The present invention relates to a connection arrangement for providing at least one medical device with a tamper resistant connection and a method for connecting the at least one medical device to the connection arrangement.
During medical procedures, operations, administration of drugs or other activities involving medical instruments, it is important that the individual instruments are securely attached together. Instruments which are inadequately connected run the risk of being disconnected, which could potentially expose hazardous medicaments such as cytotoxins, neurotoxins or the like. Further persons dealing with piercing members, e.g. a nurse or a patient, run the risk of being accidentally exposed to the tip of a piercing member which potentially could rupture the skin of a user. The severity of such an incident can range from a low risk level to a substantially lethal risk level, for example when dealing with the HIV virus. However, not only accidents can cause such situations, doctors, nurses, caring personal and even patients can accidentally disconnect the wrong medical instrument. Such an error can potentially impart a high risk situation to the involved persons. There seem to be a need for tamper safe devices and tamper safe connections.
Medical adaptor devices are vital to connect and enable administration of e.g. drugs between vials and syringes or any other medical devices as the range of products, combinations and functions are vast. In the patent with the U.S. Pat. No. 4,629,455 a medical instrument arrangement is disclosed. The medical instrument arrangement incorporates a female connector member having a female taper portion and a male connector member having a male taper portion. The female connector member has threads for cooperative engagement with a rotary ring, adapted to rotate freely around the longitudinal axis of the male connector member. The rotary ring further comprises threads for cooperative engagement with the threads of the female connector member. The threads of the rotary ring exhibit a rotary thread ridge which is adapted to fracture a rib arranged on the threads of the female connector member. The fracture of the rib provides for an increased friction between the threads of the female connector member and the threads of the rotary ring, keeping the two connected parts firmly in place and hence substantially tamper safe. There are however drawbacks with this medical instrument arrangement which will be readily apparent.
US 2004/016858 A1 provides for another substantially tamper safe device in the form of a tamper safe closure for a syringe with a luer connection or a luer lock connection. A cap is connected to the syringe via a frangible web which after rupture permits removal of the cap from the syringe. The tamper safe closure does not however provide for any tamper safe means with respect to the device which is connected to the syringe.
It is an object of the present invention to at least partly solve some of the above mentioned drawbacks. More specifically they are at least partly solved by a connection arrangement providing at least a first medical device with a substantially tamper resistant connection. The connection arrangement may exhibit a centre axis. The connection arrangement comprises a first connection member for connection to the first medical device, and a body. The first connection member and the body are connected directly or indirectly together via at least one designated ruptureable retaining member, the at least one designated ruptureable retaining member is/are arranged to rupture when subjected to a predetermined breaking force. Wherein the first connection member and thereby the first medical device after assembly can be substantially displaced with respect to the body after rupture. The mentioned breaking force can be a shearing force, a compressive force, tensile force or combinations thereof.
The present invention provides for a substantially tamper resistant connection arrangement which can be used on substantially any medical device for a tamper resistant connection. The tamper resistant connection arrangement eliminates or at least reduces the risk of becoming disconnected from medical devices after it has been connected thereto. Thereby the risk of accidental leakage is significantly reduced and as a direct consequence of this, the environment and work safety for a user is improved as leakage of e.g. toxic drugs can be minimized. These advantages and others will be clear after reading the detailed description below.
In an embodiment according to the present invention, the first connection member is arranged to connect to the at least one first medical device by means of a threaded coupling in a first direction. As such a secure and simple coupling can be provided.
The at least one designated ruptureable retaining member can be arranged to rupture by means of a relative rotational motion subjected to the body with respect to the first connection member. Optionally a longitudinal motion along a centre axis could be used or combinations thereof. However, when using a relative rotational motion, the rupture of the designated ruptureable retaining members can be done by using the same rotational motion as used when connecting the first medical device to the connection arrangement. In this embodiment, the first direction is the same as the direction of the relative rotational motion.
