The invention relates to a connecting piece between a carburetor and an inlet channel of an internal combustion engine of a handheld portable work apparatus such as a motor-driven chain saw, cutoff machine or the like.
An air/fuel mixture flows through the connecting piece from the carburetor to the combustion chamber during operation of the internal combustion engine. A portion of the fuel, especially long-chain hydrocarbons, deposits on the inner wall of the connecting piece and forms a fuel film. Fuel can also collect in the expansion fold of the connecting piece. When swinging the work apparatus, especially at idle, an enrichment of the mixture can occur because of fuel entrained from the connecting piece. A sudden mixture enrichment can lead to disturbances in the smooth running of the engine up to a stalling thereof especially in small work apparatus having a low mass moment of inertia.
A connecting piece between a carburetor and the combustion chamber is disclosed in U.S. Pat. No. 4,711,225. This connecting piece is made of elastic material and has an expansion fold. A guide ring is arranged in the region of the expansion fold in the carburetor-end section. The inner periphery of this guide ring passes seamlessly into the engine-end section. Knurling is provided in a region of the connecting piece which prevents the formation of an uninterrupted fuel film. In this way, the fuel film, which has deposited on the inner wall of the connecting piece, is prevented from suddenly reaching the combustion chamber.
It has, however, been shown that not only the fuel film, which has deposited on the inner wall, can lead to a sudden enrichment of the mixture but also fuel, which collects in the expansion fold, can suddenly be supplied to the combustion chamber and lead to a stalling of the engine.
It is an object of the invention to provide a connecting piece wherein a mixture enrichment because of fuel stored in the connecting piece is avoided.
The elastic connecting piece of the invention is for connecting a carburetor to an inlet channel of an internal combustion engine of a portable handheld motor-driven work apparatus. The connecting piece includes: an annular conduit-like member defining a longitudinal direction; the annular conduit-like member having a peripherally extending expansion fold for compensating for relative position changes between the carburetor and the engine; the expansion fold defining an annular gap and subdividing the conduit-like member into a carburetor-end section and an engine-end section; the annular conduit-like member having a seal lip and a peripherally extending seal seat in the region of the expansion fold and the seal seat having an axial length (g); and, the seal lip coming into contact engagement with the seal seat when the expansion fold changes in length and the seal lip bridges the gap thereby substantially closing the seal fluid tight to the interior of the annular conduit-like member.
No fuel stored in the expansion fold can pass therefrom into the connecting piece because of the substantially fluid-tight closure of the expansion fold by the seal lip in contact engagement with the seal seat. The length of the expansion fold can be changed from a pressed (shortened) length to an expanded length. In the built-in state, the expansion fold has the pressed length. No external loads operate on the connecting piece in the built-in state. For slight loads which occur especially at low rpms, the expansion fold is reliably closed because of this measure. A pressing of the connecting piece starting from the built-in state can be taken up by the elasticity of the material. The danger of a tearing of the connecting piece during expansion is minimized because the permissible expansion path is increased from the pressed built-in state compared to a built-in state having a mean length of the expansion fold.
The seal seat is formed as an annularly-shaped step and a section of the seal seat and a section of the seal lip run parallel to the inner contour of the connecting piece. The expansion fold can remain tightly closed in a specific region because of the parallel course of seal seat and seal lip. In this specific region, the expansion fold is expanded from the pressed position. An excellent sealing of the expansion fold is achieved in that, in the section of the sealing lip, which runs parallel to the inner contour of the connecting piece, the outer diameter of the sealing lip is at least as large as the inner diameter of the seal seat in this section.
It is practical that, in the pressed length of the expansion fold, the inner diameter of the seal lip corresponds to the inner diameter of the connecting piece section bordering on the seal seat and the seal lip substantially covers the seal seat, especially completely. With the configuration of the inner contour with an almost seamless transition from the carburetor-end section to the engine-end section, fuel is prevented from collecting at the transition which fuel is not immediately supplied to the engine. It has been determined that for equal diameters of the seal lip and the bordering connecting stub section, also narrow gaps can be overcome by the fuel while the fuel collects on the overhanging seal lip.
For the pressed expansion fold, it is advantageous that the volume enclosed by the expansion fold is virtually zero. When pressing the expansion fold, fuel, which has collected in the expansion fold, is thereby slowly pressed out of the expansion fold and supplied to the engine. Accordingly, no fuel can exit suddenly from the expansion fold when the expansion fold expands and disturb the smooth running of the engine. It is practical to provide the seal lip on the carburetor-end section of the connecting piece and the seal lip is directed in the direction of the engine-end section. The expansion fold has an almost V-shaped cross section directed outwardly and the wall thickness of the expansion fold varies in the direction of the symmetry axis of the carburetor-end section and the expansion fold has the minimum wall thickness at its greatest periphery. It has been shown that the danger of tearing of the expansion fold is present especially at low temperatures for expansion folds having a constant wall thickness, especially in the region of the greatest periphery. By configuring the expansion fold to have a minimum wall thickness at the largest diameter, the expansion fold is heated the most in this region during deformation and therefore the danger of a tear is reduced. The minimum wall thickness is approximately from 0.8 mm to 1.2 mm.
