CONNECTING STRUCTURES

Information

  • Patent Application
  • 20030221854
  • Publication Number
    20030221854
  • Date Filed
    February 17, 2003
    21 years ago
  • Date Published
    December 04, 2003
    21 years ago
Abstract
Joint formations that, in joining together joining members employed in a variety of electrical and electronic components, yield sufficiently high joint strength in the direction perpendicular to the plane in which two joining members join, and meanwhile in the direction parallel to the joint plane. Two joining members 11 and 12, each with a plurality of continuous faces as joint faces, are joined to each other by interposing a bonding agent 3 between the joint faces. The difference in coefficient of thermal expansion between the two joining members 11 and 12, and between the joining members 11 and 12 and the bonding agent 3, is 5.0×10−6/° C. or less. The joining members are a metal such as tungsten or Cu—W, or a ceramic such as AlN or Si3N4; and glass or a solder material is utilized for the bonding agent.
Description


BACKGROUND OF INVENTION

[0001] 1. Field of the Invention


[0002] The present invention relates to joint structures in which two members made of ceramic or metal are joined together; more particularly it relates to joint formations for superior joint strength and durability.


[0003] 2. Description of the Background Art


[0004] The various joining members in a variety of electrical and electronic components have conventionally been joined by diverse joining techniques. An example is in susceptor electrodes employed in semiconductor fabrication devices, in which case electrodes consisting of tungsten or other metal are joined into an aluminum-nitride or other ceramic substrate. Techniques that employ glass, and techniques that employ brazing/soldering materials, as a bonding agent in joining the various members in such electrical and electronic components are known. For example, the joining of metal to metal or ceramic to ceramic, or of metal to ceramic, is accomplished with joining techniques employing glass. Likewise, the joining of metal to metal, or of metal to ceramic, and the joining of ceramic on which a metallized superficial layer is formed to like metallized ceramic, are generally accomplished by the joining technique employing brazing/soldering materials.


[0005] With the conventional joining techniques noted above, joining is by means of a bonding material between, as shown in FIG. 1, two joining members 1 and 2 where they face each other in like single planar surfaces. Specifically, they are joined by setting like planar surfaces of the joining member 1 on the one hand, and of the joining member 2 on the other, in opposition and applying a bonding agent 3 between the opposing planar surfaces.


[0006] Nevertheless, a drawback with conventional joint structures of this sort has been that though the joint strength as far as the direction perpendicular to the joint plane is concerned has been sufficiently high, the joint strength in the direction parallel to the joint plane has been weak. In particular, such joint structures have been extremely weak against force acting in the direction parallel to the joint plane. Consequently, if force in a direction parallel to the joint plane should act on the joining member on the one hand, the two joining members will be liable to come simply apart at the joint plane.



SUMMARY OF INVENTION

[0007] Taking into consideration what such circumstances to date have been, an object of the present invention is to realize joint formations that, in joining together two joining members employed in a variety of electrical and electronic components, yield sufficiently high joint strength in the direction perpendicular to the plane in which the two joining members join, and meanwhile in the direction parallel to the joint plane.


[0008] Joint formations that the present invention provides in order to attain the above-stated object are structures in which two joining members are joined to each other, and are characterized in that the two joining members, each with a plurality of continuous faces as joint faces, are joined to each other by interposing a bonding agent between the joint faces.


[0009] The foregoing joint formations as set out by the present invention are characterized in that the difference in coefficient of thermal expansion between the two joining members, and between the joining members and the bonding agent, is 5.0×10−6/° C. or less.


[0010] The foregoing joint formations as set out by the present invention are further characterized in that the bonding agent is glass or a brazing material. In addition, the two joining members may be any of metal-metal, metal-ceramic, or ceramic-ceramic characterizing combinations.


[0011] Furthermore, connecting structures as set out by the present invention are characterized in that the metal may be any among nickel, tungsten, molybdenum, copper, copper-tungsten, or copper-molybdenum; and in that the ceramic may be any among aluminum nitride, silicon nitride, silicon carbide, or aluminum oxide.


[0012] From the following detailed description in conjunction with the accompanying drawings, the foregoing and other objects, features, aspects and advantages of the present invention will become readily apparent to those skilled in the art.







BRIEF DESCRIPTION OF DRAWINGS

[0013]
FIG. 1 is an schematic section view representing a conventional connecting structure;


[0014]
FIG. 2 is a schematic section view representing one specific example of a connecting structure according to the present invention;


[0015]
FIG. 3 is a schematic section view representing another specific example of a connecting structure according to the present invention;


[0016]
FIG. 4 is a schematic section view representing a different specific example of a connecting structure according to the present invention; and


[0017]
FIG. 5 is a schematic section view representing still different specific example of a connecting structure according to the present invention.







DETAILED DESCRIPTION

[0018] In joint formations set out by the present invention, two joining members are joined by means of a bonding material interposed between a plurality of continuous aspects in each. In other words, the two joining members in the present invention are each furnished with two or more planar surfaces made continuous, and are joined by means of a bonding agent with these two or more continuous planar surfaces as mutual joint faces.


[0019] Joint formations according to the present invention will now be specifically explained with reference to the drawings. In the joint formation depicted in FIG. 2, a first joining member 11, in a surface of which a recess is formed, is joined by means of a bonding agent 3 to a second joining member 12, with the lower-end portion thereof being inserted within the recess. In the first joining member 11 as set out by this joint formation, two continuous aspects, the bottom face and the sidewall of the recess, configure joint faces; and meanwhile, as far as the joint faces of the second joining member 12 are concerned, if for example the second joining member 12 is of round cylindrical form, they will be configured by two continuous aspects, the lower-end planar face and the lower-end circumferential surface (the areas contacting the bonding agent 3).


[0020] In the joint formation depicted in FIG. 3, a recess is formed in a surface of a first joining member 13, while the lower-end surface of a second joining member 14 is provided with a nub; and with the lower-end portion of the second joining member 14 being inserted within the recess in the first joining member 13, they are joined by means of a bonding agent 3. Accordingly, in the first joining member 13 as set out by this joint formation, two continuous aspects, the bottom face and the sidewall of the recess, configure joint faces; and if the second joining member 14 is likewise round-cylindrical in form, its joint faces will be configured by three continuous aspects contacting the bonding agent 3: the lower-end planar face, the side surface of the nub jutting downward from the lower-end planar face, as well as the lower-end bottom face of the nub.


[0021] Furthermore, in the joint formation depicted in FIG. 4, a recess is formed in a surface of a first joining member 15, while the lower-end surface of a second joining member 16 is provided with a recess; and with the lower-end portion of the second joining member 16 being inserted within the recess in the first joining member 15, they are joined by means of a bonding agent 3.


[0022] In the first joining member 15 as set out by this joint formation, two continuous aspects, the bottom face and the sidewall of the recess, configure joint faces; and meanwhile if the second joining member 16 is likewise round-cylindrical in form, its joint faces will be configured by four continuous aspects contacting the bonding agent 3: the lower-end side surface, the lower-end planar face, as well as the sidewall and the bottom face of the recess bored in the lower-end planar face.


[0023] In the foregoing specific examples illustrated in FIGS. 1 through 4, the first (the larger) joining member, in which a recess is provided, is joined to the second (the smaller) joining member, with the lower-end part being inserted within the recess, but joint formations under the present invention are not limited to these; joints by means of multifarious joining members furnished with joining faces consisting of two or more continuous aspects are possible.


[0024] As for example illustrated in FIG. 5, wherein a second joining member 18 is comparatively large, a recess may be formed in the second joining member 18 and, on the planar face of a first joining member 17, a nub; and with the nub on the first joining member 17 being inserted within the recess in the second joining member 18, they may be joined to each other by means of the bonding agent 3.


[0025] As defined under the present invention, because joint faces consisting of two or more continuous aspects are joined with a bonding agent, joint formations of this sort enable improving the joint strength between two joining members compared with the situation in which single, like planar surfaces opposing each other are made the joint faces, as has been the case to date—in particular, the joint strength in directions parallel to the joint plane is dramatically improved. This consequently enables preventing the two joining members from coming apart even in situations in which large force acts on the one joining member in a parallel direction with respect to the joint plane.


[0026] It is necessary furthermore that the relative difference in thermal expansion coefficient of the two joining members, and of the bonding agent present between them, be 5.0×10−6/° C. or less. It is undesirable that the difference in thermal expansion coefficients exceed 5.0×10−6/° C., because then stress due to hysteresis of heat that is applied during joining acts on each of the members, making breakage, cracking, and moreover deformations liable to occur.


[0027] Class or a brazing material is preferable as the bonding agent. These bonding agents are desirable because they liquefy during joining to make for close adherence of the joining members. Especially in situations in which pressure is applied to a joint area they are particularly suitable because they make it unlikely that pores will form in the joint area. Glass is preferable as a bonding agent for ceramic-to-ceramic joints, because the thermal expansion coefficient of ceramics in general is small compared to that of metals. In situations in which the joining members are a like metal, the bonding agent preferably is a brazing material in order that the thermal expansion coefficient be lessened. Where the joining of metal with ceramic is concerned, moreover, it is preferable to use as the bonding agent glass, whose difference in thermal expansion coefficient is comparatively small, or else a brazing material.


[0028] Metals used for the joining members preferably are nickel, tungsten, molybdenum, copper, copper-tungsten, or copper-molybdenum. Inasmuch as joints are facilitated, and what is more, secure joints can be had, these base materials are preferable not only because when joining they are readily wettable with a brazing material being the bonding agent, but also because they are relatively wettable with glass.


[0029] Ceramics used for the joining members preferably are aluminum nitride, silicon nitride, silicon carbide, or aluminum oxide. Inasmuch as these base materials especially are among ceramics relatively high-strength, the materials readily yield secure joints. They are particularly preferable, moreover, inasmuch as with glass being the bonding agent the wettability is favorable, whereby strong joints are produced, due to the fact that aluminum oxide is an oxidized substance, and that the base materials apart from that superficially have a very thin oxidation film.


[0030] With aluminum nitride in particular, in fabricating sintered materials a slight amount of an alkaline-earth metal compound or a rare-earth compound is added as a sintering promoter. These are compounds that form by reaction with oxides present on the epi-surface of aluminum nitride. These alkali-earth—aluminum oxides, and rare-earth—aluminum oxides are preferable inasmuch as they are superior in wettability with glass in particular.