Evaluation of the present invention has shown that the predetermined breaking force should preferably be between 10-40 Ncm, preferably 15-30 Ncm, the breaking force can be a shearing force. This ensures a high enough force, e.g. shear force, to enable a secure and tight connection while at the same time not use too much force to rupture the at least one designated ruptureable retaining member(s). As such the specific numbers of the designated ruptureable retaining members can be adapted so that a specific threshold break force can be obtained. For example 1-10 designated ruptureable retaining members can be used.
In an embodiment, according to the present invention, the at least one designated ruptureable retaining member is/are arranged to provide for a substantially planar fracture surface, to minimize the available friction forces between the body and the first connection member. After rupture it is important that the body and the first connection member can be displaced, for example by being enabled to freely rotate, with respect to each other as easily as possible. This reduces the risk of the first connection member and the body inadvertently engaging each other again, by a temporarily increased friction there between, or for any other reason. The fracture surface created after rupture is advantageously steered to an advantageous position, for example by the at least one designated ruptureable retaining member comprises at least one notch, an example of a suitable notch can be a groove in the designated ruptureable retaining member, a weak point, a fold or combinations thereof.
In yet an embodiment, according to the present invention, the first connection member and at least a part of the body together form a first connection site to which the first medical device can be connected. This is very advantageous when the connection arrangement is of luer-lock type, for example a female luer lock or a male luer lock connection. Usually in these cases, optionally in others, it is advantageous that the first connection member has a substantially cylindrical form. As such, the cylindrical form can at least partly enclose the body which then forms a part of the first connection site to enable a liquid tight seal there between.
The at least one designated ruptureable retaining member can be integrally formed with at least the first connection member and the body. Either way, the at least one designated ruptureable retaining member can be integrally formed with the members which after rupture are intended to be displaced, e.g., freely rotateable, with respect to each other. This enables the member to be manufactured in one piece, for instance by form moulding. Optionally, the at least one designated ruptureable retaining member is manufactured from a separate piece, which enables a large variety of the property of the at least one designated ruptureable retaining member, combinations thereof are of course also possible.
In an embodiment, according to the present invention, the body comprises means for substantially preventing the first connection member from motion along the centre axis A. These means can be a supportive housing, a circumferential groove which is intended to be assembled with a lock flange, for instance a wedge like protrusion, as is described in greater detail below.
In an embodiment according to the present invention, the first connection member comprises a first connection site to which the first medical device can be connected. In contrary to when the first connection member forms part of a first connection site together with the body, this embodiment may have a first connection site arranged on the first connection member. In this embodiment, the connection function to the first medical device and the first connection member are separated from each other, enabling a different use, for instance as is shown and described with reference to
The connection arrangement can comprise a second connection site for connecting to a second medical device. The second connection site can be a part of the body or separate therefrom, for example positioned on a part of a piercing member protection device to which the connection arrangement, according to the present invention, can be arranged. Hence it is well within the boundaries of the present invention that the connection arrangement forms part of a medical adaptor device, a piercing member protection device, a syringe, an infusion bag connection system, or any other medical device.
The present invention further relates to a method for attaching a first medical device to a connection arrangement, according to the present invention, to form a substantially tamper resistant connection therebetween. The connection arrangement comprises a first connection member and a body. The method comprises the steps of;
The present invention also relates to a female and a male coupling device.
Such a coupling device has a centre axis and is arranged for connection with at least a first medical device. The coupling device comprises a first connection site comprising a cylinder member having threads for providing a threaded coupling with a first medical device by means of a rotational motion in a first direction. The cylinder member comprises an inner and an outer surface. The coupling devices further exhibit a fluid transfer channel for enabling a fluid connection, wherein the cylinder member is arranged to at least partly encompass the fluid transfer channel. The fluid transfer channel extends inside of a body. The cylinder member is directly or indirectly connected to the body via at least one designated ruptureable retaining member, wherein the at least one designated ruptureable retaining member is/are arranged to rupture when subjected to a predetermined breaking force whereafter the cylinder member can be displaced, for example to be freely rotated around the centre axis, and with respect to the body. Such a coupling device provides for a tamper resistant coupling device which can advantageously be used for e.g. transferring toxic fluids since there is no or limited risk of disconnection as e.g. the rotational motion needed for disconnection has been effectively disabled.
