This non-provisional application claims priority to and the benefit of, pursuant to 35 U.S.C. § 119(a), patent application Serial No. CN201910035137.3 filed in China on Jan. 15, 2019. The disclosures of the above applications are incorporated herein in their entireties by reference.
Some references, which may include patents, patent applications and various publications, are cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference were individually incorporated by reference.
The present invention relates to a connecting structure and a method for manufacturing an electrical connector, and more particularly to a connecting structure for transmitting high frequency signals and a method for manufacturing an electrical connector.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
A conventional electrical connector has multiple terminals. Each of the terminals has a base, two elastic arms connected below the base, a soldering portion connected above the base, and a strip connecting portion connected above the base and protruding from one sides of the two elastic arms. The strip connecting portion is used for connecting a strip, and the elastic arms, the base and the soldering portion are used for conducting currents. When the terminals are still connected to the strip, a distance between the terminals is determined based on the overall width of the terminals, and necessarily includes the proper gap between the terminals, and the widths of the two elastic arms and the laterally protruding strip connecting portion. Therefore, the distance between the terminals is large, and the quantity of terminals carried on the strip per unit length is small, which is not beneficial to save materials. In addition, when multiple terminals transmit high frequency signals, the laterally protruding strip connecting portion does not constitute a path, and does not contribute to the transmission of the signal, but increases the facing area between the different terminals, thereby increasing the capacitance between the terminals. Therefore, crosstalk interference is easily formed between different terminals, which is disadvantageous for transmitting high frequency signals.
Therefore, a heretofore unaddressed need to design an improved connecting structure and a method for manufacturing an electrical connector exists in the art to address the aforementioned deficiencies and inadequacies.
In view of the deficiency in the background, the present invention is directed to a connecting structure that saves space occupied by conductive terminals and reduces crosstalk between the conductive terminals, and a method for manufacturing an electrical connector.
To achieve the foregoing objective, the present invention adopts the following technical solutions:
A connecting structure includes: at least one conductive terminal, wherein the conductive terminal has: a body; a conducting portion connected below the body; a pre-breaking portion provided at an upper end of the body; and a temporary soldering portion connected above the pre-breaking portion; a first strip, connected to the conducting portion; and a second strip, soldered to the temporary soldering portion.
In certain embodiments, the temporary soldering portion and the second strip are attached to each other in a thickness direction of a metal plate forming the conductive terminal.
In certain embodiments, a lower end of the conducting portion has a strip connecting portion connected to the first strip, and the conducting portion further has two retaining arms located at two opposite sides of the strip connecting portion to clamp a solder.
In certain embodiments, the body extends upward at two sides of the temporary soldering portion to form two elastic arms.
In certain embodiments, each of the elastic arms has a first section connected to the body, a bending section connected to the first section, and a second section connected to the bending section, the two first sections of the two elastic arms are parallel to each other, the two second sections of the two elastic arms are parallel to each other, and a distance between the two first sections is greater than a distance between the two second sections.
In certain embodiments, a through slot is formed between the two elastic arms, the conductive terminal has a bridge portion connecting the two elastic arms, and the bridge portion and the body are located at two opposite ends of the through slot.
In certain embodiments, the through slot comprises a first through slot and a second through slot in communication with each other, the first through slot is adjacent to the body, and a width of the connecting portion is greater than a width of the second through slot.
In certain embodiments, the bridge portion connects tail ends of the two elastic arms to upward abut a chip module.
In certain embodiments, the elastic arms bend toward a thickness direction of the body.
A connecting structure includes: at least one conductive terminal, wherein the conductive terminal has: a body; a conducting portion connected below the body; two elastic arms extending upward from the body; a bridge portion connecting the two elastic arms; a pre-breaking portion provided at an upper end of the body; and a temporary soldering portion connected above the pre-breaking portion, wherein the pre-breaking portion and the temporary soldering portion are located between the two elastic arms; a first strip, connected to the conducting portion; and a second strip, soldered to the temporary soldering portion.
A method for manufacturing an electrical connector includes: step S1: forming a first strip and at least one conductive terminal connected to the first strip, wherein the conductive terminal has a body, a conducting portion provided below the body and connected to the first strip, and a pre-breaking portion and a temporary soldering portion sequentially extending from an upper end of the body; step S2: soldering a second strip to the temporary soldering portion; step S3: separating the conducting portion and the first strip; step S4: operating the second strip to control the conductive terminal to be mounted to a housing; and step S5: disconnecting the pre-breaking portion, and removing the second strip and the temporary soldering portion.
In certain embodiments, the second strip is made of stainless steel, the conductive terminal is made of a copper alloy, and in the step S2, the second strip is soldered to the temporary soldering portion by laser soldering.
In certain embodiments, a laser beam used for laser soldering is directed from the second strip to the temporary soldering portion.
In certain embodiments, the laser beam is perpendicular to the second strip.
In certain embodiments, in the step S1, the temporary soldering portion is formed in a flat plate shape; and in the step S2, the second strip is attached and soldered to one of two plate surfaces of the temporary soldering portion.
In certain embodiments, in the step S1, nickel is plated on the conductive terminal.
In certain embodiments, in the step S3, the first strip is removed by laser cutting.
