m, 4H), 2.29 (m, 4H), 7.53 (d, 2H), 7.59 (d, 2H).
4,8-Bis-(1,1-difluoro-tridecyl)-benzo[1,2-b; 4,5-b′]dithiophene (0.780 g, 1.30 mmol) is dissolved in THF (33 cm3) and the solution is cooled to −78° C. N-Butyl lithium (1.8 cm3, 2.5 M in hexanes, 4.6 mmol) is added dropwise over 5-10 minutes and the resulting mixture is stirred at −78° C. for 5 minutes and at 23° C. for 35 minutes. The mixture is cooled back to −78° C. and a solution of carbon tetracarbon (1.73 g, 5.21 mmol) in THF (4.0 cm3) is added in one portion. After 30 minutes the cooling bath is removed and the resulting solution is stirred at room temperature for 45 minutes. The reaction mixture is quenched with water (50 cm3) and extracted into dichloromethane (3×30 cm3). The combined organic phases are dried over magnesium sulfate and concentrated in vacuo. The residue is triturated in methanol, filtered and the resulting solid is further purified by recrystallistion from tetrahydrofuran/acetronitrile to give a yellow solid (612 mg, 0.809 mmol, 62%). 1H NMR (300 MHz, CDCl3): 0.88 (6H, t, 7.0 Hz), 1.20-1.33 (32H, m), 1.43-1.55 (4H, m), 2.20-2.40 (4H, m), 7.61 (2H, broad s).
2,6-Dibromo-4,8-bis-(1,1-difluoro-dodecyl)-benzo[1,2-b; 4,5-b′]dithiophene (305.0 mg, 0.4031 mmol), 2,5-bis-trimethylstannanyl-thiophene (330.3 mg, 0.8062 mmol), 4,7-dibromo-5,6-bis-octyloxy-benzo[1,2,5]thiadiazole (221.8 mg, 0.4031 mmol), Pd2(dba)3 (14.8 mg, 0.0161 mmol) and tri-o-tolyl-phosphine (19.6 mg, 0.0645 mmol) are placed in a microwave vial. The microwave vial is subjected to three successive cycles of vacuum followed by refilling with nitrogen. Degassed chlorobenzene (3.4 cm3) is added and the mixture is purged with nitrogen for 5 minutes. The reaction mixture is placed in a microwave reactor (Biotage Initiator) and heated sequentially at 140° C. (60 seconds), 160° C. (60 seconds) and 165° C. (1800 seconds). Immediately after completion of the reaction, the reaction mixture is allowed to cool to 65° C. and bromobenzene (0.085 cm3, 0.81 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 165° C. (600 seconds). Immediately after completion of the first end-capping reaction, the reaction mixture was allowed to cool to 65° C. and tributyl phenyl stannane (0.40 cm3, 1.2 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 165° C. (600 seconds). After completion of the second end-capping reaction, the reaction mixture is allowed to cool to 65° C. and is precipitated into stirred methanol (100 cm3) with methanol washings of the reaction tube. The mixture is stirred for 10 minutes, the polymer is collected by filtration and washed with methanol (100 cm3). The polymer is subjected to Soxhlet extraction with acetone (orange solution), cyclohexane (purple solution) and chloroform (purple solution). Methanol (200 cm3) is dropwise to the chloroform fraction (150 cm3), and the precipitate collected by filtration to give a black solid (310 m). GPC (140° C., trichlorobenzene): Mn=29.8 kg/mol, Mw=60.6 kg/mol, PDI=2.03.
2,6-Dibromo-4,8-bis-(1,1-difluoro-dodecyl)-benzo[1,2-b; 4,5-b′]dithiophene (2.40 g, 4.00 mmol) is dissolved in THF (60 cm3) and the solution is cooled to −78° C. N-Butyl lithium (3.4 cm3, 2.5 M in hexane, 8.4 mmol) is added dropwise over 5 minutes and the resulting mixture is stirred at −78 C for 30 minutes and then at 23° C. for 30 minutes. The mixture is cooled back to −78° C. and a solution of trimethyltinchloride (8.8 cm3, 1.0 M in hexane, 8.8 mmol) is added in one portion. The cooling bath is removed and the resulting solution is stirred at room temperature for 2 hours. The reaction mixture is poured into water (100 cm3) and extracted into diethyl ether (3×100 cm3). The combined organic fractions are dried over sodium sulfate and concentrated in vacuo to give an orange oil (2.75 g, 2.98 mmol, 75%, 75% purity). 1H NMR (300 MHz, CDCl3): 0.48 (18H, s), 0.88 (6H, t, J=7.0 Hz), 1.20-1.35 (32H, m), 1.48-1.72 (4H, m), 2.28-2.48 (4H, m), 7.65 (2H, s).