[0031] Embodiments


[0032] The ceramics aluminum nitride, silicon nitride, silicon carbide and aluminum oxide, and the metals and alloys nickel, tungsten, molybdenum, copper, copper-tungsten and copper-molybdenum were prepared as joining members. The thermal expansion coefficients of these joining members are set forth in Table I below.
1TABLE IThermal expansionJoining member materialcoefficient (×10−6/K)Aluminum nitride4.5Silicon nitride3.7Silicon carbide3.5Aluminum oxide6.9Nickel12.8Tungsten4.5Molybdenum5.0Copper14.1Copper-tungsten6.2Copper-molybdenum6.9


[0033] Here, for the tungsten, molybdenum, copper, copper-tungsten and copper-molybdenum joining members noted above, some were prepared plated with either nickel 2 μm in thickness or gold 1 μm in thickness, as well as furnished with nickel plated 2 μm in thickness and then further plated with gold 1 μm in thickness. Likewise, ceramic joining members metallized with tungsten on top of which the joining members were then plated with nickel 2 μm in thickness were prepared.


[0034] The joint faces of the above-noted joining members were worked into whichever of the shapes in FIGS. 1 through 4, and were joined employing as a bonding agent the glass as well as brazing materials set forth in Table II. In making joints as noted above, a load of 10 g/mm2 beyond the dead weight of the two joining members was put on the joint portions, which were joined using bonding agent to roughly the same extent as the volume of space remaining between the joint faces of the joining members.


[0035] It should be understood that as the materials in the bonding agents set forth in Table II, Glass 1 is 40% ZnO-30% B2O3-30% Al 0, Glass 2 is borosilicate glass, and the active Ag brazing material is 80% Ag-20% Cu. The thermal expansion coefficients of, and the joining temperatures for, the bonding agents are also set forth along with each in Table II below.
2TABLE IIThermal expansionJoint temperatureBonding agentcoefficient (× 10−6/K)(° C.)Glass 14.5700Glass 26.5650Active Ag brz.17.5850mtrl.Ag solder17.7820Au solder14.41100


[0036] In the following Tables III through LIV, the joint-face form, bonding agent utilized, and the bonding atmosphere are set forth for each combination of a joining member 1 with a joining member 2, selected from the joining members set forth in Table I; and meanwhile, evaluations for each of the joint formations in terms of tensile strength and bending strength are respectively indicated. Here, plating and metallization carried out on joining members is indicated within parentheses in the columns for joining member 1 and joining member 2 in each table.


[0037] Tensile strength and bending strength were respectively measured by fixing the one of the joining members and, applying a force of 30 kgf, drawing on the other of the joining members perpendicularly for tensile strength, and pressing on it at a right angle with respect to the perpendicular direction for bending strength. As the evaluations therein, instances of coming apart at the joint faces are indicated in the following Tables III through LIV by “x”; instances in which the joining members either broke or were deformed without the joint portion coming apart, by “◯”; and instances in which the joining members either broke or were deformed without the joint portion coming apart, but in which cracks appeared in the joint portion, by “Δ.”


[0038] It should be understood that if the one joining member was Ni or Cu, it could not be joined with AlN, Si3N4, SiC, Al2O3, W, Mo, Cu—W, or Cu—Mo no matter which bonding agent from the foregoing Table II was employed. Consequently, as far as combinations in which one of the joining members was Ni or Cu is concerned, only those combinations in which the other joining member was either Ni or Cu and moreover a joint was possible are set forth in Table LIV; combinations apart from those were not tabulated.


[0039] Table III.
3TABLE IIITensileBendingJoining memberJoiningBondingBondingstrengthstrength1member 2Formagentatmosphere(kgf)(kgf)AlNAlNGlass 1NitrogenxAlNAlNGlass 1AirxAlNAlNGlass 1NitrogenAlNAlNGlass 1AirAlNAlNGlass 1NitrogenAlNAlNGlass 1AirAlNAlNGlass 1NitrogenAlNAlNGlass 1AirAlNAlNGlass 2NitrogenxAlNAlNGlass 2AirxAlNAlNGlass 2NitrogenAlNAlNGlass 2AirAlNAlNGlass 2NitrogenAlNAlNGlass 2AirAlNAlNGlass 2NitrogenAlNAlNGlass 2AirAlNAlNActiveVacuumxAg brz.mtrl.AlNAlNActive AgVacuumΔbrz. mtrl.AlNAlNActive AgVacuumbrz. mtrl.AlNAlNActive AgVacuumbrz. mtrl.AlN(W—Ni)AlN(W—Ni)Ag brz.Hydrogenxmtrl.AlN(W—Ni)AlN(W—Ni)Ag brz.HydrogenΔmtrl.AlN(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.AlN(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.AlN(W—Ni)AlN(W—Ni)Au brz.Nitrogenxmtrl.AlN(W—Ni)AlN(W—Ni)Au brz.NitrogenΔmtrl.AlN(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.AlN(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.


[0040] Table IV.
4TABLE IVTensileBendingJoining JoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)AlNSi3N4Glass 1NitrogenxAlNSi3N4Glass 1AirxAlNSi3N4Glass 1NitrogenAlNSi3N4Glass 1AirAlNSi3N4Glass 1NitrogenAlNSi3N4Glass 1AirAlNSi3N4Glass 1NitrogenAlNSi3N4Glass 1AirAlNSi3N4Glass 2NitrogenxAlNSi3N4Glass 2AirxAlNSi3N4Glass 2NitrogenAlNSi3N4Glass 2AirAlNSi3N4Glass 2NitrogenAlNSi3N4Glass 2AirAlNSi3N4Glass 2NitrogenAlNSi3N4Glass 2AirAlNSi3N4Active AgVacuumxbrz. mtrl.AlNSi3N4Active AgVacuumΔbrz. mtrl.AlNSi3N4Active AgVacuumbrz. mtrl.AlNSi3N4Active AgVacuumbrz. mtrl.AlN(W—Ni)Si3N4(W—Ni)Ag brz. mtrl.HydrogenxAlN(W—Ni)Si3N4(W—Ni)Ag brz. mtrl.HydrogenΔAlN(W—Ni)Si3N4(W—Ni)Ag brz. mtrl.HydrogenAlN(W—Ni)Si3N4(W—Ni)Ag brz. mtrl.HydrogenAlN(W—Ni)Si3N4(W—Ni)Au brz. mtrl.NitrogenxAlN(W—Ni)Si3N4(W—Ni)Au brz. mtrl.NitrogenΔAlN(W—Ni)Si3N4(W—Ni)Au brz. mtrl.NitrogenAlN(W—Ni)Si3N4(W—Ni)Au brz. mtrlNitrogen


[0041] Table V.
5TABLE VTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)AlNW(Ni—Au)Glass 1NitrogenxAlNW(Ni—Au)Glass 1NitrogenAlNW(Ni—Au)Glass 1NitrogenAlNW(Ni—Au)Glass 1NitrogenAlNW(Ni—Au)Glass 2NitrogenxAlNW(Ni—Au)Glass 2NitrogenAlNW(Ni—Au)Glass 2NitrogenAlNW(Ni—Au)Glass 2NitrogenAlNWActive AgVacuumxbrz. mtrl.AlNWActive AgVacuumΔbrz. mtrl.AlNWActive AgVacuumbrz. mtrl.AlNWActive AgVacuumbrz. mtrl.AlN(W—Ni)WAg brz. mtrl.HydrogenxAlN(W—Ni)WAg brz. mtrl.HydrogenΔAlN(W—Ni)WAg brz. mtrl.HydrogenAlN(W—Ni)WAg brz. mtrl.HydrogenAlN(W—Ni)WAu brz. mtrl.NitrogenxAlN(W—Ni)WAu brz. mtrl.NitrogenΔAlN(W—Ni)WAu brz. mtrl.NitrogenAlN(W—Ni)WAu brz. mtrl.Nitrogen


[0042] Table VI.
6TABLE VITensileBendingJoining memberJoiningBondingBondingstrengthstrength1member 2Formagentatmosphere(kgf)(kgf)AlNMo(Ni—Au)Glass 1NitrogenxAlNMo(Ni—Au)Glass 1NitrogenAlNMo(Ni—Au)Glass 1NitrogenAlNMo(Ni—Au)Glass 1NitrogenAlNMo(Ni—Au)Glass 2NitrogenxAlNMo(Ni—Au)Glass 2NitrogenAlNMo(Ni—Au)Glass 2NitrogenAlNMo(Ni—Au)Glass 2NitrogenAlNMoActive AgVacuumxbrz. mtrl.AlNMoActive AgVacuumΔbrz. mtrl.AlNMoActive AgVacuumbrz. mtrl.AlNMoActive AgVacuumbrz. mtrl.AlN(W—Ni)MoAg brz. mtrl.HydrogenxAlN(W—Ni)MoAg brz. mtrl.HydrogenΔAlN(W—Ni)MoAg brz. mtrl.HydrogenAlN(W—Ni)MoAg brz. mtrl.HydrogenAlN(W—Ni)MoAu brz. mtrl.NitrogenxAlN(W—Ni)MoAu brz. mtrl.NitrogenΔAlN(W—Ni)MoAu brz. mtrl.NitrogenAlN(W—Ni)MoAu brz. mtrl.Nitrogen


[0043] Table VII.
7TABLE VIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)AlNCu—W(Ni—Au)Glass 1NitrogenxAlNCu—W(Ni—Au)Glass 1NitrogenAlNCu—W(Ni—Au)Glass 1NitrogenAlNCu—W(Ni—Au)Glass 1NitrogenAlNCu—W(Ni—Au)Glass 2NitrogenxAlNCu—W(Ni—Au)Glass 2NitrogenAlNCu—W(Ni—Au)Glass 2NitrogenAlNCu—W(Ni—Au)Glass 2NitrogenAlN(W—Ni)Cu—W(Ni)AgHydrogenxbrz. mtrl.AlN(W—Ni)Cu—W(Ni)AgHydrogenΔbrz. mtrl.AlN(W—Ni)Cu—W(Ni)AgHydrogenbrz. mtrl.AlN(W—Ni)Cu—W(Ni)AgHydrogenbrz. mtrl.AlNCu—Mo(Ni—Au)Glass 1NitrogenxAlNCu—Mo(Ni—Au)Glass 1NitrogenAlNCu—Mo(Ni—Au)Glass 1NitrogenAlNCu—Mo(Ni—Au)Glass 1NitrogenAlNCu—Mo(Ni—Au)Glass 2NitrogenxAlNCu—Mo(Ni—Au)Glass 2NitrogenAlNCu—Mo(Ni—Au)Glass 2NitrogenAlNCu—Mo(Ni—Au)Glass 2NitrogenAlN(W—Ni)Cu—Mo(Ni)AgHydrogenxbrz. mtrl.AlN(W—Ni)Cu—Mo(Ni)AgHydrogenΔbrz. mtrl.AlN(W—Ni)Cu—Mo(Ni)AgHydrogenbrz. mtrl.AlN(W—Ni)Cu—Mo(Ni)AgHydrogenbrz. mtrl.