The female or male coupling device may comprise means for substantially preventing the cylinder from motion in a direction along the centre axis A, for example, the means may be a supportive housing arranged to hold the cylinder in position.
In an embodiment, the coupling device is a female coupling device and the threads of the cylinder member are arranged on the outer surface of the cylinder member. This is very useful on e.g. a syringe, such as a disposable syringe. Such a coupling device is arranged to receive a male coupling device outside on the cylinder member. In an embodiment, the female or male coupling device is a male coupling device and in that the threads of the cylinder member are arranged on the inner surface of the cylinder member. Such a coupling device is arranged to receive a female coupling device in the cylinder member.
In an embodiment according to the present invention, the at least one designated ruptureable retaining member is/are arranged to rupture when subjected to a rotational motion to the cylinder member and in that the imparted rotational motion is in the same direction as the first direction. This provides for the same advantages as mentioned above.
The designated ruptureable retaining members can be positioned in many different places. Generally the manufacturing methods determine the positioning. The cylinder member comprises a first and a second end and the at least one designated ruptureable retaining member is/are arranged at the first end of the cylinder member. This has been found to be advantageous from manufacturing point of view. The female or male coupling device as described above can be of a luer lock type connection.
The present invention also relates to a medical adaptor device, a piercing member protection device, a syringe, preferably a disposable syringe, an infusion bag connection system, or any other medical device having a connection arrangement as described above.
By the term “medical device” as used in this document is meant any device which is suitable to use in a hospital environment, care taking environment, nursing institutions or the like, more preferably it is meant devices used in a hospital like environment requiring quality secured devices.
The present invention will hereafter be described in greater detail and with reference to the accompanying figures in which;
a shows the supportive housing of the medical adaptor as seen in
b shows a cross section of the supportive housing as seen in
a shows a cross section of the medical adaptor device as shown in
b shows a cross section of the medical adaptor device as shown in
a-12b shows a disposable syringe having a connection arrangement according to an embodiment of the present invention.
The present invention will be described in greater detail and in a non limiting way with reference to the enclosed embodiments.
The medical adaptor device 10 comprises a second connection site 11 for connecting with a medical device via a membrane coupling 12 having a neck element 13 and a first and a second guiding groove 14, 15 for guiding corresponding parts of a membrane coupling between a locked position and an unlocked position with a rotational motion. A barrier member 16 provides for a gas and liquid tight seal around a piercing member which during use is intended to be inserted into the barrier member 16 to e.g. administrate drugs. The medical adaptor 10 further comprises a first connection site 20 to connect to e.g. an injection port or a port an infusion bag, via a luer lock type connection 20. A supportive housing 30 is arranged to structurally support at least the second connection site 20.
The form and shape of the designated ruptureable retaining members 41, and for the sake of the present invention, any at least one designated ruptureable retaining member(s), is preferably adapted to provide a fracture surface which minimizes the friction between the rotating parts, in the shown embodiment of
a-3b show the supportive housing 30 in greater detail and separated from the other parts of the medical adaptor device 10 for the sake of clarity. The supportive housing 30 has a substantially cylindrical form having an upper and a lower end, equivalent to a first and a second end 31, 32 and an inner and an outer surface 33, 34. A plurality of, in this embodiment four, wedge like protrusions 35 extend out from the inner surface 33 of the supportive housing 30 in the proximity of the first end 31, although only two wedge like protrusions 35 are shown in
The supportive housing 30 permits the female cylinder to rotate around the centre axis A, after the designated ruptureable retaining members 41 are ruptured. It further keeps the female cylinder 21 from motion in the longitudinal direction of the centre axis A. This enables the medical adaptor device 10 to be tamper resistant in the meaning of that any device which is attached with the medical adaptor device 10 can, after the at least one designated ruptureable retaining member is/are ruptured, freely rotate. In practice, the effect of this is that the second connection site 11 uses a rotational motion to fasten a medical device, for the sake of this example; an injector. The same rotational motion can be used to rupture the designated ruptureable retaining members 41 whereafter the friction between the female cylinder 21 and the body 60 and the supportive housing 30 is so low that a counter rotational motion does not unscrew the injector. This function and effect will be described in greater detail with reference to
a-5b show the medical adaptor device 10 as shown in
Further, the at least one designated ruptureable retaining member(s) can be manufactured from a substantially elastic material. This could be advantageous since a user could be warned or informed of when the designated ruptureable retaining members 41 are about to break by an indication on the connector, in this case the medical adaptor device 10, corresponding to the required rotational distance before rupture, which can be calculated or evaluated.
