Connected fasteners, delivery device and method

Information

  • Patent Grant
  • 9421006
  • Patent Number
    9,421,006
  • Date Filed
    Tuesday, January 8, 2008
    17 years ago
  • Date Issued
    Tuesday, August 23, 2016
    8 years ago
Abstract
A device for reducing the volume of a hollow body organ includes a tissue port and a plurality of fasteners. The fasteners may be coupled to a flexible filament, such as a suture, which is tensioned to constrict the hollow body organ to achieve volume reduction.
Description
BACKGROUND OF THE INVENTION

The present invention is directed to methods and devices for applying fasteners to the stomach or esophagus. The present invention is also directed to methods and devices for restricting the esophagus and/or stomach.


SUMMARY

The delivery device carries fasteners connected to suture. A suture holder such as a sliding knot or adjustable clamp or a crimp sleeve can adjust the length of the connected suture smaller or larger. In the preferred embodiment the suture holder is pre-attached to the suture. For example the suture holder can connect the ends of the suture to form a loop. The delivery device is introduced through the mouth and esophagus into the stomach. The delivery device fastens the tissue with the fasteners.


An adjusting device pulls the suture, which in turn pull the fasteners and the fastened stomach tissue. This reduces the internal size of the stomach and creates a restrictive gastric pouch.


The delivery device has a tissue chamber and one or more tissue ports. The tissue chamber can be radially collapsed for introduction into and removal from the patient. After entering the stomach, the tissue chamber can be radially expanded. This reduces folding of the stomach during tissue retraction and enables more accurate placement of fasteners. Tissue is retracted through the tissue port into the tissue chamber and then fastened. For example the tissue can be retracted by suction or mechanical grasping.


The suture and fasteners can be pre-loaded on and in the delivery device such that after fastening the fasteners and suture are completely releasable from the delivery device without the need to separate the parts of the device.


The suture can wrap around the outside of the tissue chamber as it passes from one tissue port to the next. The suture can be partially or completely covered for easier introduction of the device into the patient. For example the suture loop can be placed in a recessed groove. The suture can be at least partially covered by a membrane with a releasable adhesive bond to the device, a tearable membrane, a flap with a free edge, or by a removable sheath.


The fasteners and suture can be delivered in a position and sequence such that the suture forms one of several desired shapes such as an approximately circular loop or a zigzag or a figure eight or overlapping diametral segments. These shapes affect the shape of the tissue.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a stomach.



FIG. 2 shows a fastener delivery device having a tissue chamber and tissue ports.



FIG. 3 shows a radially expandable tissue chamber.



FIG. 4 shows a cross section of the delivery device with fasteners connected by a suture loop.



FIG. 5 shows a cutaway portion of the device viewed from inside the tissue chamber.



FIG. 6 shows the fastener delivery device in the stomach. The tissue chamber is radially expanded. Tissue is retracted into the tissue chamber through the tissue ports.



FIG. 7 shows a cross sectional view of the fastener delivery device in the stomach.



FIG. 8 shows fasteners deployed in a sequence to place a suture loop in an approximately circumferential orientation.



FIG. 9 shows the adjusting device sliding the suture holder to reduce the length of the suture loop.



FIG. 10 shows the suture tightened to reduce the luminal area of the stomach.



FIG. 11 shows two fasteners deployed from two tissue ports approximately 180 degrees apart.



FIG. 12 shows rotating the device approximately 90 degrees and deploying two more fasteners approximately midway between the first two fasteners.



FIG. 13 shows the suture tightened to reduce the luminal area of the stomach.



FIG. 14 shows the suture before loading into the device in which the suture loop crosses itself to form a “figure 8” shape.



FIG. 15 shows the crossed suture and fasteners loaded into the delivery device.



FIG. 16 shows the “figure 8” loop in the stomach, with the suture oriented partly circumferential and partly diametral. In this example each fastener penetrates a single layer of tissue.



FIG. 17 shows an intraluminal view of fasteners deployed into tissue.