[0044] Table VIII.
8TABLE VIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)AlNSiCGlass 1AirxAlNSiCGlass 1AirAlNSiCGlass 1AirAlNSiCGlass 1AirAlNSiCGlass 2AirxAlNSiCGlass 2AirAlNSiCGlaas 2AirAlNSiCGlass 2AirAlNSiCActive AgVacuumxbrz. mtrl.AlNSiCActive AgVacuumΔbrz. mtrl.AlNSiCActive AgVacuumbrz. mtrl.AlNSiCActive AgVacuumbrz. mtrl.AlN(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenxAlN(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenΔAlN(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenAlN(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenAlN(W—Ni)SiC(W—Ni)Au brz. mtrl.NitrogenxAlN(W—Ni)SiC(W—Ni)Au brz. mtrl.NitrogenΔAlN(W—Ni)SiC(W—Ni)Au brz. mtrl.NitrogenAlN(W—Ni)SiC(W—Ni)Au brz. mtrl.Nitrogen


[0045] Table IX.
9TABLE IXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)AlNAl2O3Glass 1AirxAlNAl2O3Glass 1AirAlNAl2O3Glass 1AirAlNAl2O3Glass 1AirAlNAl2O3Glass 2AirxAlNAl2O3Glass 2AirAlNAl2O3Glass 2AirAlNAl2O3Glass 2AirAlNAl2O3Active AgVacuumxbrz. mtrl.AlNAl2O3Active AgVacuumΔbrz. mtrl.AlNAl2O3Active AgVacuumbrz. mtrl.AlNAl2O3Active AgVacuumbrz. mtrl.AlN(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.AlN(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.


[0046] Table X.
10TABLE XTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4AlNGlass 1AirxSi3N4AlNGlass 1AirSi3N4AlNGlass 1AirSi3N4AlNGlass 1AirSi3N4AlNGlass 2AirxSi3N4AlNGlass 2AirSi3N4AlNGlass 2AirSi3N4AlNGlass 2AirSi3N4AlNActive AgVacuumxbrz. mtrl.Si3N4AlNActive AgVacuumΔbrz. mtrl.Si3N4AlNActive AgVacuumbrz. mtrl.Si3N4AlNActive AgVacuumbrz. mtrl.Si3N4(W—Ni)AlN(W—Ni)Ag brz.Hydrogenxmtrl.Si3N4(W—Ni)AlN(W—Ni)Ag brz.HydrogenΔmtrl.Si3N4(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)AlN(W—Ni)Au brz.Nitrogenxmtrl.Si3N4(W—Ni)AlN(W—Ni)Au brz.NitrogenΔmtrl.Si3N4(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.Si3N4(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.


[0047] Table XI.
11TABLE XITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4Si3N4Glass 1AirxSi3N4Si3N4Glass 1AirSi3N4Si3N4Glass 1AirSi3N4Si3N4Glass 1AirSi3N4Si3N4Glass 2AirxSi3N4Si3N4Glass 2AirSi3N4Si3N4Glass 2AirSi3N4Si3N4Glass 2AirSi3N4Si3N4Active AgVacuumxbrz. mtrl.Si3N4Si3N4Active AgVacuumΔbrz. mtrl.Si3N4Si3N4Active AgVacuumbrz. mtrl.Si3N4Si3N4Active AgVacuumbrz. mtrl.Si3N4(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenxmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Ag brz.HydrogenΔmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenxmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Au brz.NitrogenΔmtrl.Si3N4(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.Si3N4 (W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.


[0048] Table XII.
12TABLE XIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4W(Ni—Au)Glass 1NitrogenxSi3N4W(Ni—Au)Glass 1NitrogenSi3N4W(Ni—Au)Glass 1NitrogenSi3N4W(Ni—Au)Glass 1NitrogenSi3N4W(Ni—Au)Glass 2NitrogenxSi3N4W(Ni—Au)Glass 2NitrogenSi3N4W(Ni—Au)Glass 2NitrogenSi3N4W(Ni—Au)Glass 2NitrogenSi3N4WActive AgVacuumxbrz. mtrl.Si3N4WActive AgVacuumΔbrz. mtrl.Si3N4WActive AgVacuumbrz. mtrl.Si3N4WActive AgVacuumbrz. mtrl.Si3N4(W—Ni)WAg brz.Hydrogenxmtrl.Si3N4(W—Ni)WAg brz.HydrogenΔmtrl.Si3N4(W—Ni)WAg brz.Hydrogenmtrl.Si3N4(W—Ni)WAg brz.Hydrogenmtrl.Si3N4(W—Ni)WAu brz.Nitrogenxmtrl.Si3N4(W—Ni)WAu brz.NitrogenΔmtrl.Si3N4(W—Ni)WAu brz.Nitrogenmtrl.Si3N4(W—Ni)WAu brz.Nitrogenmtrl.


[0049] Table XIII.
13TABLE XIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4Mo(Ni—Au)Glass 1NitrogenxSi3N4Mo(Ni—Au)Glass 1NitrogenSi3N4Mo(Ni—Au)Glass 1NitrogenSi3N4Mo(Ni—Au)Glass 1NitrogenSi3N4Mo(Ni—Au)Glass 2NitrogenxSi3N4Mo(Ni—Au)Glass 2NitrogenSi3N4Mo(Ni—Au)Glass 2NitrogenSi3N4Mo(Ni—Au)Glass 2NitrogenSi3N4MoActive AgVacuumxbrz. mtrl.Si3N4MoActive AgVacuumΔbrz. mtrl.Si3N4MoActive AgVacuumbrz. mtrl.Si3N4MoActive AgVacuumbrz. mtrl.Si3N4(W—Ni)MoAg brz.Hydrogenxmtrl.Si3N4(W—Ni)MoAg brz.HydrogenΔmtrl.Si3N4(W—Ni)MoAg brz.Hydrogenmtrl.Si3N4(W—Ni)MoAg brz.Hydrogenmtrl.Si3N4(W—Ni)MoAu brz.Nitrogenxmtrl.Si3N4(W—Ni)MoAu brz.NitrogenΔmtrl.Si3N4(W—Ni)MoAu brz.Nitrogenmtrl.Si3N4(W—Ni)MoAu brz.Nitrogenmtrl.


[0050] Table XIV.
14TABLE XIVTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4Cu—W(Ni—Au)Glass 1NitrogenxSi3N4Cu—W(Ni—Au)Glass 1NitrogenSi3N4Cu—W(Ni—Au)Glass 1NitrogenSi3N4Cu—W(Ni—Au)Glass 1NitrogenSi3N4Cu—W(Ni—Au)Glass 2NitrogenxSi3N4Cu—W(Ni—Au)Glass 2NitrogenSi3N4Cu—W(Ni—Au)Glass 2NitrogenSi3N4Cu—W(Ni—Au)Glass 2NitrogenSi3N4(W—Ni)Cu—WAgHydrogenxbrz. mtrl.Si3N4(W—Ni)Cu—WAgHydrogenΔbrz. mtrl.Si3N4(W—Ni)Cu—WAgHydrogenbrz. mtrl.Si3N4(W—Ni)Cu—WAgHydrogenbrz. mtrl.Si3N4Cu—MoGlass 1Nitrogenx(Ni—Au)Si3N4Cu—MoGlass 1Nitrogen(Ni—Au)Si3N4Cu—MoGlass 1Nitrogen(Ni—Au)Si3N4Cu—MoGlass 1Nitrogen(Ni—Au)Si3N4Cu—MoGlass 2Nitrogenx(Ni—Au)Si3N4Cu—MoGlass 2Nitrogen(Ni—Au)Si3N4Cu—MoGlass 2Nitrogen(Ni—Au)Si3N4Cu—MoGlass 2Nitrogen(Ni—Au)Si3N4(W—Ni)Cu—Mo(Ni)AgHydrogenxbrz. mtrl.Si3N4(W—Ni)Cu—Mo(Ni)AgHydrogenΔbrz. mtrl.Si3N4(W—Ni)Cu—Mo(Ni)AgHydrogenbrz. mtrl.Si3N4(W—Ni)Cu—Mo(Ni)AgHydrogenbrz. mtrl.


[0051] Table XV.
15TABLE XVTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4SiCGlass 1AirxSi3N4SiCGlass 1AirSi3N4SiCGlass 1AirSi3N4SiCGlass 1AirSi3N4SiCGlass 2AirxSi3N4SiCGlass 2AirSi3N4SiCGlass 2AirSi3N4SiCGlass 2AirSi3N4SiCActive AgVacuumxbrz. mtrl.Si3N4SiCActive AgVacuumΔbrz. mtrl.Si3N4SiCActive AgVacuumbrz. mtrl.Si3N4SiCActive AgVacuumbrz. mtrl.Si3N4(W—Ni)SiC(W—Ni)Ag brz.Hydrogenxmtrl.Si3N4(W—Ni)SiC(W—Ni)Ag brz.HydrogenΔmtrl.Si3N4(W—Ni)SiC(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)SiC(W—Ni)Ag brz.Hydrogenmtrl.Si3N4(W—Ni)SiC(W—Ni)Au brz.Nitrogenxmtrl.Si3N4(W—Ni)SiC(W—Ni)Au brz.NitrogenΔmtrl.Si3N4(W—Ni)SiC(W—Ni)Au brz.Nitrogenmtrl.Si3N4(W—Ni)SiC(W—Ni)Au brz.Nitrogenmtrl.