b shows the female catheter connection part 70 after being connected to the luer lock type connection of the medical adaptor device 10. The female catheter connection part 70 can now be connected to a medical device having a double membrane bayonet coupling via the medical adaptor device 10. As can further be seen, the designated ruptureable retaining members 41 have ruptured, thereby permitting the female cylinder 21 to be freely rotated around the centre axis A, while being substantially prevented from motion in a longitudinal direction of the centre axis A, i.e. in a motion along the centre axis A. As the female cylinder 21 can be freely rotated, the second connection site 11 can also be freely rotated, with respect to the first connection site 20, i.e. the luer lock connection and the female catheter connection part 70. Hence, the medical adaptor device 10 in principle cannot be removed from the female catheter connection part 70.
It is further notable that the risk of leakage between the inner surface 71 of the female catheter connection part 70 and the male tapered connection part 28 is very low. In fact, the male tapered connection part 28 can be rotated inside of the female catheter connection part 70 without leakage. Should it be desirable for any reason to further improve the leakage preventive properties of the medical adaptor device 10, the medical adaptor device 10 can be provided with at least one leakage barrier, preferably in the near proximity of the root of the male tapered connection part 28, such as an O-ring, which after assembly is intended to be positioned adjacent the attached medical device, in the shown embodiment, the top of the female catheter connection part 70. The connection arrangement 1, in this case the medical adaptor device 10, can be coated with a leakage preventing coating such as a silicone based coating. In this case the coating would be applied onto the male tapered connection part 28.
It is further notable that the supportive housing 30 can be arranged with means to prevent it from rotation with respect to the second connection site 11. Such means may be in the form of a protrusion and a corresponding groove. This feature would improve the handling of the medical adaptor device 10 by providing a larger grip area.
Injector
The present invention will be further described with reference to a second embodiment according to the present invention. In this embodiment, the connection arrangement 1 is applied to a piercing member protection device 99 for providing at least a first medical device with a substantially tamper resistant connection. Suitable piercing member protection device which can be utilized is disclosed in the patent application publication of WO2008/115102 in the name of Carmel Pharma AB.
A first locking arrangement 250 is provided between the first cylindrical member 100 and the second cylindrical member 200. The first locking arrangement 250 can be arranged in a first position in which the first cylindrical member 100 is enabled to be turned with respect to the second cylindrical member 200 and a second position in which the first cylindrical member 100 is disabled form turning with respect to the second cylindrical member 200. The second locking device can be alternated between the first and the second position by means of connecting the piercing member protection device 99 to the connection port.
A second locking arrangement provides a first position in which the piercing member, and the third cylindrical member 300, is enabled to move along the centre axis A with respect to the first barrier member 101, and a second position in which the piercing member, and the third cylindrical member 300, is prevented from moving along the longitudinal centre axis A with respect to the first barrier member 101. The second locking arrangement 350 is alternated between the first position and the second position by means of turning the first cylindrical member 100 and the third cylindrical member 300 with respect to the second cylindrical member 200. As the piercing member is moved along the longitudinal centre axis A it can be moved to an exposed state at which parts of the piercing member are exposed outside of the protective chamber and the first barrier member 101, for example in order to transfer a drug from a vial to a syringe. The second locking arrangement is enabled by an L-shaped groove on the third cylindrical member 300 and a corresponding protrusion on the second cylindrical member 200.
As can further be seen in
In the embodiment shown in
The ring body 160 also exhibits a first and a second end 165, 166, equivalent to the upper and the lower end 165, 166 as seen in
The inner ring 161 comprises attachment flanges 170 to provide a snap on connection between the first connection site 111 and the inner ring 161.
As is noticed, the cylindrical base 120 and the inner ring member 161 of the ring body 160 forms the body while the outer ring 162 and optionally the third cylinder member 300 forms a first connection member.