FIG. 18 shows fasteners deployed to place the suture in a “backstitched” orientation.



FIG. 19 shows fasteners deployed at varying axial heights to place the suture in a zigzag orientation.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 1, a gastroesophageal region 40 is shown which includes an esophagus 41 leading to a stomach 43. The stomach 43 includes a greater curvature 44 and a lesser curvature 45 and a fundus 46. A cardiac notch 47 is formed at the junction between the esophagus 41 and the stomach 43 which forms an angle of HIS 57. A gastroesophageal junction 52 lies between a lower esophageal sphincter 48 and a gastroesophageal flap valve 49. A diaphragm 53 extends around the stomach 43.


Referring to FIGS. 2-4, a delivery device 400 is shown which has a tissue chamber 402 and one or more tissue ports 410. Tissue is drawn into the tissue ports 410 and fastened together with fasteners 411. Tissue is drawn into the tissue ports 410 using suction although a mechanical grasper may also be used. The device 400 may include a valve 404, such as a duck bill valve, at the distal end which may receive an endoscope as is known in the art.


Referring to FIG. 3 and FIG. 4, the tissue chamber 402 may be expanded by tensioning a control line 406 which causes the tissue chamber 402 to expand and bow outward. Expansion of the tissue chamber 402 may help to prevent excessive folding of the tissue while permitting a relatively large amount of tissue to create the tissue fold. The device 400 includes struts 408 which support the tissue chamber 402 and help to form a desired shape when the tissue chamber 402 is expanded.


The device 400 is loaded with a number of fasteners 411 and a flexible filament 413 such as suture 415 or the like. The filament 413 may form a closed loop with a knot 417 or other suitable method of securing one part of the filament 413 to another to maintain tension on the filament 413 as described below. The filament 413 may extend out of one of the tissue ports 410 and re-enter the device through another tissue port 410 as shown in FIG. 3. The filament 413 may be covered by a flap 415 which covers the filament 413 while permitting release of the filament 413 through a free edge.


Referring to FIG. 5, the fasteners and filament 413 are shown positioned above the tissue port. The fasteners 411 are mounted to a stylet 418 having a pusher 419 that is positioned in a stylet tube 422. The stylet 418 has a sharp tip 424 which is used to penetrate tissue. The fastener 411 may have a groove 426 or other feature which permits release of the fastener 411 from the stylet 418. A number of fasteners 411 may be deployed through each of the tissue ports 410 as explained below. The flap 415 covers the portion of the filament 413 extending from one of the tissue ports to an adjacent tissue port 410.


Referring now to FIG. 6, the device 400 is shown with the tissue chamber 402 expanded. Tissue is drawn into the tissue ports 410 to form a tissue fold in each of the tissue ports 410. The fasteners 411 are then driven through the tissue folds using the stylet 418. The filament 413 may then be tensioned to draw the fasteners 411 together. In this manner, a hollow body structure such as the stomach may be reduced in volume. FIGS. 7 and 8 show two fasteners 411 deployed from each tissue port 410. Referring to FIG. 9, the filament 413 may be tensioned to draw the tissue structures together as shown in FIG. 10 to form two lobes in the stomach. Tension on the filament 413 may be applied and maintained using a tightening device 426 which may create a knot or use a sleeve 421 to tighten and maintain tension on the filament 413.


Referring now to FIGS. 11-13, still another method of using the device 400 is shown. One fastener 411 is delivered through each of the tissue ports 410 as shown in FIG. 11. The device 400 is then rotated to the position of FIG. 12 and two more fasteners 411 are deployed. The filament 413 may then be tensioned to form four lobes in the stomach. Referring to FIGS. 14-16, the filament 413 may also be configured to extend across the hollow body structure in a pattern similar to a figure-8. FIG. 15 shows the filament 413 loaded onto the delivery device 400. Two of the fasteners 411 are deployed through the tissue ports 410 and the device 400 is rotated and two more fasteners 411 are deployed. The filament 413 is then tensioned to draw the tissue structure together as shown in FIG. 16.