[0052] Table XVI.
16TABLE XVITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Si3N4Al2O3Glass 1AirxSi3N4Al2O3Glass 1AirSi3N4Al2O3Glass 1AirSi3N4Al2O3Glass 1AirSi3N4Al2O3Glass 2AirxSi3N4Al2O3Glass 2AirSi3N4Al2O3Glass 2AirSi3N4Al2O3Glass 2AirSi3N4Al2O3Active AgVacuumxbrz. mtrl.Si3N4Al2O3Active AgVacuumΔbrz. mtrl.Si3N4Al2O3Active AgVacuumbrz. mtrl.Si3N4Al2O3Active AgVacuumbrz. mtrl.Si3N4(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Si3N4(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.


[0053] Table XVII.
17TABLE XVIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCAlNGlass 1AirxSiCAlNGlass 1AirSiCAlNGlass 1AirSiCAlNGlass 1AirSiCAlNGlass 2AirxSiCAlNGlass 2AirSiCAlNGlass 2AirSiCAlNGlass 2AirSiCAlNActive AgVacuumxbrz. mtrl.SiCAlNActive AgVacuumΔbrz. mtrl.SiCAlNActive AgVacuumbrz. mtrl.SiCAlNActive AgVacuumbrz. mtrl.SiC(W—Ni)AlN(W—Ni)Ag brz. mtrl.HydrogenxSiC(W—Ni)AlN(W—Ni)Ag brz. mtrl.HydrogenΔSiC(W—Ni)AlN(W—Ni)Ag brz. mtrl.HydrogenSiC(W—Ni)AlN(W—Ni)Ag brz. mtrl.HydrogenSiC(W—Ni)AlN(W—Ni)Au brz.Nitrogenxmtrl.SiC(W—Ni)AlN(W—Ni)Au brz.NitrogenΔmtrl.SiC(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.SiC(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.


[0054] Table XVIII.
18TABLE XVIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCSi3N4Glass 1AirxSiCSi3N4Glass 1AirSiCSi3N4Glass 1AirSiCSi3N4Glass 1AirSiCSi3N4Glass 2AirxSiCSi3N4Glass 2AirSiCSi3N4Glass 2AirSiCSi3N4Glass 2AirSiCSi3N4Active AgVacuumxbrz. mtrl.SiCSi3N4Active AgVacuumΔbrz. mtrl.SiCSi3N4Active AgVacuumbrz. mtrl.SiCSi3N4Active AgVacuumbrz. mtrl.SiC(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenxmtrl.SiC(W—Ni)Si3N4(W—Ni)Ag brz.HydrogenΔmtrl.SiC(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.SiC(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.SiC(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenxmtrl.SiC(W—Ni)Si3N4(W—Ni)Au brz.NitrogenΔmtrl.SiC(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.SiC(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.


[0055] Table XIX.
19TABLE XIXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCW(Ni—Au)Glass 1AirxSiCW(Ni—Au)Glass 1AirSiCW(Ni—Au)Glass 1AirSiCW(Ni—Au)Glass 1AirSiCW(Ni—Au)Glass 2AirxSiCW(Ni—Au)Glass 2AirSiCW(Ni—Au)Glass 2AirSiCW(Ni—Au)Glass 2AirSiCWActive AgVacuumxbrz. mtrl.SiCWActive AgVacuumΔbrz. mtrl.SiCWActive AgVacuumbrz. mtrl.SiCWActive AgVacuumbrz. mtrl.SiC(W—Ni)WAg brz. mtrl.HydrogenxSiC(W—Ni)WAg brz. mtrl.HydrogenΔSiC(W—Ni)WAg brz. mtrl.HydrogenSiC(W—Ni)WAg brz. mtrl.HydrogenSiC(W—Ni)WAu brz.Nitrogenxmtrl.SiC(W—Ni)WAu brz.NitrogenΔmtrl.SiC(W—Ni)WAu brz.Nitrogenmtrl.SiC(W—Ni)WAu brz.Nitrogenmtrl.


[0056] Table XX.
20TABLE XXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCMo(Ni—Au)Glass 1NitrogenxSiCMo(Ni—Au)Glass 1NitrogenSiCMo(Ni—Au)Glass 1NitrogenSiCMo(Ni—Au)Glass 1NitrogenSiCMo(Ni—Au)Glass 2NitrogenxSiCMo(Ni—Au)Glass 2NitrogenSiCMo(Ni—Au)Glass 2NitrogenSiCMo(Ni—Au)Glass 2NitrogenSiCMoActive AgVacuumxbrz. mtrl.SiCMoActive AgVacuumΔbrz. mtrl.SiCMoActive AgVacuumbrz. mtrl.SiCMoActive AgVacuumbrz. mtrl.SiC(W—Ni)Mo(Ni)Ag brz.Hydrogenxmtrl.SiC(W—Ni)Mo(Ni)Ag brz.HydrogenΔmtrl.SiC(W—Ni)Mo(Ni)Ag brz.Hydrogenmtrl.SiC(W—Ni)Mo(Ni)Ag brz.Hydrogenmtrl.SiC(W—Ni)MoAu brz.Nitrogenxmtrl.SiC(W—Ni)MoAu brz.NitrogenΔmtrl.SiC(W—Ni)MoAu brz.Nitrogenmtrl.SiC(W—Ni)MoAu brz.Nitrogenmtrl.


[0057] Table XXI.
21TABLE XXITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCCu—W(Ni—Au)Glass 1NitrogenxSiCCu—W(Ni—Au)Glass 1NitrogenSiCCu—W(Ni—Au)Glass 1NitrogenSiCCu—W(Ni—Au)Glass 1NitrogenSiCCu—W(Ni—Au)Glass 2NitrogenxSiCCu—W(Ni—Au)Glass 2NitrogenSiCCu—W(Ni—Au)Glass 2NitrogenSiCCu—W(Ni—Au)Glass 2NitrogenSiC(W—Ni)Cu—WAgHydrogenxbrz. mtrl.SiC(W—Ni)Cu—WAgHydrogenΔbrz. mtrl.SiC(W—Ni)Cu—WAgHydrogenbrz. mtrl.SiC(W—Ni)Cu—WAgHydrogenbrz. mtrl.SiCCu—Mo(Ni—Au)Glass 1NitrogenxSiCCu—Mo(Ni—Au)Glass 1NitrogenSiCCu—Mo(Ni—Au)Glass 1NitrogenSiCCu—Mo(Ni—Au)Glass 1NitrogenSiCCu—Mo(Ni—Au)Glass 2NitrogenxSiCCu—Mo(Ni—Au)Glass 2NitrogenSiCCu—Mo(Ni—Au)Glass 2NitrogenSiCCu—Mo(Ni—Au)Glass 2NitrogenSiC(W—Ni)Cu—MoAgHydrogenxbrz. mtrl.SiC(W—Ni)Cu—MoAgHydrogenΔbrz. mtrl.SiC(W—Ni)Cu—MoAgHydrogenbrz. mtrl.SiC(W—Ni)Cu—MoAgHydrogenbrz. mtrl.


[0058] Table XXII.
22TABLE XXIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCSiCGlass 1AirxSiCSiCGlass 1AirSiCSiCGlass 1AirSiCSiCGlass 1AirSiCSiCGlass 2AirxSiCSiCGlass 2AirSiCSiCGlass 2AirSiCSiCGlass 2AirSiCSiCActive AgVacuumxbrz. mtrl.SiCSiCActive AgVacuumΔbrz. mtrl.SiCSiCActive AgVacuumbrz. mtrl.SiCSiCActive AgVacuumbrz. mtrl.SiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenxSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenΔSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.HydrogenSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.NitrogenxSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.NitrogenΔSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.NitrogenSiC(W—Ni)SiC(W—Ni)Ag brz. mtrl.Nitrogen


[0059] Table XXIII.
23TABLE XXIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)SiCAl2O3Glass 1AirxSiCAl2O3Glass 1AirSiCAl2O3Glass 1AirSiCAl2O3Glass 1AirSiCAl2O3Glass 2AirxSiCAl2O3Glass 2AirSiCAl2O3Glass 2AirSiCAl2O3Glass 2AirSiCAl2O3Active AgVacuumxbrz. mtrl.SiCAl2O3Active AgVacuumΔbrz. mtrl.SiCAl2O3Active AgVacuumbrz. mtrl.SiCAl2O3Active AgVacuumbrz. mtrl.SiC(W—Ni)Al2O3(W—Ni)Ag brz. mtrl.HydrogenxxSiC(W—Ni)Al2O3(W—Ni)Ag brz. mtrl.HydrogenxxSiC(W—Ni)Al2O3(W—Ni)Ag brz. mtrl.HydrogenxxSiC(W—Ni)Al2O3(W—Ni)Ag brz. mtrl.HydrogenxxSiC(W—Ni)Al2O3(W—Ni)Au brz. mtrl.NitrogenxxSiC(W—Ni)Al2O3(W—Ni)Au brz. mtrl.NitrogenxxSiC(W—Ni)Al2O3(W—Ni)Au brz. mtrl.NitrogenxxSiC(W—Ni)Al2O3(W—Ni)Au brz. mtrl.Nitrogenxx


[0060] Table XXIV.
24TABLE XXIVTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Al2O3AlNGlass 1AirxAl2O3AlNGlass 1AirAl2O3AlNGlass 1AirAl2O3AlNGlass 1AirAl2O3AlNGlass 2AirxAl2O3AlNGlass 2AirAl2O3AlNGlass 2AirAl2O3AlNGlass 2AirAl2O3AlNActive AgVacuumxbrz. mtrl.Al2O3AlNActive AgVacuumΔbrz. mtrl.Al2O3AlNActive AgVacuumbrz. mtrl.Al2O3AlNActive AgVacuumbrz. mtrl.Al2O3(W—Ni)AlN(W—Ni)Ag brz.Hydrogenxmtrl.Al2O3(W—Ni)AlN(W—Ni)Ag brz.HydrogenΔmtrl.Al2O3(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)AlN(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)AlN(W—Ni)Au brz.Nitrogenxmtrl.Al2O3(W—Ni)AlN(W—Ni)Au brz.NitrogenΔmtrl.Al2O3(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.Al2O3(W—Ni)AlN(W—Ni)Au brz.Nitrogenmtrl.