4,8-Bis-(1,1-difluoro-dodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b; 4,5-b′]dithiophene (738.9 mg, 0.5994 mmol, 75% purity), 4,7-bis(5-bromo-thiophen-2-yl)-5,6-bis-octyloxy-benzo[1,2,5]thiadiazole (428.4 mg, 0.5994 mmol), Pd2(dba)3 (11.0 mg, 0.0120 mmol) and tri-o-tolyl-phosphine (14.6 mg, 0.0480 mmol) were placed in a microwave vial. The microwave vial is subjected to three successive cycles of vacuum followed by refilling with nitrogen. Degassed chlorobenzene (5.0 cm3) is added and the mixture is degassed for 5 minutes. The reaction mixture is placed in a microwave reactor (Biotage Initiator) and heated sequentially at 140° C. (60 seconds), 160° C. (60 seconds) and 165° C. (1800 seconds). Immediately after completion of the reaction, the reaction mixture is allowed to cool to 65° C. and bromobenzene (0.13 cm3, 1.20 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 165° C. (600 seconds). Immediately after completion of the first end-capping reaction, the reaction mixture was allowed to cool to 65° C. and tributyl phenyl stannane (0.59 cm3, 1.8 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 165° C. (600 seconds). After completion of the second end-capping reaction, the reaction mixture is allowed to cool to 65° C. and is precipitated into stirred methanol (100 cm3). The mixture is stirred for 10 minutes, the polymer is collected by filtration and washed with methanol (100 cm3) to give a black solid (778 mg). GPC (50° C., chlorobenzene): Mn=4.6 kg/mol, Mw=8.1 kg/mol, PDI=1.77
4,8-Bis-(1,1-difluoro-dodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b; 4,5-b′]dithiophene (335.8 mg, 0.2724 mmol, 75% purity), 3,6-Bis-(5-bromo-thiophen-2-yl)-2,5-bis-(2-ethyl-hexyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione (185.9 mg, 0.2724 mmol), Pd2(dba)3 (5.0 mg, 0.0054 mmol) and tri-o-tolyl-phosphine (6.6 mg, 0.022 mmol) were placed in a microwave vial. The microwave vial is subjected to three successive cycles of vacuum followed by refilling with nitrogen. Degassed chlorobenzene (2.3 cm3) is added and the mixture is degassed for 5 minutes. The reaction mixture is placed in a microwave reactor (Biotage Initiator) and heated sequentially at 140° C. (60 seconds), 160° C. (60 seconds) and 170° C. (1800 seconds). Immediately after completion of the reaction, the reaction mixture is allowed to cool to 65° C. and bromobenzene (0.057 cm3, 0.55 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the first end-capping reaction, the reaction mixture was allowed to cool to 65° C. and tributyl phenyl stannane (0.27 cm3, 0.82 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the second end-capping reaction, the reaction mixture is allowed to cool to 65° C. and is precipitated into stirred methanol (100 cm3). The mixture is stirred for 10 minutes, the polymer is collected by filtration and washed with methanol (100 cm3) to give a black solid (343 mg). GPC (50° C., chlorobenzene): Mn=5.0 kg/mol, Mw=12.4 kg/mol, PD=2.49.