Compared with the related art, the connecting structure and the method for manufacturing the electrical connector according to certain embodiments of the present invention has the following beneficial effects. The conducting portion connected to the first strip is located below the body, and the temporary soldering portion soldered to the second strip is located between the two elastic arms, such that the conductive terminal does not have the strip connecting portion laterally protruding to be connected to the strip. Therefore, the distance between the conductive terminals can be reduced, and the strip per unit length can carry more conductive terminals, which is beneficial to save materials. After the conductive terminal is assembled to the base, the temporary soldering portion is removed, and the directly facing area between the conductive terminals is reduced, such that the capacitance between the conductive terminals is reduced, and the crosstalk interference between the conductive terminals is reduced.
These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
The accompanying drawings illustrate one or more embodiments of the disclosure and together with the written description, serve to explain the principles of the disclosure. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, and wherein:
The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Moreover, titles or subtitles may be used in the specification for the convenience of a reader, which shall have no influence on the scope of the present invention.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
As used herein, “around”, “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about” or “approximately” can be inferred if not expressly stated.
As used herein, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Step S2: a second strip 70 is soldered to the temporary soldering portion 26.
As shown in
As shown in
Therefore, after step S2, a connecting structure 80 is obtained, which includes at least one conductive terminal 2, and the first strip 60 is connected below the conductive terminal 2. The first strip 60 is integrally formed with the conductive terminal 2. The second strip 70 is soldered above the body 21 of the conductive terminal 2, and the second strip 70 and the conductive terminal 2 are made of different materials.
Step S3: the conducting portion 24 and the first strip 60 are separated. That is, by swinging the first strip 60 back and forth, the conductive terminal 2 and the first strip 60 are disconnected at the breaking groove 61 of the joint of the two components, and then the first strip 60 is removed. In other embodiments, the connection between the first strip 60 and the conducting portion 24 can be cut off by a cutter or a laser, or the like.
As shown in
As shown in
After the step S5, the solder 3 is fixed between the two retaining arms 242 of the conducting portion 24.
To sum up, the connecting structure and the method for manufacturing the electrical connector according to certain embodiments of the present invention have the following beneficial effects:
1. The strip connecting portion 241 connected to the first strip 60 is located below the body 21, and the temporary soldering portion 26 soldered to the second strip 70 is located between the two elastic arms 22, such that the conductive terminal 2 does not have the strip connecting portion laterally protruding to be connected to the strip. Therefore, the distance between the conductive terminals 2 can be reduced, and the strip per unit length can carry more conductive terminals 2, which is beneficial to save materials.
2. After the conductive terminal 2 is assembled to the housing 1, the temporary soldering portion 26 is removed, and the directly facing area between the conductive terminals 2 is reduced, such that the capacitance between the conductive terminals 2 is reduced, and the crosstalk interference between the conductive terminals 2 is reduced.
3. The arrangement of the two elastic arms 22 increases the conductive paths of the conductive terminal 2, and the first through slot 224a provided between the two elastic arms 22 provides a reserved space for the second strip 90 when the pre-breaking portion 25 is broken in the step S5. The conductive terminals 2 are horizontally arranged in multiple rows along the extending direction of the elastic arms 22. The elastic arm 22 of one of the conductive terminals 2 in each row extends above the body 21 of another conductive terminal 2 in a previous row, and the first through slot 224a of each conductive terminal 2 provides a reserved space for the elastic arms 22 of other conductive terminals 2 when the chip module 40 abuts the conductive terminals 2 downward.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Number | Date | Country | Kind |
---|---|---|---|
201910035137.3 | Jan 2019 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3750252 | Landman | Aug 1973 | A |
4044888 | Schachter | Aug 1977 | A |
5052954 | Seidler | Oct 1991 | A |
5059756 | Henschenp | Oct 1991 | A |
5163849 | Fogg | Nov 1992 | A |
5411420 | Dennis | May 1995 | A |
6155845 | Lin | Dec 2000 | A |
6863578 | Templin | Mar 2005 | B2 |
7128622 | Tsai | Oct 2006 | B2 |
7278864 | Tsai | Oct 2007 | B2 |
7497744 | Tsai | Mar 2009 | B2 |
7530820 | Jeon | May 2009 | B2 |
7553202 | Ma | Jun 2009 | B2 |
7775805 | Liao | Aug 2010 | B2 |
7780456 | Chen | Aug 2010 | B2 |
7837522 | Hoover | Nov 2010 | B1 |
7857632 | Liu | Dec 2010 | B2 |
7878870 | Fan | Feb 2011 | B2 |
8235734 | Ju | Aug 2012 | B2 |
9172161 | Walden | Oct 2015 | B2 |
9954312 | Ju | Apr 2018 | B1 |
10116079 | Ju | Oct 2018 | B1 |
20180198226 | Ju | Jul 2018 | A1 |
20180205161 | Ju | Jul 2018 | A1 |
20180269613 | Ju | Sep 2018 | A1 |
20180287269 | Ju | Oct 2018 | A1 |
20180331441 | Huang | Nov 2018 | A1 |
20180331442 | Huang | Nov 2018 | A1 |
20180366881 | Chang | Dec 2018 | A1 |
20190006807 | Ju | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
101670489 | Mar 2010 | CN |
204156149 | Feb 2015 | CN |
107565237 | Jan 2018 | CN |
207765665 | Aug 2018 | CN |
2014164945 | Sep 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20200227840 A1 | Jul 2020 | US |