[0061] Table XXV.
25TABLE XXVTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Al2O3Si3N4Glass 1AirxAl2O3Si3N4Glass 1AirAl2O3Si3N4Glass 1AirAl2O3Si3N4Glass 1AirAl2O3Si3N4Glass 2AirxAl2O3Si3N4Glass 2AirAl2O3Si3N4Glass 2AirAl2O3Si3N4Glass 2AirAl2O3Si3N4Active AgVacuumxbrz. mtrl.Al2O3Si3N4Active AgVacuumΔbrz. mtrl.Al2O3Si3N4Active AgVacuumbrz. mtrl.Al2O3Si3N4Active AgVacuumbrz. mtrl.Al2O3(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenxmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Ag brz.HydrogenΔmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenxmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Au brz.NitrogenΔmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.Al2O3(W—Ni)Si3N4(W—Ni)Au brz.Nitrogenmtrl.


[0062] Table XXVI.
26TABLE XXVITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)Al2O3W(Ni—Au)Glass 1NitrogenxAl2O3W(Ni—Au)Glass 1NitrogenAl2O3W(Ni—Au)Glass 1NitrogenAl2O3W(Ni—Au)Glass 1NitrogenAl2O3W(Ni—Au)Glass 2NitrogenxAl2O3W(Ni—Au)Glass 2NitrogenAl2O3W(Ni—Au)Glass 2NitrogenAl2O3W(Ni—Au)Glass 2NitrogenAl2O3WActive AgVacuumxbrz. mtrl.Al2O3WActive AgVacuumΔbrz. mtrl.Al2O3WActive AgVacuumbrz. mtrl.Al2O3WActive AgVacuumbrz. mtrl.Al2O3(W—Ni)WAg brz.Hydrogenxmtrl.Al2O3(W—Ni)WAg brz.HydrogenΔmtrl.Al2O3(W—Ni)WAg brz.Hydrogenmtrl.Al2O3(W—Ni)WAg brz.Hydrogenmtrl.Al2O3(W—Ni)WAu brz.Nitrogenxmtrl.Al2O3(W—Ni)WAu brz.NitrogenΔmtrl.Al2O3(W—Ni)WAu brz.Nitrogenmtrl.Al2O3(W—Ni)WAu brz.Nitrogenmtrl.


[0063] Table XXVII.
27TABLE XXVIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Al2O3Mo(Ni—Au)Glass 1NitrogenxAl2O3Mo(Ni—Au)Glass 1NitrogenAl2O3Mo(Ni—Au)Glass 1NitrogenAl2O3Mo(Ni—Au)Glass 1NitrogenAl2O3Mo(Ni—Au)Glass 2NitrogenxAl2O3Mo(Ni—Au)Glass 2NitrogenAl2O3Mo(Ni—Au)Glass 2NitrogenAl2O3Mo(Ni—Au)Glass 2NitrogenAl2O3MoActive AgVacuumxbrz. mtrl.Al2O3MoActive AgVacuumΔbrz. mtrl.Al2O3MoActive AgVacuumbrz. mtrl.Al2O3MoActive AgVacuumbrz. mtrl.Al2O3(W—Ni)MoAg brz.Hydrogenxmtrl.Al2O3(W—Ni)MoAg brz.HydrogenΔmtrl.Al2O3(W—Ni)MoAg brz.Hydrogenmtrl.Al2O3(W—Ni)MoAg brz.Hydrogenmtrl.Al2O3(W—Ni)MoAu brz.Nitrogenxmtrl.Al2O3(W—Ni)MoAu brz.NitrogenΔmtrl.Al2O3(W—Ni)MoAu brz.Nitrogenmtrl.Al2O3(W—Ni)MoAu brz.Nitrogenmtrl.


[0064] Table XXVIII.
28TABLE XXVIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Al2O3Cu—W(Ni—Au)Glass 1NitrogenxAl2O3Cu—W(Ni—Au)Glass 1NitrogenAl2O3Cu—W(Ni—Au)Glass 1NitrogenAl2O3Cu—W(Ni—Au)Glass 1NitrogenAl2O3Cu—W(Ni—Au)Glass 2NitrogenxAl2O3Cu—W(Ni—Au)Glass 2NitrogenAl2O3Cu—W(Ni—Au)Glass 2NitrogenAl2O3Cu—W(Ni—Au)Glass 2NitrogenAl2O3Cu—W(Ni)AgHydrogenx(W—Ni)brz. mtrl.Al2O3Cu—W(Ni)AgHydrogenΔ(W—Ni)brz. mtrl.Al2O3Cu—W(Ni)AgHydrogen(W—Ni)brz. mtrl.Al2O3Cu—W(Ni)FIG 4AgHydrogen(W—Ni)brz. mtrl.Al2O3Cu—Mo(Ni—Au)Glass 1NitrogenxAl2O3Cu—Mo(Ni—Au)Glass 1NitrogenAl2O3Cu—Mo(Ni—Au)Glass 1NitrogenAl2O3Cu—Mo(Ni—Au)Glass 1NitrogenAl2O3Cu—Mo(Ni—Au)Glass 2NitrogenxAl2O3Cu—Mo(Ni—Au)Glass 2NitrogenAl2O3Cu—Mo(Ni—Au)Glass 2NitrogenAl2O3Cu—Mo(Ni—Au)Glass 2NitrogenAl2O3Cu—Mo(Ni)AgHydrogenx(W—Ni)brz. mtrl.Al2O3Cu—Mo(Ni)AgHydrogenΔ(W—Ni)brz. mtrl.Al2O3Cu—Mo(Ni)AgHydrogen(W—Ni)brz. mtrl.Al2O3Cu—Mo(Ni)AgHydrogen(W—Ni)brz. mtrl.


[0065] Table XXIX.
29TABLE XXIXTensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)Al2O3SiCGlass 1AirxAl2O3SiCGlass 1AirAl2O3SiCGlass 1AirAl2O3SiCGlass 1AirAl2O3SiCGlass 2AirxAl2O3SiCGlass 2AirAl2O3SiCGlass 2AirAl2O3SiCGlass 2AirAl2O3SiCActive AgVacuumxbrz. mtrl.Al2O3SiCActive AgVacuumΔbrz. mtrl.Al2O3SiCActive AgVacuumbrz. mtrl.Al2O3SiCActive AgVacuumbrz. mtrl.Al2O3(W—Ni)SiC(W—Ni)Ag brz.Hydrogenxmtrl.Al2O3(W—Ni)SiC(W—Ni)Ag brz.HydrogenΔmtrl.Al2O3(W—Ni)SiC(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)SiC(W—Ni)Ag brz.Hydrogenmtrl.Al2O3(W—Ni)SiC(W—Ni)Au brz.Nitrogenxmtrl.Al2O3(W—Ni)SiC(W—Ni)Au brz.NitrogenΔmtrl.Al2O3(W—Ni)SiC(W—Ni)Au brz.Nitrogenmtrl.Al2O3(W—Ni)SiC(W—Ni)Au brz.Nitrogenmtrl.


[0066] Table XXX.
30TABLE XXXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Al2O3Al2O3Glass 1AirxAl2O3Al2O3Glass 1AirAl2O3Al2O3Glass 1AirAl2O3Al2O3Glass 1AirAl2O3Al2O3Glass 2AirxAl2O3Al2O3Glass 2AirAl2O3Al2O3Glass 2AirAl2O3Al2O3Glass 2AirAl2O3Al2O3Active AgVacuumxbrz. mtrl.Al2O3Al2O3Active AgVacuumΔbrz. mtrl.Al2O3Al2O3Active AgVacuumbrz. mtrl.Al2O3Al2O3Active AgVacuumbrz. mtrl.Al2O3(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Ag brz.Hydrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.Al2O3(W—Ni)Al2O3(W—Ni)Au brz.Nitrogenxxmtrl.


[0067] Table XXXI.
31TABLE XXXITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)AINGlass 1NitrogenxW(Ni—Au)AINGlass 1NitrogenW(Ni—Au)AINGlass 1NitrogenW(Ni—Au)AINGlass 1NitrogenW(Ni—Au)AINGlass 2NitrogenxW(Ni—Au)AINGlass 2NitrogenW(Ni—Au)AINGlass 2NitrogenW(Ni—Au)AINGlass 2NitrogenWAINActive AgVacuumxbrz. mtrl.WAINActive AgVacuumΔbrz. mtrl.WAINActive AgVacuumbrz. mtrl.WAINActive AgVacuumbrz. mtrl.W(Ni—Au)AIN(W—Ni)Ag brz.Hydrogenxmtrl.W(Ni—Au)AIN(W—Ni)Ag brz.HydrogenΔmtrl.W(Ni—Au)AIN(W—Ni)Ag brz.Hydrogenmtrl.W(Ni—Au)AIN(W—Ni)Ag brz.Hydrogenmtrl.WAIN(W—Ni)Au brz.Nitrogenxmtrl.WAIN(W—Ni)Au brz.NitrogenΔmtrl.WAIN(W—Ni)Au brz.Nitrogenmtrl.WAIN(W—Ni)Au brz.Nitrogenmtrl.


[0068] Table XXXII.
32TABLE XXXIITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)Si3N4Glass 1NitrogenxW(Ni—Au)Si3N4Glass 1NitrogenW(Ni—Au)Si3N4Glass 1NitrogenW(Ni—Au)Si3N4Glass 1NitrogenW(Ni—Au)Si3N4Glass 2NitrogenxW(Ni—Au)Si3N4Glass 2NitrogenW(Ni—Au)Si3N4Glass 2NitrogenW(Ni—Au)Si3N4Glass 2NitrogenWSi3N4Active AgVacuumxbrz. mtrl.WSi3N4Active AgVacuumΔbrz. mtrl.WSi3N4Active AgVacuumbrz. mtrl.WSi3N4Active AgVacuumbrz. mtrl.WSi3N4(W—Ni)Ag brz.Hydrogenxmtrl.WSi3N4(W—Ni)Ag brz.HydrogenΔmtrl.WSi3N4(W—Ni)Ag brz.Hydrogenmtrl.WSi3N4(W—Ni)Ag brz.Hydrogenmtrl.WSi3N4(W—Ni)Au brz.Nitrogenxmtrl.WSi3N4(W—Ni)Au brz.NitrogenΔmtrl.WSi3N4(W—Ni)Au brz.Nitrogenmtrl.WSi3N4(W—Ni)Au brz.Nitrogenmtrl.