The flow cross section in the interior of the connecting piece is almost constant over the entire length of the connecting piece when the expansion fold is collapsed. In this way, constant flow velocities in the connecting piece are obtained. Knurling is applied to the inner surface of the connecting piece in the carburetor-end section. The knurling functions to store fuel which is especially drawn in by suction with a sudden closure of a throttle flap mounted in the carburetor and this can lead to the condition that the idle rpm is not reached spontaneously. The knurling can store the excess fuel and give up this fuel little by little. Grooves run in the longitudinal direction of the connecting piece on the inner contour thereof in order to prevent fuel droplets from forming on the inner walls of the connecting piece. The grooves run at least over almost the length of a section of the connecting piece, especially, over the total length of the connecting piece. The grooves facilitate the flow-off of fuel to the engine. A seal collar is arranged especially at the end of the connecting piece facing the engine. A thickening is arranged on the sealing collar at an upper region of the connecting piece at the transition from the engine-end section. The thickening is disposed above an almost elliptical cross section of the connecting piece. The thickening prevents a snap-in of the connecting piece in this region.
The carburetor-end section has a circularly-shaped flow cross section and the engine-end section has a circularly-shaped section at the end facing toward the expansion fold and a flow cross section which departs from the circular shape at the end facing toward the engine. This flow cross section at the end facing toward the engine is especially an almost elliptical flow cross section.
The invention will now be described with reference to the drawings wherein:
The expansion fold 5 subdivides the connecting piece 1 into a carburetor-end section 6 and into an engine-end section 7. The carburetor-end section 6 includes a circularly-shaped flow cross section while, in the engine-end section 7, the cross-sectional shape passes from the circular form at the expansion fold 5 to an almost elliptical form at the interface to the inlet channel 3. The lower region 18 of the connecting piece 1 shown in
The expansion fold 5 is configured as an outwardly projecting bead having a V-shaped form. This bead forms the annular gap 28 and is shown in FIG. 3. The wall thickness of the expansion fold 5 is constant in the peripheral direction but varies in the longitudinal direction of the connecting piece and has a minimum wall thickness (c) at the largest periphery as shown in FIG. 4. The minimum wall thickness (c) amounts favorably to 0.8 mm to 1.2 mm. However, it can also be advantageous to configure the expansion fold 5 to have a constant wall thickness over its entire length.
The connecting piece 1 includes a seal lip 8 which is arranged on the carburetor-end section 6 and defines an extension of the carburetor-end section 6 in the direction toward the engine-end section 7. The annular gap 28 can be bridged by the seal lip 8.
In
The expansion fold 5 is collapsed or pressed together in the built-in state and is closed by the seal lip 8 in the seal seat 9 as shown in
An edge 22 is arranged at the outer contour of the carburetor-end section 6 and this edge 22 functions to tightly clamp the connecting piece 1 behind the housing part 14 in the collapsed or pressed state during assembly. If the connecting piece 1 is pressed starting from the built-in state, this pressing is not compensated by the expansion fold 5 but by the elasticity of the connecting piece 1.
The connecting piece 1 is fixed with a seal collar 11 at the inlet channel 3. The seal collar 11 engages around the intake stub 15. To provide an axial fixation, an edge 16, which is provided at the seal collar 11, engages into a slot 17 arranged on the intake stub 15. The approximately elliptical cross section of the connecting piece 1 passes seamlessly into the cross section of the inlet channel 3. A thickening 23 is provided on the upper region 19 at the transition of the engine-end section 7 into the seal collar 11 in order to avoid a snap-in of the connecting piece 1 when subjected to intense mechanical load.
The connecting piece is fixed between the housing part 14 and the carburetor 4 with the connecting flange 10. It is practical that the flow cross section in the carburetor 4 passes approximately seamlessly into the cross section in the connecting piece 1. The carburetor-end section 6 includes knurling 12 on its inner surface. The knurling 12 can also be applied in the engine-end section 7; however, the manufacture of knurling is more complex in this section and is not necessary for the function of the storage of fuel.
Grooves 24 are arranged in the longitudinal direction of the connecting piece 1. The grooves 24 can extend over the entire length of the connecting piece 1. However, it can be advantageous that the grooves 24 extend only over one section (6, 7) or a component region of a section (6, 7). Grooves 24 are arranged in the lower region 18 as well as on both sides thereof as shown in FIG. 3. These grooves 24 extend from just under the connecting flange 10 up to the inlet channel 3 of the engine 2; whereas, the grooves 24, which are arranged laterally and in the upper region 19, extend only over the engine-end section 7, that is, over the greater portion of the carburetor-end section 6. The grooves 24 can have a V-shaped cross section in order to provide a good run off of fuel. However, it can be advantageous to configure the grooves 24 to have a trough-shaped cross section.
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102 13 415 | Mar 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4711225 | Holderle et al. | Dec 1987 | A |
5065708 | Wehle et al. | Nov 1991 | A |
5474039 | Doragrip | Dec 1995 | A |
6073609 | Buswell et al. | Jun 2000 | A |
Number | Date | Country | |
---|---|---|---|
20030183186 A1 | Oct 2003 | US |