The present disclosure relates to connecting electrical equipment through wiring harnesses.
This section provides background information related to the present disclosure which is not necessarily prior art.
In various indoor and outdoor heating, ventilation, and air-conditioning (HVAC) systems, wiring harnesses are used to connect HVAC equipment to controls. A harness may be used, e.g., to connect various elements of a furnace (e.g., gas valve, inducer, circulator, pressure switches, flame probe, temperature switches) to an integrated furnace control.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
The inventors have observed that indoor and outdoor HVAC controls are being produced with increasing levels of complexity. For example, furnace harnesses are typically used to connect various elements of a furnace (e.g., gas valve, inducer, circulator, pressure switches, flame probe, temperature switches, etc.) to furnace control boards. Some existing furnace harnesses employ wire-to-board connectors. A given furnace harness may include a multi-pin female connector for connection to a male pin connector that is board-mounted on a furnace control board. The inventors have also observed that some furnace manufacturers use male board-mounted header pin connectors with various numbers of pins arranged in a single row for connection with wiring harnesses having a mating female connector.
In some cases, aftermarket furnace control boards may be used to replace existing OEM furnace control boards in gas furnaces. Various existing control boards have printed circuit board (PCB) mounted headers with wire-to-board connectors. However, the inventors have observed that male header pins typically are not designed to be incorporated into wiring assemblies. Accordingly, in various embodiments of the disclosure, a wiring harness assembly for electrical equipment is provided that generally includes a first connector configured for connection with a wiring harness, a second connector configured for mounting, e.g., to a panel, and at least one conductor connecting the first connector with the second connector. In various embodiments, the first connector is a male connector connectible with a wiring harness female connector.
The following descriptions provided with reference to the figures are meant to be illustrative of possible example components and configuration details, and are not meant to be limiting. Accordingly, it should be understood that other or additional furnace components, connectors, wiring arrangements, and/or configurations may be provided in other embodiments without departing from the scope of the present disclosure. It also should be understood that the disclosure is not limited to controls and connections for use in furnaces. Aspects of the disclosure may be practiced in relation to controls, connections, control boards, wiring arrangements, control panels, etc. for various types of electrical equipment.
With reference to the figures,
In the present example implementation, a replacement furnace control panel 34, e.g., an aftermarket furnace control panel, is provided to replace the furnace control panel 28. The existing furnace wiring harness 32 is to remain connected in the furnace 20 when the replacement control panel 34 is installed in the furnace 20. As shown in greater detail in
In the example embodiment shown in
In various implementations in which the first connector 144 is connectible with a female connector of an existing furnace harness, a replacement furnace control board could be used that has a different connector type than that of an existing OEM furnace control. For example, if an existing furnace harness has a female connector for connecting to an in-line male header pin connector of the OEM furnace control board, a connector such as the first connector 144 may allow a replacement control board to be connected to the female connector of the existing furnace harness, even if the replacement control board does not include a male header pin connector. It should be understood that other first connector types may be used in other embodiments, dependent on, e.g., a type of female connector provided on an existing furnace harness.
The first connector 244 of the wiring harness assembly 200 includes an in-line PCB header 260. As shown more clearly in
The housing 268 is provided around connections between pins 252 and corresponding conductors 249. For example, as shown in
To join a pin 252 and a corresponding conductor 249, insulation 256 is stripped from an end 272 of the corresponding conductor 249. A portion 276 of the corresponding pin 252 is soldered (e.g., butt soldered) to the stripped insulated wire end 272 to form a solder joint 274, e.g., as shown in
In various embodiments a wiring harness assembly may include additional connectors. For example, as shown in
According to another example embodiment, a method of making a wiring harness assembly for electrical equipment is disclosed. The method may include soldering one or more conductor wires to one or more corresponding board-mount male header pins to create one or more solder joints, and molding material around the solder joint(s) to protect the solder joint(s) from moisture and/or contact, and to provide strain relief to the solder joint(s). The molding material may include a hot melt grade of polyamide. The conductor wire(s) may each be soldered to a side of the corresponding male header pin where the pin is in a board-mount configuration normally designed, e.g., to be through-hole soldered to a board. In various embodiments, the board-mount configured male header pin(s) are connectible with a female connector, e.g., of a furnace wiring harness. The method may further include connecting, e.g., soldering, a matrix crimp housing plug to opposite end(s) of the conductor wire(s) connected with the male header pin(s). In various embodiments, the matrix crimp housing plug is compatible with a furnace control board.
In various embodiments, a replacement furnace control board can be used in a furnace where the replacement control board includes a different connector type than that of an existing OEM furnace control panel. In some embodiments, wiring harness assemblies can allow electrical connections to be made between matrix PCB headers and in-line style plug crimp terminal housings, without the need to use or develop a furnace control board having an in-line PCB header. For example, some embodiments may allow a replacement furnace control board having a matrix PCB header to be used to replace an existing OEM furnace control board having either matrix style or in-line style PCB headers. In some cases, if an existing OEM furnace control board has a matrix style header, the existing OEM furnace harness may be connected directly to the replacement OEM furnace control boards. However, even if an existing OEM furnace control board has an in-line style header, embodiments of furnace harness assemblies may be used to allow connection of a replacement furnace control board to the existing OEM in-line furnace harness female connector. In some embodiments, a control panel kit may include a replacement control panel for installation in relation to a given furnace or other piece of equipment, and a wiring harness assembly configured to allow connection of the replacement control panel with a wiring harness previously provided with the furnace or other piece of equipment.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail. In addition, advantages and improvements that may be achieved with one or more exemplary embodiments of the present disclosure are provided for purpose of illustration only and do not limit scope of the present disclosure, as exemplary embodiments disclosed herein may provide all or none of the above mentioned advantages and improvements and still fall within the scope of the present disclosure.
Specific dimensions, specific materials, and/or specific shapes disclosed herein are example in nature and do not limit the scope of the present disclosure. The disclosure herein of particular values and particular ranges of values for given parameters are not exclusive of other values and ranges of values that may be useful in one or more of the examples disclosed herein. Moreover, it is envisioned that any two particular values for a specific parameter stated herein may define the endpoints of a range of values that may be suitable for the given parameter (i.e., the disclosure of a first value and a second value for a given parameter can be interpreted as disclosing that any value between the first and second values could also be employed for the given parameter). For example, if Parameter X is exemplified herein to have value A and also exemplified to have value Z, it is envisioned that parameter X may have a range of values from about A to about Z. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges. For example, if parameter X is exemplified herein to have values in the range of 1-10, or 2-9, or 3-8, it is also envisioned that Parameter X may have other ranges of values including 1-9, 1-8, 1-3, 1-2, 2-10, 2-8, 2-3, 3-10, and 3-9.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The term “about” when applied to values indicates that the calculation or the measurement allows some slight imprecision in the value (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If, for some reason, the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring or using such parameters. For example, the terms “generally,” “about,” and “substantially,” may be used herein to mean within manufacturing tolerances.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements, intended or stated uses, or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of, and priority to, U.S. Provisional Application No. 62/019,331 filed on Jun. 30, 2014. The entire disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62019331 | Jun 2014 | US |