[0069] Table XXXIII.
33TABLE XXXIIITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)W(Ni—Au)Glass 1NitrogenxW(Ni—Au)W(Ni—Au)Glass 1NitrogenW(Ni—Au)W(Ni—Au)Glass 1NitrogenW(Ni—Au)W(Ni—Au)Glass 1NitrogenW(Ni—Au)W(Ni—Au)Glass 2NitrogenxW(Ni—Au)W(Ni—Au)Glass 2NitrogenW(Ni—Au)W(Ni—Au)Glass 2NitrogenW(Ni—Au)W(Ni—Au)Glass 2NitrogenWWActive AgVacuumxbrz. mtrl.WWActive AgVacuumΔbrz. mtrl.WWActive AgVacuumbrz. mtrl.WWActive AgVacuumbrz. mtrl.WWAg brz.Hydrogenxmtrl.WWAg brz.HydrogenΔmtrl.WWAg brz.Hydrogenmtrl.WWAg brz.Hydrogenmtrl.WWAu brz.Nitrogenxmtrl.WWAu brz.NitrogenΔmtrl.WWAu brz.Nitrogenmtrl.WWAu brz.Nitrogenmtrl.


[0070] Table XXXIV.
34TABLE XXXIVTensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)Mo(Ni—Au)Glass 1NitrogenxW(Ni—Au)Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Mo(Ni—Au)Glass 2NitrogenxW(Ni—Au)Mo(Ni—Au)Glass 2NitrogenW(Ni—Au)Mo(Ni—Au)Glass 2NitrogenW(Ni—Au)Mo(Ni—Au)Glass 2NitrogenWMoActive AgVacuumxbrz. mtrl.WMoActive AgVacuumΔbrz. mtrl.WMoActive AgVacuumbrz. mtrl.WMoActive AgVacuumbrz. mtrl.WMoAg brz.Hydrogenxmtrl.WMoAg brz.HydrogenΔmtrl.WMoAg brz.Hydrogenmtrl.WMoAg brz.Hydrogenmtrl.WMoAu brz.Nitrogenxmtrl.WMoAu brz.NitrogenΔmtrl.WMoAu brz.Nitrogenmtrl.WMoAu brz.Nitrogenmtrl.


[0071] Table XXXV.
35TABLE XXXVTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)W(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenxW(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenxW(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenW(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenW(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenWCu—W(Ni)AgHydrogenxbrz. mtrl.WCu—W(Ni)AgHydrogenΔbrz. mtrl.WCu—W(Ni)AgHydrogenbrz. mtrl.WCu—W(Ni)AgHydrogenbrz. mtrl.W(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenxW(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenW(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenxW(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenW(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenW(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenW(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenxbrz. mtrl.W(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenΔbrz. mtrl.W(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenbrz. mtrl.W(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenbrz. mtrl.WCu—MoAuNitrogenxbrz. mtrl.WCu—MoAuNitrogenΔbrz. mtrl.WCu—MoAuNitrogenbrz. mtrl.WCu—MoAuNitrogenbrz. mtrl.


[0072] Table XXXVI.
36TABLE XXXVITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)SiCGlass 1NitrogenxW(Ni—Au)SiCGlass 1NitrogenW(Ni—Au)SiCGlass 1NitrogenW(Ni—Au)SiCGlass 1NitrogenW(Ni—Au)SiCGlass 2NitrogenxW(Ni—Au)SiCGlass 2NitrogenW(Ni—Au)SiCGlass 2NitrogenW(Ni—Au)SiCGlass 2NitrogenWSiCActive AgVacuumxbrz. mtrl.WSiCActive AgVacuumΔbrz. mtrl.WSiCActive AgVacuumbrz. mtrl.WSiCActive AgVacuumbrz. mtrl.WSiC(W—Ni)Ag brz.Hydrogenxmtrl.WSiC(W—Ni)Ag brz.HydrogenΔmtrl.WSiC(W—Ni)Ag brz.Hydrogenmtrl.WSiC(W—Ni)Ag brz.Hydrogenmtrl.WSiC(W—Ni)Au brz.Nitrogenxmtrl.WSiC(W—Ni)Au brz.NitrogenΔmtrl.WSiC(W—Ni)Au brz.Nitrogenmtrl.WSiC(W—Ni)Au brz.Nitrogenmtrl.


[0073] Table XXXVII.
37TABLE XXXVIITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)W(Ni—Au)Al2O3Glass 1NitrogenxW(Ni—Au)Al2O3Glass 1NitrogenW(Ni—Au)Al2O3Glass 1NitrogenW(Ni—Au)Al2O3Glass 1NitrogenW(Ni—Au)Al2O3Glass 2NitrogenxW(Ni—Au)Al2O3Glass 2NitrogenW(Ni—Au)Al2O3Glass 2NitrogenW(Ni—Au)Al2O3Glass 2NitrogenWAl2O3Active AgVacuumxbrz. mtrl.WAl2O3Active AgVacuumΔbrz. mtrl.WAl2O3Active AgVacuumbrz. mtrl.WAl2O3Active AgVacuumbrz. mtrl.WAl2O3(W—Ni)Ag brz.Hydrogenxxmtrl.WAl2O3(W—Ni)Ag brz.Hydrogenxxmtrl.WAl2O3(W—Ni)Ag brz.Hydrogenxxmtrl.WAl2O3(W—Ni)Ag brz.Hydrogenxxmtrl.WAl2O3(W—Ni)Au brz.Nitrogenxxmtrl.WAl2O3(W—Ni)Au brz.Nitrogenxxmtrl.WAl2O3(W—Ni)Au brz.Nitrogenxxmtrl.WAl2O3(W—Ni)Au brz.Nitrogenxxmtrl.


[0074] Table XXXVIII.
38TABLE XXXVIIITensileBendingJoining memberJoiningBondingBondingstrengthstrength1member 2Formagentatmosphere(kgf)(kgf)Mo(Ni—Au)AlNGlass 1NitrogenxMo(Ni—Au)AlNGlass 1NitrogenMo(Ni—Au)AlNGlass 1NitrogenMo(Ni—Au)AlNGlass 1NitrogenMo(Ni—Au)AlNGlass 2NitrogenxMo(Ni—Au)AlNGlass 2NitrogenMo(Ni—Au)AlNGlass 2NitrogenMo(Ni—Au)AlNGlass 2NitrogenMoAlNActive AgVacuumxbrz. mtrl.MoAlNActive AgVacuumΔbrz. mtrl.MoAlNActive AgVacuumbrz. mtrl.MoAlNActive AgVacuumbrz. mtrl.Mo(Ni—Au)AlN(W—Ni)Ag brz.Hydrogenxmtrl.Mo(Ni—Au)AlN(W—Ni)Ag brz.HydrogenΔmtrl.Mo(Ni—Au)AlN(W—Ni)Ag brz.Hydrogenmtrl.Mo(Ni—Au)AlN(W—Ni)Ag brz.Hydrogenmtrl.MoAlN(W—Ni)Au brz.Nitrogenxmtrl.MoAlN(W—Ni)Au brz.NitrogenΔmtrl.MoAlN(W—Ni)Au brz.Nitrogenmtrl.MoAlN(W—Ni)Au brz.Nitrogenmtrl.


[0075] Table XXXIX.
39TABLE XXXIXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Mo(Ni—Au)Si3N4Glass 1NitrogenxMo(Ni—Au)Si3N4Glass 1NitrogenMo(Ni—Au)Si3N4Glass 1NitrogenMo(Ni—Au)Si3N4Glass 1NitrogenMo(Ni—Au)Si3N4Glass 2NitrogenxMo(Ni—Au)Si3N4Glass 2NitrogenMo(Ni—Au)Si3N4Glass 2NitrogenMo(Ni—Au)Si3N4Glass 2NitrogenMoSi3N4Active AgVacuumxbrz. mtrl.MoSi3N4Active AgVacuumΔbrz. mtrl.MoSi3N4Active AgVacuumbrz. mtrl.MoSi3N4Active AgVacuumbrz. mtrl.MoSi3N4Ag brz.Hydrogenxmtrl.MoSi3N4(W—Ni)Ag brz.HydrogenΔmtrl.MoSi3N4(W—Ni)Ag brz.Hydrogenmtrl.MoSi3N4(W—Ni)Ag brz.Hydrogenmtrl.MoSi3N4(W—Ni)Au brz.Nitrogenxmtrl.MoSi3N4(W—Ni)Au brz.NitrogenΔmtrl.MoSi3N4(W—Ni)Au brz.Nitrogenmtrl.MoSi3N4(W—Ni)Au brz.Nitrogenmtrl.