FIGS. 17-19 show various configurations for the filament 413. FIG. 17 shows the filament 413 deployed in an approximately planar ring. FIG. 18 shows the filament 413 in a backstitched orientation. FIG. 18 shows fasteners can be deployed to place the suture in a “backstitched” orientation. For example, the device can be rotated between sequential fastener deployments. As may be appreciated from the figure, when the suture is tightened further the fasteners will pull tissue sideways.



FIG. 19 shows the filament 413 in a zigzag orientation at varying axial heights. A zigzag loop can increase the number of tissue folds such that the outlet area from a gastric pouch is reduced more than from a non zigzag loop. As may be appreciated from FIG. 19, when the suture is tightened further the zigzag will decrease in axial amplitude and the fasteners will pull tissue axially closer together as well as circumferentially closer together.


Placing the fasteners in the desired pattern alters the shape of the suture loop. In turn this alters the suture's direction of pull on the fasteners and the fasteners direction of pull on the tissue. This can be used to cause the tissue to fold in beneficial ways.


Fastening a single suture such that multiple segments have tension components in the same direction increases the force on the tissue in that direction. For example a diametrically oriented suture can be more efficient at pulling tissue radially inward than a circumferential suture.


The tensioning element or suture holder may be a sliding knot such as a Roeder knot. The tensioning element or not may also be a clip that is crimped to the suture loop or a sleeve that can slide on the suture loop. The adjusting device can also be a flexible endoluminal crimper that crimps the suture holder to hold the suture.


The present invention has been described with reference to preferred embodiments; however, numerous changes may be made without departing from the scope of the invention.

Claims
  • 1. A method for reducing the volume of a hollow body structure, comprising the steps of: providing a device having a body and a tissue chamber coupled to the body, the tissue chamber being expandable, the device also having a plurality of tissue ports configured to draw a fold of tissue into each of the tissue ports using suction, the tissue ports being positioned along the tissue chamber so that the fold of tissue extends into the tissue chamber, the device also having a plurality of fasteners and a flexible filament carried by the body, the fasteners configured to be delivered through the fold of tissue extending into the tissue port and held in the tissue port using suction, the flexible filament being coupled to each of the plurality of fasteners and extending through one of the tissue ports and entering another of the tissue ports prior to deployment:positioning the device in a hollow body structure;expanding the tissue chamber into a desired shaped using a plurality of flexible struts;drawing a fold of tissue into one of the tissue ports using suction;advancing a sharp tip of a stylet through the fold of tissue;advancing at least one of the fasteners over the stylet and into the fold of tissue by advancing a pusher on the stylet to push the fastener into the fold of tissue;moving the tissue port;drawing a second fold of tissue into another one of the tissue ports using suction after the moving step, the second fold of tissue being spaced apart from the first fold of tissue;advancing at least one of the fasteners over the stylet and into the second fold of tissue, the flexible filament extending through the fasteners in the first and second folds of tissue;tensioning the flexible filament using a tensioning device implanted inside the body to pull on the fasteners thereby moving the first and second folds of tissue towards one another and securing the flexible filament with a knot inside the body.
  • 2. The method of claim 1, wherein: the providing step is carried out with the device having the plurality of fasteners configured to be delivered at each of the plurality of tissue ports.
  • 3. The method of claim 1, wherein: the providing step is carried out with the device having a tensioning element coupled to the flexible filament, the tensioning element being configured to apply tension to the flexible filament.
Parent Case Info

This application claims priority to Provisional Application No. 60/879,402, filed Jan. 8, 2007.