Infusion Bag
In a third embodiment according to the present invention, the connection arrangement is utilized on an infusion bag connection system 500 for a tamper resistant connection to an infusion bag 501. As is seen in
As has been shown, the connection arrangement 1 according to present invention can advantageously be used as a male luer lock connection. Additionally the connection arrangement 1 can be used on, i.e. as the connection arrangement on a medical device e.g. a syringe, such as a disposable syringe, a medical fluid container, a medical waste container or the like.
Female Luer Lock Type Connection
It is also within the boundaries of the present invention that the connection arrangement 1 is used as a female luer lock connection, as is shown in
With reference to both
A cylinder 620 having an outer and an inner surface 621, 622 and a first and a second end 623, 624 is arranged on the dispensing channel housing 603. The outer surface 621 facing away from the centre axis A. Threads 625 are arranged on the outer surface 621 of the cylinder 620 for connection with a male luer lock connection. The distal end 605 of the dispensing channel housing 603 comprises a circumferential lock flange 607 to substantially prevent the cylinder 620 from motion in a direction along the centre axis A, at least in a direction away from the fluid housing 601, the fluid housing 601 being a natural stop in the other direction.
As is noted, the dispensing channel housing 603 form together with the fluid housing 601 a body while the cylinder 620 form a first connection member. A connection site 610 is formed by the dispensing channel housing 603 and the cylinder 620.
The cylinder 620 is attached to the circumferential lock flange 607 via a plurality of designated ruptureable retaining members 641. The designated ruptureable retaining members 641 prevent the rotation of the cylinder 620 with respect to the fluid housing 601 and thereby enabling the connection to a male luer lock connection. As the syringe is screwed on to the medical device and a tight connection is reached, the threshold shear force of each of the designated ruptureable retaining members 641 is surpassed, fracturing the ruputureable retaining members 641. As the designated ruptureable retaining members rupture, the cylinder 620 of the syringe 600 can rotate freely, with respect to the fluid housing 601 of the syringe, without risking that the syringe and the medical device is disconnected.
The fluid housing 601, the designated ruptureable retaining members 641, the cylinder 620, the circumferential lock flange 607 and the dispensing channel housing 603 can be formed integrally from the same material. Optionally, the designated ruptureable retaining members can be formed from another material; the cylinder 620 can be e.g. adhered to the dispensing channel housing 603 to form the designated ruptureable retaining members.
In the embodiments described above the rupture of the designated ruptureable retaining members is accomplished by a rotational motion in the same rotational direction as the connection of the first medical device. One major advantage of using this configuration of the connection arrangement, according to the present invention, is of course that it disables any attempt to counter-rotate the medical device after the designated ruptureable retaining members are ruptured. However, it is well within the boundaries of the present invention that the rupture of the designated ruptureable retaining member(s) can be done by means of pressing, pulling, tilting or otherwise manipulating e.g. the connected first medical device. The triggering mechanism for rupturing the designated ruptureable retaining member(s) are in some embodiments less relevant, although the rotational triggering is preferable since it can be combined with a rotational attachment of a medical device. Furthermore, the connection of the first medical device does not have to be by a rotational motion, instead is it possible to use e.g. a snap on connection.
Preferable material for manufacturing a connection arrangement according to the present invention as described above is polypropylene, polyethylene, PVC, polyurethane, acrylonitrile butadiene styrene (ABS), polystyrene, polyoxymethylene, polyethylene terephthalate, similar plastics or mixtures thereof, although other materials such as metal e.g. aluminum, steel, iron, brass, or alloys thereof are possible. Combinations of these materials are of course also possible.