[0076] Table XL.
40TABLE XLTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Mo(Ni—Au)W(Ni—Au)Glass 1NitrogenxMo(Ni—Au)W(Ni—Au)Glass 1NitrogenMo(Ni—Au)W(Ni—Au)Glass 1NitrogenMo(Ni—Au)W(Ni—Au)Glass 1NitrogenMo(Ni—Au)W(Ni—Au)Glass 2NitrogenxMo(Ni—Au)W(Ni—Au)Glass 2NitrogenMo(Ni—Au)W(Ni—Au)Glass 2NitrogenMo(Ni—Au)W(Ni—Au)Glass 2NitrogenMoWActive AgVacuumxbrz. mtrl.MoWActive AgVacuumΔbrz. mtrl.MoWActive AgVacuumbrz. mtrl.MoWActive AgVacuumbrz. mtrl.MoWAg brz. mtrl.HydrogenxMoWAg brz. mtrl.HydrogenΔMoWAg brz. mtrl.HydrogenMoWAg brz. mtrl.HydrogenMoWAu brz. mtrl.NitrogenxMoWAu brz. mtrl.NitrogenΔMoWAu brz. mtrl.NitrogenMoWAu brz. mtrl.Nitrogen


[0077] Table XLI.
41TABLE XLITensileBendingJoining memberJoiningBondingBondingstrengthstrength1member 2Formagentatmosphere(kgf)(kgf)Mo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenxMo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenxMo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenMo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenMo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenMoMoActive AgVacuumxbrz. mtrl.MoMoActive AgVacuumΔbrz. mtrl.MoMoActive AgVacuumbrz. mtrl.MoMoActive AgVacuumbrz. mtrl.MoMoAg brz. mtrl.HydrogenxMoMoAg brz. mtrl.HydrogenΔMoMoAg brz. mtrl.HydrogenMoMoAg brz. mtrl.HydrogenMoMoAu brz. mtrl.NitrogenxMoMoAu brz. mtrl.NitrogenΔMoMoAu brz. mtrl.NitrogenMoMoAu brz. mtrl.Nitrogen


[0078] Table XLII.
42TABLE XLIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Mo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenxMo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenxMo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenMo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenMo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenMoCu—WActive AgVacuumxbrz. mtrl.MoCu—WActive AgVacuumΔbrz. mtrl.MoCu—WActive AgVacuumbrz. mtrl.MoCu—WActive AgVacuumbrz. mtrl.MoCu—WAg brz.Hydrogenxmtrl.MoCu—WAg brz.HydrogenΔmtrl.MoCu—WAg brz.Hydrogenmtrl.MoCu—WAg brz.Hydrogenmtrl.Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenxMo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenxMo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenMo(Ni—Au)Cu—Mo(Ni—Au)Ag brz.Hydrogenxmtrl.Mo(Ni—Au)Cu—Mo(Ni—Au)Ag brz.HydrogenΔmtrl.Mo(Ni—Au)Cu—Mo(Ni—Au)Ag brz.Hydrogenmtrl.Mo(Ni—Au)Cu—Mo(Ni—Au)Ag brz.Hydrogenmtrl.


[0079] Table XLIII.
43TABLE XLIIITensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)Mo(Ni—Au)SiCGlass 1NitrogenxMo(Ni—Au)SiCGlass 1NitrogenMo(Ni—Au)SiCGlass 1NitrogenMo(Ni—Au)SiCGlass 1NitrogenMo(Ni—Au)SiCGlass 2NitrogenxMo(Ni—Au)SiCGlass 2NitrogenMo(Ni—Au)SiCGlass 2NitrogenMo(Ni—Au)SiCGlass 2NitrogenMoSiCActive AgVacuumxbrz. mtrl.MoSiCActive AgVacuumΔbrz. mtrl.MoSiCActive AgVacuumbrz. mtrl.MoSiCActive AgVacuumbrz. mtrl.MoSiC(W—Ni)Ag brz. mtrl.HydrogenxMoSiC(W—Ni)Ag brz. mtrl.HydrogenΔMoSiC(W—Ni)Ag brz. mtrl.HydrogenMoSiC(W—Ni)Ag brz. mtrl.HydrogenMoSiC(W—Ni)Ag brz. mtrl.NitrogenxMoSiC(W—Ni)Ag brz. mtrl.NitrogenΔMoSiC(W—Ni)Ag brz. mtrl.NitrogenMoSiC(W—Ni)Ag brz. mtrl.Nitrogen


[0080] Table XLIV.
44TABLE XLIVTensileBendingJoiningJoiningBondingstrengthstrengthmember 1member 2FormBonding agentatmosphere(kgf)(kgf)Mo(Ni—Au)Al2O3Glass 1NitrogenxMo(Ni—Au)Al2O3Glass 1NitrogenMo(Ni—Au)Al2O3Glass 1NitrogenMo(Ni—Au)Al2O3Glass 1NitrogenMo(Ni—Au)Al2O3Glass 2NitrogenxMo(Ni—Au)Al2O3Glass 2NitrogenMo(Ni—Au)Al2O3Glass 2NitrogenMo(Ni—Au)Al2O3Glass 2NitrogenMoAl2O3Active AgVacuumxbrz. mtrl.MoAl2O3Active AgVacuumΔbrz. mtrl.MoAl2O3Active AgVacuumbrz. mtrl.MoAl2O3Active AgVacuumbrz. mtrl.MoAl2O3(W—Ni)Ag brz. mtrl.HydrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.HydrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.HydrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.HydrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.NitrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.NitrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.NitrogenxxMoAl2O3(W—Ni)Ag brz. mtrl.Nitrogenxx


[0081] Table XLV.
45TABLE XLVTensileBendingJoiningJoining memberBondingBondingstrengthstrengthmember 12Formagentatmosphere(kgf)(kgf)Cu—W(Ni—Au)AlNGlass 1NitrogenxCu—W(Ni—Au)AlNGlass 1NitrogenCu—W(Ni—Au)AlNGlass 1NitrogenCu—W(Ni—Au)AlNGlass 1NitrogenCu—W(Ni—Au)AlNGlass 2NitrogenxCu—W(Ni—Au)AlNGlass 2NitrogenCu—W(Ni—Au)AlNGlass 2NitrogenCu—W(Ni—Au)AlNGlass 2NitrogenCu—W(Ni—Au)AlN(W—Ni)AgHydrogenxbrz. mtrl.Cu—W(Ni—Au)AlN(W—Ni)AgHydrogenΔbrz. mtrl.Cu—W(Ni—Au)AlN(W—Ni)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)AlN(W—Ni)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)Si3N4Glass 1NitrogenxCu—W(Ni—Au)Si3N4Glass 1NitrogenCu—W(Ni—Au)Si3N4Glass 1NitrogenCu—W(Ni—Au)Si3N4Glass 1NitrogenCu—W(Ni—Au)Si3N4Glass 2NitrogenxCu—W(Ni—Au)Si3N4Glass 2NitrogenCu—W(Ni—Au)Si3N4Glass 2NitrogenCu—W(Ni—Au)Si3N4Glass 2NitrogenCu—W(Ni)Si3N4(W—Ni)AgHydrogenxbrz. mtrl.Cu—W(Ni)Si3N4(W—Ni)AgHydrogenΔbrz. mtrl.Cu—W(Ni)Si3N4(W—Ni)AgHydrogenbrz. mtrl.Cu—W(Ni)Si3N4(W—Ni)AgHydrogenbrz. mtrl.


[0082] Table XLVI.
46TABLE XLVITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—W(Ni—Au)W(Ni—Au)Glass 1NitrogenxCu—W(Ni—Au)W(Ni—Au)FIG .2Glass 1NitrogenCu—W(Ni—Au)W(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)W(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)W(Ni—Au)Glass 2NitrogenxCu—W(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—W(Ni)W(Ni)AgHydrogenxbrz. mtrl.Cu—W(Ni)W(Ni)AgHydrogenΔbrz. mtrl.Cu—W(Ni)W(Ni)AgHydrogenbrz. mtrl.Cu—W(Ni)W(Ni)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)Mo(Ni—Au)Glass 1NitrogenxCu—W(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Mo(Ni—Au)Glass 2NitrogenxCu—W(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—W(Ni)Mo(Ni)AgHydrogenxbrz. mtrl.Cu—W(Ni)Mo(Ni)AgHydrogenΔbrz. mtrl.Cu—W(Ni)Mo(Ni)AgHydrogenbrz. mtrl.Cu—W(Ni)Mo(Ni)AgHydrogenbrz. mtrl.


[0083] Table XLVII.
47TABLE XLVIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—W(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenxCu—W(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenxCu—W(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—W(Ni—Au)Cu—W(Ni—Au)AgHydrogenxbrz. mtrl.Cu—W(Ni—Au)Cu—W(Ni—Au)AgHydrogenΔbrz. mtrl.Cu—W(Ni—Au)Cu—W(Ni—Au)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)Cu—W(Ni—Au)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)Cu—MoGlass 1Nitrogenx(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 1NitrogenΔ(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 1Nitrogen(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 1Nitrogen(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 2Nitrogenx(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 2NitrogenΔ(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 2Nitrogen(Ni—Au)Cu—W(Ni—Au)Cu—MoGlass 2Nitrogen(Ni—Au)Cu—W(Ni—Au)Cu—MoAgHydrogenx(Ni—Au)brz. mtrl.Cu—W(Ni—Au)Cu—MoAgHydrogenΔ(Ni—Au)brz. mtrl.Cu—W(Ni—Au)Cu—MoAgHydrogen(Ni—Au)brz. mtrl.Cu—W(Ni—Au)Cu—MoAgHydrogen(Ni—Au)brz. mtrl.


[0084] Table XLVIII.
48TABLE XLVIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—W(Ni—Au)SiCGlass 1NitrogenxCu—W(Ni—Au)SiCGlass 1NitrogenCu—W(Ni—Au)SiCGlass 1NitrogenCu—W(Ni—Au)SiCGlass 1NitrogenCu—W(Ni—Au)SiCGlass 2NitrogenxCu—W(Ni—Au)SiCGlass 2NitrogenCu—W(Ni—Au)SiCGlass 2NitrogenCu—W(Ni—Au)SiCGlass 2NitrogenCu—W(Ni—Au)SiC(W—Ni)AgHydrogenxbrz. mtrl.Cu—W(Ni—Au)SiC(W—Ni)AgHydrogenΔbrz. mtrl.Cu—W(Ni—Au)SiC(W—Ni)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)SiC(W—Ni)AgHydrogenbrz. mtrl.Cu—W(Ni—Au)Al2O3Glass 1NitrogenxCu—W(Ni—Au)Al2O3Glass 1NitrogenCu—W(Ni—Au)Al2O3Glass 1NitrogenCu—W(Ni—Au)Al2O3Glass 1NitrogenCu—W(Ni—Au)Al2O3Glass 2NitrogenxCu—W(Ni—Au)Al2O3Glass 2NitrogenCu—W(Ni—Au)Al2O3Glass 2NitrogenCu—W(Ni—Au)Al2O3Glass 2NitrogenCu—W(Ni—Au)Al2O3(W—Ni)AgHydrogenxxbrz. mtrl.Cu—W(Ni—Au)Al2O3(W—Ni)AgHydrogenxxbrz. mtrl.Cu—W(Ni—Au)Al2O3(W—Ni)AgHydrogenxxbrz. mtrl.Cu—W(Ni—Au)Al2O3(W—Ni)AgHydrogenxxbrz. mtrl.