US Referenced Citations (155)
Number Name Date Kind
2753870 Muffly Jul 1956 A
3875928 Angelchik Apr 1975 A
4006747 Kronenthal Feb 1977 A
4271828 Angelchik Jun 1981 A
4576772 Carpenter et al. Mar 1986 A
4595007 Mericle Jun 1986 A
4669473 Richards et al. Jun 1987 A
4696300 Anderson Sep 1987 A
4846836 Reich Jul 1989 A
4895148 Bays et al. Jan 1990 A
4921479 Grayzel May 1990 A
5006106 Angelchik et al. Apr 1991 A
5041129 Hayhurst et al. Aug 1991 A
5080543 Murphy Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5254126 Filipi et al. Oct 1993 A
5314473 Godin May 1994 A
5403326 Harrison et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5411520 Nash et al. May 1995 A
5549621 Bessler et al. Aug 1996 A
5571074 Buckman et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5626614 Hart May 1997 A
5676674 Bolanos et al. Oct 1997 A
5713903 Sander et al. Feb 1998 A
5759151 Sturges Jun 1998 A
5810882 Bolduc et al. Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5861036 Godin Jan 1999 A
5879372 Bartlett et al. Mar 1999 A
5887594 LoCicero Mar 1999 A
5897562 Bolanos et al. Apr 1999 A
5938668 Scirica et al. Aug 1999 A
6086600 Kortenbach Jul 2000 A
6098629 Johnson et al. Aug 2000 A
6113609 Adams Sep 2000 A
6113611 Allen et al. Sep 2000 A
6142957 Diamond et al. Nov 2000 A
6174323 Biggs et al. Jan 2001 B1
6254642 Taylor Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6302917 Dua et al. Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6315789 Cragg Nov 2001 B1
6419669 Frazier et al. Jul 2002 B1
6428548 Durgin et al. Aug 2002 B1
6447524 Knodel et al. Sep 2002 B1
6743239 Kuehn et al. Jun 2004 B1
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6790214 Kraemer et al. Sep 2004 B2
6835200 Laufer et al. Dec 2004 B2
6916332 Adams Jul 2005 B2
6921361 Suzuki et al. Jul 2005 B2
7022118 Ariura et al. Apr 2006 B2
7037344 Kagan et al. May 2006 B2
7074229 Adams et al. Jul 2006 B2
7083630 DeVries et al. Aug 2006 B2
7220266 Gambale May 2007 B2
7347863 Rothe et al. Mar 2008 B2
7618426 Ewers et al. Nov 2009 B2
7632287 Baker et al. Dec 2009 B2
7678123 Chanduszko Mar 2010 B2
7713277 Laufer et al. May 2010 B2
7776057 Laufer et al. Aug 2010 B2
7850704 Burnett et al. Dec 2010 B2
7857184 Viola Dec 2010 B2
7857823 Laufer et al. Dec 2010 B2
7866526 Green et al. Jan 2011 B2
7942887 Kraemer et al. May 2011 B2
7951157 Gambale May 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955340 Michlitsch et al. Jun 2011 B2
8057494 Laufer et al. Nov 2011 B2
8252009 Weller et al. Aug 2012 B2
8277468 Laufer et al. Oct 2012 B2
8308765 Saadat et al. Nov 2012 B2
8343175 Ewers et al. Jan 2013 B2
8574243 Saadat et al. Nov 2013 B2
20020022853 Swanson et al. Feb 2002 A1
20020035370 Kortenbach Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020055772 McGuckin, Jr. et al. May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020143349 Gifford, III et al. Oct 2002 A1
20020183765 Adams Dec 2002 A1
20020198541 Smith et al. Dec 2002 A1
20030023230 Lewis et al. Jan 2003 A1
20030055442 Laufer et al. Mar 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030120292 Park et al. Jun 2003 A1
20030171760 Gambale Sep 2003 A1
20030187465 Bailly et al. Oct 2003 A1
20030191497 Cope Oct 2003 A1
20030216613 Suzuki et al. Nov 2003 A1
20030216754 Kraemer et al. Nov 2003 A1
20030220657 Adams Nov 2003 A1
20040044304 Hill et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040087976 DeVries et al. May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040116949 Ewers et al. Jun 2004 A1