Number | Name | Date | Kind |
---|---|---|---|
1844342 | Berman | Feb 1932 | A |
2010417 | Schwab | Aug 1935 | A |
2697438 | Hickey | Dec 1954 | A |
2717599 | Huber | Sep 1955 | A |
3064651 | Henderson | Nov 1962 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3308822 | DeLuca | Mar 1967 | A |
3316908 | Burke | May 1967 | A |
3340671 | Loo | Sep 1967 | A |
3390677 | Razimbaud | Jul 1968 | A |
3448740 | Figge | Jun 1969 | A |
3542240 | Solowey | Nov 1970 | A |
3783895 | Weichselbaum | Jan 1974 | A |
3788320 | Dye | Jan 1974 | A |
3822700 | Pennington | Jul 1974 | A |
3938520 | Scislowicz et al. | Feb 1976 | A |
3976073 | Quick et al. | Aug 1976 | A |
4096860 | McLaughlin | Jun 1978 | A |
4296786 | Brignola | Oct 1981 | A |
D270568 | Armstrong | Sep 1983 | S |
4490139 | Huizenga et al. | Dec 1984 | A |
4516967 | Kopfer | May 1985 | A |
4564054 | Gustavsson | Jan 1986 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4576211 | Valentini et al. | Mar 1986 | A |
4581016 | Gettig | Apr 1986 | A |
4582223 | Kobe | Apr 1986 | A |
4588403 | Weiss et al. | May 1986 | A |
4600040 | Naslund | Jul 1986 | A |
4623343 | Thompson | Nov 1986 | A |
4629455 | Kanno | Dec 1986 | A |
4632673 | Tiitola et al. | Dec 1986 | A |
4636204 | Christopherson et al. | Jan 1987 | A |
4673400 | Martin | Jun 1987 | A |
4673404 | Gustavsson | Jun 1987 | A |
4737150 | Baeumle et al. | Apr 1988 | A |
4752287 | Kurtz et al. | Jun 1988 | A |
4759756 | Forman et al. | Jul 1988 | A |
4768568 | Fournier et al. | Sep 1988 | A |
4792329 | Schreuder | Dec 1988 | A |
4804015 | Albinsson | Feb 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4826492 | Magasi | May 1989 | A |
4834717 | Haber et al. | May 1989 | A |
4842585 | Witt | Jun 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4864717 | Baus, Jr. | Sep 1989 | A |
4872494 | Coccia | Oct 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4898209 | Zbed | Feb 1990 | A |
4909290 | Coccia | Mar 1990 | A |
4932937 | Gustavsson et al. | Jun 1990 | A |
4944736 | Holtz | Jul 1990 | A |
4964855 | Todd et al. | Oct 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4994048 | Metzger | Feb 1991 | A |
4997083 | Loretti et al. | Mar 1991 | A |
5017186 | Arnold | May 1991 | A |
5041105 | D'Alo et al. | Aug 1991 | A |
5061264 | Scarrow | Oct 1991 | A |
5071413 | Utterberg | Dec 1991 | A |
5122116 | Kriesel et al. | Jun 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5137524 | Lynn et al. | Aug 1992 | A |
5158554 | Jepson et al. | Oct 1992 | A |
5176673 | Marrucchi | Jan 1993 | A |
5199947 | Lopez et al. | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5207658 | Rosen et al. | May 1993 | A |
5232109 | Tirrell et al. | Aug 1993 | A |
5254097 | Schock et al. | Oct 1993 | A |
5279576 | Loo et al. | Jan 1994 | A |
5279583 | Shober, Jr. et al. | Jan 1994 | A |
5279605 | Karrasch et al. | Jan 1994 | A |
5308347 | Sunago et al. | May 1994 | A |
5312366 | Vaillancourt | May 1994 | A |
5328480 | Melker et al. | Jul 1994 | A |
5334163 | Sinnett | Aug 1994 | A |
5356406 | Schraga | Oct 1994 | A |
5385545 | Kriesel et al. | Jan 1995 | A |
5385547 | Wong et al. | Jan 1995 | A |
5389085 | D'Alessio et al. | Feb 1995 | A |
5405326 | Haber et al. | Apr 1995 | A |
5445630 | Richmond | Aug 1995 | A |