[0085] Table XLIX.
49TABLE XLIXTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—Mo(Ni—Au)AINGlass 1NitrogenxCu—Mo(Ni—Au)AINGlass 1NitrogenCu—Mo(Ni—Au)AINGlass 1NitrogenCu—Mo(Ni—Au)AINGlass 1NitrogenCu—Mo(Ni—Au)AINGlass 2NitrogenxCu—Mo(Ni—Au)AINGlass 2NitrogenCu—Mo(Ni—Au)AINGlass 2NitrogenCu—Mo(Ni—Au)AINGlass 2NitrogenCu—Mo(Ni—Au)AIN(W—Ni)AgHydrogenxbrz. mtrl.Cu—Mo(Ni—Au)AIN(W—Ni)AgHydrogenΔbrz. mtrl.Cu—Mo(Ni—Au)AIN(W—Ni)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)AIN(W—Ni)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Si3N4Glass 1NitrogenxCu—Mo(Ni—Au)Si3N4Glass 1NitrogenCu—Mo(Ni—Au)Si3N4Glass 1NitrogenCu—Mo(Ni—Au)Si3N4Glass 1NitrogenCu—Mo(Ni—Au)Si3N4Glass 2NitrogenxCu—Mo(Ni—Au)Si3N4Glass 2NitrogenCu—Mo(Ni—Au)Si3N4Glass 2NitrogenCu—Mo(Ni—Au)Si3N4Glass 2NitrogenCu—Mo(Ni—Au)Si3N4AgHydrogenx(W—Ni)brz. mtrl.Cu—Mo(Ni—Au)Si3N4AgHydrogenΔ(W—Ni)brz. mtrl.Cu—Mo(Ni—Au)Si3N4AgHydrogen(W—Ni)brz. mtrl.Cu—Mo(Ni—Au)Si3N4AgHydrogen(W—Ni)brz. mtrl.


[0086] Table L.
50TABLE LTensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—Mo(Ni—Au)W(Ni—Au)Glass 1NitrogenxCu—Mo(Ni—Au)W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)W(Ni—Au)Glass 2NitrogenxCu—Mo(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)W(Ni—Au)AgHydrogenxbrz. mtrl.Cu—Mo(Ni—Au)W(Ni—Au)AgHydrogenΔbrz. mtrl.Cu—Mo(Ni—Au)W(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)W(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenxCu—Mo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenxCu—Mo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Mo(Ni—Au)AgHydrogenxbrz. mtrl.Cu—Mo(Ni—Au)Mo(Ni—Au)AgHydrogenΔbrz. mtrl.Cu—Mo(Ni—Au)Mo(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Mo(Ni—Au)AgHydrogenbrz. mtrl.


[0087] Table LI.
51TABLE LITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenxCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenxCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—W(Ni—Au)AgHydrogenxbrz. mtrl.Cu—Mo(Ni—Au)Cu—W(Ni—Au)AgHydrogenΔbrz. mtrl.Cu—Mo(Ni—Au)Cu—W(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Cu—W(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenxCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 1NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenxCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)Glass 2NitrogenCu—Mo(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenxbrz. mtrl.Cu—Mo(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenΔbrz. mtrl.Cu—Mo(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenbrz. mtrl.Cu—Mo(Ni—Au)Cu—Mo(Ni—Au)AgHydrogenbrz. mtrl.


[0088] Table LII.
52TABLE LIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—Mo(Ni—Au)SiCGlass 1NitrogenxCu—Mo(Ni—Au)SiCGlass 1NitrogenCu—Mo(Ni—Au)SiCGlass 1NitrogenCu—Mo(Ni—Au)SiCGlass 1NitrogenCu—Mo(Ni—Au)SiCGlass 2NitrogenxCu—Mo(Ni—Au)SiCGlass 2NitrogenCu—Mo(Ni—Au)SiCGlass 2NitrogenCu—Mo(Ni—Au)SiCGlass 2NitrogenCu—MoSiCActive AgVacuumxbrz. mtrl.Cu—MoSiCActive AgVacuumΔbrz. mtrl.Cu—MoSiCActive AgVacuumbrz. mtrl.Cu—MoSiCActive AgVacuumbrz. mtrl.Cu—MoSiC(W—Ni)Ag brz. mtrl.HydrogenxCu—MoSiC(W—Ni)Ag brz. mtrl.HydrogenΔCu—MoSiC(W—Ni)Ag brz. mtrl.HydrogenCu—MoSiC(W—Ni)Ag brz. mtrl.Hydrogen


[0089] Table LIII.
53TABLE LIIITensileBendingJoiningJoiningBondingBondingstrengthstrengthmember 1member 2Formagentatmosphere(kgf)(kgf)Cu—Mo (Ni—Au)Al2O3Glass 1NitrogenxCu—Mo (Ni—Au)Al2O3Glass 1NitrogenCu—Mo (Ni—Au)Al2O3Glass 1NitrogenCu—Mo (Ni—Au)Al2O3Glass 1NitrogenCu—Mo (Ni—Au)Al2O3Glass 2NitrogenxCu—Mo (Ni—Au)Al2O3Glass 2NitrogenCu—Mo (Ni—Au)Al2O3Glass 2NitrogenCu—Mo (Ni—Au)Al2O3Glass 2NitrogenCu—MoAl2O3Active AgVacuumxbrz. mtrl.Cu—MoAl2O3Active AgVacuumΔbrz. mtrl.Cu—MoAl2O3Active AgVacuumbrz. mtrl.Cu—MoAl2O3Active AgVacuumbrz. mtrl.Cu—MoAl2O3 (W—Ni)Ag brz. mtrl.HydrogenxCu—MoAl2O3 (W—Ni)Ag brz. mtrl.HydrogenxCu—MoAl2O3 (W—Ni)Ag brz. mtrl.HydrogenxCu—MoAl2O3 (W—Ni)Ag brz. mtrl.Hydrogenx


[0090] Table LIV.
54TABLE LIVJoiningJoiningTensileBendingmembermemberBondingBondingstrengthstrength12Formagentatmosphere(kgf)(kgf)NiNiAgHydrogenbrz. mtrl.NiNiAgHydrogenbrz. mtrl.NiNiAgHydrogenbrz. mtrl.NiNiAgHydrogenbrz. mtrl.NiCu (Ni)AgHydrogenbrz. mtrl.NiCu (Ni)AgHydrogenbrz. mtrl.NiCu (Ni)AgHydrogenbrz. mtrl.NiCu (Ni)AgHydrogenbrz. mtrl.Cu (Ni)NiAgHydrogenΔΔbrz. mtrl.Cu (Ni)NiAgHydrogenbrz. mtrl.Cu (Ni)NiAgHydrogenbrz. mtrl.Cu (Ni)NiAgHydrogenbrz. mtrl.Cu (Ni)Cu (Ni)AgHydrogenΔΔbrz. mtrl.Cu (Ni)Cu (Ni)AgHydrogenbrz. mtrl.Cu (Ni)Cu (Ni)AgHydrogenbrz. mtrl.Cu (Ni)Cu (Ni)AgHydrogenbrz. mtrl.


[0091] As determined by the present invention, joint formations in which two joining members are joined with a bonding agent may be realized to have sufficiently high joint strength in the direction perpendicular to the joint plane, and meanwhile also in the direction parallel to the joint plane—which is very much advantageous in high-strength joints between two joining members employed in a variety of electrical and electronic components.


[0092] Only selected embodiments have been chosen to illustrate the present invention. To those skilled in the art, however, it will be apparent from the foregoing disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing description of the embodiments according to the present invention is provided for illustration only, and not for limiting the invention as defined by the appended claims and their equivalents.


Claims
  • 1. A joint formation being a structure in which two joining members are joined to each other, the joint formation comprising: two joining members, each with a plurality of continuous faces as joint faces; and a bonding agent interposed between the joint faces to join said two joining members together.
  • 2. The joint formation as set forth in claim 1, wherein said two joining members differ from each other, and said joining members differ from said bonding agent, by 5.0×10−6/° C. or less in coefficient of thermal expansion.
  • 3. The joint formation as set forth in claim 1, wherein said bonding agent is glass or a metal brazing material.
  • 4. The joint formation as set forth in claim 2, wherein said bonding agent is glass or a metal brazing material.
  • 5. The joint formation as set forth in claim 1, wherein said two joining members are a metal-metal, metal-ceramic, or ceramic-ceramic combination.
  • 6. The joint formation as set forth in claim 2, wherein said two joining members are a metal-metal, metal-ceramic, or ceramic-ceramic combination.
  • 7. The joint formation as set forth in claim 3, wherein said two joining members are a metal-metal, metal-ceramic, or ceramic-ceramic combination.
  • 8. The joint formation as set forth in claim 5, wherein said metal is nickel, tungsten, molybdenum, copper, copper-tungsten, or copper-molybdenum.
  • 9. The joint formation as set forth in claim 6, wherein said metal is nickel, tungsten, molybdenum, copper, copper-tungsten, or copper-molybdenum.
  • 10. The joint formation as set forth in claim 7, wherein said metal is nickel, tungsten, molybdenum, copper, copper-tungsten, or copper-molybdenum.
  • 11. The joint formation as set forth in claim 5, wherein said ceramic is aluminum nitride, silicon nitride, silicon carbide, or aluminum oxide.
  • 12. The joint formation as set forth in claim 6, wherein said ceramic is aluminum nitride, silicon nitride, silicon carbide, or aluminum oxide.
  • 13. The joint formation as set forth in claim 7, wherein said ceramic is aluminum nitride, silicon nitride, silicon carbide, or aluminum oxide.
  • 14. The joint formation as set forth in claim 1, wherein one of either said two joining members is aluminum nitride.
  • 15. The joint formation as set forth in claim 2, wherein one of either said two joining members is aluminum nitride.
  • 16. The joint formation as set forth in claim 5, wherein one of either said two joining members is aluminum nitride.
  • 17. The joint formation as set forth in claim 6, wherein one of either said two joining members is aluminum nitride.
  • 18. The joint formation as set forth in claim 7, wherein one of either said two joining members is aluminum nitride.
Priority Claims (1)
Number Date Country Kind
2002-044477 Feb 2002 JP