4,8-Bis-(1,1-difluoro-dodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b; 4,5-b′]dithiophene (374.6 mg, 0.3039 mmol, 75% purity), 1,3-dibromo-5-octyl-thieno[3,4-c]pyrrole-4,6-dione (128.6 mg, 0.3039 mmol), Pd2(dba)3 (5.6 mg, 0.0061 mmol) and tri-o-tolyl-phosphine (7.4 mg, 0.024 mmol) were placed in a microwave vial. The microwave vial is subjected to three successive cycles of vacuum followed by refilling with nitrogen. Degassed chlorobenzene (2.5 cm3) is added and the mixture is degassed for 5 minutes. The reaction mixture is placed in a microwave reactor (Biotage Initiator) and heated sequentially at 140° C. (60 seconds), 160° C. (60 seconds) and 170° C. (1800 seconds). Immediately after completion of the reaction, the reaction mixture is allowed to cool to 65° C. and bromobenzene (0.064 cm3, 0.61 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the first end-capping reaction, the reaction mixture was allowed to cool to 65° C. and tributyl phenyl stannane (0.30 cm3, 0.91 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the second end-capping reaction, the reaction mixture is allowed to cool to 65° C. and is precipitated into stirred methanol (100 cm3). The mixture is stirred for 10 minutes, the polymer is collected by filtration and washed with methanol (100 cm3) to give a red solid (329 mg). GPC (50° C., chlorobenzene): Mn=3.4 kg/mol, Mw=6.6 kg/mol, PD=1.92.
4,8-Bis-(1,1-difluoro-dodecyl)-2,6-bis-trimethylstannanyl-benzo[1,2-b; 4,5-b′]dithiophene (290.0 mg, 0.2353 mmol), 1-(4,6-dibromo-thieno[3,4-b]thiophen-2-yl)-2-ethyl-hexan-1-one (99.8 mg, 0.235 mmol), Pd2(dba)3 (4.3 mg, 0.0047 mmol) and tri-o-tolyl-phosphine (5.7 mg, 0.019 mmol) were placed in a microwave vial. The microwave vial is subjected to three successive cycles of vacuum followed by refilling with nitrogen. Degassed chlorobenzene (2.0 cm3) is added and the mixture is degassed for 5 minutes. The reaction mixture is placed in a microwave reactor (Biotage Initiator) and heated sequentially at 140° C. (60 seconds), 160° C. (60 seconds) and 170° C. (1800 seconds). Immediately after completion of the reaction, the reaction mixture is allowed to cool to 65° C. and bromobenzene (0.050 cm3, 0.47 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the first end-capping reaction, the reaction mixture was allowed to cool to 65° C. and tributyl phenyl stannane (0.23 cm3, 0.71 mmol) is added. The reaction mixture is placed back in the microwave reactor and heated back to 170° C. (600 seconds). Immediately after completion of the second end-capping reaction, the reaction mixture is allowed to cool to 65° C. and is precipitated into stirred methanol (100 cm3). The mixture is stirred for 10 minutes, the polymer is collected by filtration and washed with methanol (100 cm3) to give a black solid (250 mg). GPC (50° C., chlorobenzene): Mn=2.8 kg/mol, Mw=4.3 kg/mol, PD=1.57.
OPV devices are fabricated on ITO-glass substrates (13Ω/), purchased from Zencatec. The substrates are subjected to a conventional photolithography process to define the bottom electrodes (anodes) before cleaning using common solvents (acetone, IPA, DI water) in an ultrasonic bath.
A conducting polymer poly(ethylene dioxythiophene) doped with poly(styrene sulfonic acid) [Clevios VPAI 4083 (H. C. Starck)] is mixed in a 1:1 ratio with DI-water. This solution is sonicated for 20 minutes to ensure proper mixing and filtered using a 0.2 μm filter before spin coating to a thickness of 20 nm. The substrates are exposed to a UV-ozone treatment prior to the spin-coating process to ensure good wetting properties. The films are then annealed at 130° C. for 30 minutes in an inert atmosphere.
Photoactive material solutions, containing the polymer of example 1 as p-type material and C60PCBM as n-type material in the solvent, are prepared at the concentrations and component ratios as shown in Table 1 below, and stirred overnight. Thin films are either spin coated or blade coated in an inert atmosphere to achieve thicknesses between 100 and 200 nm, measured using a profilemeter. A short drying period follows to ensure removal of excess solvent. Typically, spin coated films are dried at 23° C. for 10 minutes. Blade coated films are dried at 70° C. for 3 minutes on the hotplate.
As the last step of the device fabrication, Calcium (30 nm)/Al (200 nm) cathodes are thermally evaporated through a shadow mask to define cells. Samples are measured at 23° C. using a Solar Simulator from Newport Ltd (model 91160) as a light source, calibrated to 1 sun using a Si reference cell.
The device performance is described in Table 1. A typical J-V curve for one of the OPV devices is shown in
Number | Date | Country | Kind |
---|---|---|---|
11003393.3 | Apr 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/001269 | 3/23/2012 | WO | 00 | 10/18/2013 |