5447501 | Karlsson et al. | Sep 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5470522 | Thome et al. | Nov 1995 | A |
5478328 | Silverman et al. | Dec 1995 | A |
5478337 | Okamoto et al. | Dec 1995 | A |
5492531 | Post et al. | Feb 1996 | A |
5514117 | Lynn | May 1996 | A |
5515871 | Bittner et al. | May 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5593028 | Haber et al. | Jan 1997 | A |
5613954 | Nelson et al. | Mar 1997 | A |
5632735 | Wyatt et al. | May 1997 | A |
5647845 | Haber et al. | Jul 1997 | A |
5685866 | Lopez | Nov 1997 | A |
5752942 | Doyle et al. | May 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5766211 | Wood et al. | Jun 1998 | A |
5782872 | Muller | Jul 1998 | A |
5795336 | Romano et al. | Aug 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5820609 | Saito | Oct 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5837262 | Golubev et al. | Nov 1998 | A |
5875931 | Py | Mar 1999 | A |
5879345 | Aneas | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5934510 | Anderson | Aug 1999 | A |
5984899 | D'Alessio et al. | Nov 1999 | A |
6063068 | Fowles et al. | May 2000 | A |
D427308 | Zinger | Jun 2000 | S |
6070623 | Aneas | Jun 2000 | A |
6071270 | Fowles et al. | Jun 2000 | A |
6090091 | Fowles et al. | Jul 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6113583 | Fowles et al. | Sep 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6146362 | Turnbull et al. | Nov 2000 | A |
6209738 | Jansen et al. | Apr 2001 | B1 |
6221065 | Davis | Apr 2001 | B1 |
6245056 | Walker et al. | Jun 2001 | B1 |
D445501 | Niedospial, Jr. | Jul 2001 | S |
6253804 | Safabash | Jul 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6387074 | Horppu et al. | May 2002 | B1 |
6453956 | Safabash | Sep 2002 | B2 |
6471674 | Emig et al. | Oct 2002 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6537263 | Aneas | Mar 2003 | B1 |
6571837 | Jansen et al. | Jun 2003 | B2 |
6591876 | Safabash | Jul 2003 | B2 |
6644367 | Savage et al. | Nov 2003 | B1 |
6685692 | Fathallah | Feb 2004 | B2 |
6715520 | Andreasson et al. | Apr 2004 | B2 |
6761286 | Py et al. | Jul 2004 | B2 |
D495416 | Dimeo et al. | Aug 2004 | S |
6786244 | Jones | Sep 2004 | B1 |
D506256 | Miyoshi et al. | Jun 2005 | S |
6960194 | Hommann et al. | Nov 2005 | B2 |
7000806 | Py et al. | Feb 2006 | B2 |
7080672 | Fournier et al. | Jul 2006 | B2 |
7297140 | Orlu et al. | Nov 2007 | B2 |
D570477 | Gallogly et al. | Jun 2008 | S |
D572820 | Gallogly et al. | Jul 2008 | S |
D577438 | Gallogly et al. | Sep 2008 | S |
D577822 | Gallogly et al. | Sep 2008 | S |
D582033 | Baxter et al. | Dec 2008 | S |
D605755 | Baxter et al. | Dec 2009 | S |
7703486 | Costanzo | Apr 2010 | B2 |
D616984 | Gilboa | Jun 2010 | S |
7744581 | Wallen et al. | Jun 2010 | B2 |
20010021825 | Becker et al. | Sep 2001 | A1 |
20010025671 | Safabash | Oct 2001 | A1 |
20020002352 | Becker et al. | Jan 2002 | A1 |
20020082586 | Finley et al. | Jun 2002 | A1 |
20020127150 | Sasso | Sep 2002 | A1 |
20020177819 | Barker et al. | Nov 2002 | A1 |
20030010717 | Brugger et al. | Jan 2003 | A1 |
20030070726 | Andreasson et al. | Apr 2003 | A1 |
20030106610 | Roos et al. | Jun 2003 | A1 |
20030107628 | Fowles et al. | Jun 2003 | A1 |
20030199846 | Fowles et al. | Oct 2003 | A1 |