20040133236 Chanduszko Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040153102 Therin et al. Aug 2004 A1
20040153103 Schwartz et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040215216 Gannoe et al. Oct 2004 A1
20040236357 Kraemer et al. Nov 2004 A1
20040243223 Kraemer et al. Dec 2004 A1
20050004575 Sgro et al. Jan 2005 A1
20050017781 Honda Jan 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050075653 Saadat et al. Apr 2005 A1
20050085829 Kraemer et al. Apr 2005 A1
20050154405 Kraemer et al. Jul 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050187565 Baker et al. Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050216040 Gertner et al. Sep 2005 A1
20050228413 Binmoeller et al. Oct 2005 A1
20050247320 Stack et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20060009789 Gambale et al. Jan 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060190018 Baker et al. Aug 2006 A1
20060253130 Wolniewicz Nov 2006 A1
20060253142 Bjerken Nov 2006 A1
20070021756 Kortenbach Jan 2007 A1
20070021760 Kelleher Jan 2007 A1
20070112363 Adams May 2007 A1
20070129738 Kraemer et al. Jun 2007 A1
20070191870 Baker et al. Aug 2007 A1
20070191871 Baker et al. Aug 2007 A1
20070219566 Gambale Sep 2007 A1
20070225736 Zeiner et al. Sep 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20080015618 Sonnenschein et al. Jan 2008 A1
20080287966 Kraemer et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20090177214 Adams Jul 2009 A1
20090198254 Laufer et al. Aug 2009 A1
20090236388 Cole et al. Sep 2009 A1
20100241139 Harshman Sep 2010 A1
20110196391 Forsell Aug 2011 A1
20110213390 Kraemer et al. Sep 2011 A1
Foreign Referenced Citations (30)
Number Date Country
252607 Sep 1992 EP
9922649 May 1999 WO
9960931 Dec 1999 WO
0053102 Sep 2000 WO
0078227 Dec 2000 WO
0132084 May 2001 WO
0135834 May 2001 WO
0164964 Sep 2001 WO
0167964 Sep 2001 WO
0185034 Nov 2001 WO
0189391 Nov 2001 WO
0224058 Mar 2002 WO
0224080 Mar 2002 WO
0228289 Apr 2002 WO
02082621 Oct 2002 WO
02096327 Dec 2002 WO
03061480 Jul 2003 WO
03099140 Dec 2003 WO
2004019787 Mar 2004 WO
2004019788 Mar 2004 WO
2004049982 Jun 2004 WO
2004069055 Aug 2004 WO
2005065412 Jul 2005 WO
2005081817 Sep 2005 WO
2006023764 Mar 2006 WO
2006034484 Mar 2006 WO
2006081368 Aug 2006 WO
2007002817 Jan 2007 WO
2007064713 Jun 2007 WO
2010087756 Aug 2010 WO
Non-Patent Literature Citations (6)
Entry
The gastroesophageal flap valve: in vitro and in vivo observations; Lucius D. Hill et al.; Gastrointestinal Endoscopy; vol. 44, No. 5, 1996; pp. 541-547; abstract.
Reappraisal of the flap valve mechanism in the gastroesophageal junction: A study of a new valvuloplasty procedure in cadavers; KjellB.A. Thor et al.; Acta Chir Scand 153:25-28, 1987; abstract.
The Plicator Procedure; 1 page; abstract.
Chuttani, MD. et al., “A novel endoscopic full-thickness plicator for treatment of GERD: an animal model study”. Gastrointestinal Endoscopy, vol. 56, No. 1, 2002, pp. 116-122; abstract.
Jobe, et al., “Endoscopic Appraisal of the Gastroesophageal Valve After Antireflux Surgery”, American Journal of Gastroenterology, ISSN 0002-9270; abstract.
International Search Report for PCT/US2012/054328.
Related Publications (1)
Number Date Country
20080183195 A1 Jul 2008 US
Provisional Applications (1)
Number Date Country
60879402 Jan 2007 US