20030233083 | Houwaert et al. | Dec 2003 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040199139 | Fowles et al. | Oct 2004 | A1 |
20040215147 | Wessman et al. | Oct 2004 | A1 |
20050215977 | Uschold | Sep 2005 | A1 |
20060025747 | Sullivan et al. | Feb 2006 | A1 |
20060106360 | Wong | May 2006 | A1 |
20060111667 | Matsurra et al. | May 2006 | A1 |
20060157984 | Rome et al. | Jul 2006 | A1 |
20060186045 | Jensen et al. | Aug 2006 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070060841 | Henshaw | Mar 2007 | A1 |
20070088313 | Zinger et al. | Apr 2007 | A1 |
20070106244 | Mosler et al. | May 2007 | A1 |
20070179441 | Chevallier | Aug 2007 | A1 |
20070270759 | Pessin | Nov 2007 | A1 |
20070270778 | Zinger et al. | Nov 2007 | A9 |
20080045919 | Jakob et al. | Feb 2008 | A1 |
20080103453 | Liversidge | May 2008 | A1 |
20080103485 | Kruger | May 2008 | A1 |
20080172039 | Raines | Jul 2008 | A1 |
20080223484 | Horppu | Sep 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20080312634 | Helmerson et al. | Dec 2008 | A1 |
20090254042 | Gratwohl et al. | Oct 2009 | A1 |
20100137827 | Warren et al. | Jun 2010 | A1 |
20100204671 | Kraushaar et al. | Aug 2010 | A1 |
20100243099 | Yodfat | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
200112863 | May 2003 | AU |
2005519 | Oct 1979 | DE |
0255025 | Feb 1988 | EP |
0259582 | Mar 1988 | EP |
0285424 | Oct 1988 | EP |
0311787 | Apr 1989 | EP |
0376629 | Jul 1990 | EP |
0803267 | Oct 1997 | EP |
0819442 | Jan 1998 | EP |
0995453 | Apr 2000 | EP |
1060730 | Dec 2000 | EP |
1484073 | Dec 2004 | EP |
1731128 | Dec 2006 | EP |
2757405 | Jun 1998 | FR |
2780878 | Jan 2000 | FR |
1579065 | Nov 1980 | GB |
49-12690 | May 1972 | JP |
288664 | Jul 1990 | JP |
3030963 | Aug 1996 | JP |
2000167022 | Jun 2000 | JP |
2001505092 | Apr 2001 | JP |
2001293085 | Oct 2001 | JP |
482670 | Apr 2002 | TW |
WO 8404672 | Dec 1984 | WO |
WO 8404673 | Dec 1984 | WO |
WO 9003536 | Apr 1990 | WO |
WO 9819724 | May 1998 | WO |
WO 9927886 | Jun 1999 | WO |
WO 9962578 | Dec 1999 | WO |
WO 0005292 | Feb 2000 | WO |
WO 0035517 | Jun 2000 | WO |
WO 0180928 | Nov 2001 | WO |
WO 0202048 | Jan 2002 | WO |
WO 0211794 | Feb 2002 | WO |
WO 02064077 | Aug 2002 | WO |
WO 02076540 | Oct 2002 | WO |
WO 2005074860 | Aug 2005 | WO |
WO 2006082350 | Aug 2006 | WO |
WO-2006083333 | Aug 2006 | WO |
WO2006083333 | Aug 2006 | WO |
WO2008028305 | Mar 2008 | WO |
WO2008115102 | Sep 2008 | WO |
WO-2008144447 | Nov 2008 | WO |
WO 2006138184 | Dec 2009 | WO |
Entry |
---|
International Search Report PCT/EP2008/067535 mailed Oct. 21, 2009 (3 pages). |
Taiwan Search Report for Taiwan Patent Application 092106323 dated Mar. 21, 2003 (4 pages). |
Japan Application No. 2003-583539, Official Action dated May 1, 2009 (3 pages). |
Japan Application No. 2003-577789, Official Action dated Feb. 24, 2009 (4 pages). |
International Search Report, PCT/EP2008/067522 dated Aug. 12, 2009 (2 pages). |
Extended EP Search Report in EP13180902.2, dated Oct. 15, 2013, 6 pgs. |
Official Notice of Rejection, mailed on Mar. 26, 2013, for Japanese Patent Application No. 2011-514428, which corresponds to this patent application. |
Number | Date | Country | |
---|---|---|---|
20100152669 A1 | Jun 2010 | US |