1. Field of Invention
The invention relates generally to the field of oil and gas production. More specifically, the present invention relates to a modular apparatus for providing communication between members of a downhole string. Yet more specifically, the present invention relates to a cartridge inserted into an end of a perforating gun equipped with a receptacle or contact at both ends for connection to a signal line through a perforating gun string.
2. Description of Prior Art
Perforating systems are used for the purpose, among others, of making hydraulic communication passages, called perforations, in wellbores drilled through earth formations so that predetermined zones of the earth formations can be hydraulically connected to the wellbore. Perforations are needed because wellbores are typically completed by coaxially inserting a pipe or casing into the wellbore. The casing is retained in the wellbore by pumping cement into the annular space between the wellbore and the casing. The cemented casing is provided in the wellbore for the specific purpose of hydraulically isolating from each other the various earth formations penetrated by the wellbore.
Perforating systems typically comprise one or more perforating guns strung together, these strings of guns can sometimes surpass a thousand feet of perforating length, but typically shorter in a wireline application. In
Included with each perforating gun 14 are shaped charges 24 that typically include a housing, a liner, and a quantity of high explosive inserted between the liner and the housing. When the high explosive in a shaped charge 24 is detonated, the force of the detonation collapses the liner and ejects it from one end of the shaped charge 24 at very high velocity in a pattern called a “jet” 26. The jet 26 perforates casing 28 that lines the wellbore 12 and cement 30 and creates a perforation 32 that extends into the surrounding formation 34.
Shown in
Generally the detonators are connected to the detonating cords in the field just prior to use. Thus they are shipped to the field with the electrical portions and high explosive coupled together in a single unit. Because of the risks posed by the high explosives and the threat of a transient electrical signal, shipment and storage of the detonators is highly regulated, this is especially so when being shipped to foreign locations. Additional problems may be encountered in the field when connecting detonators to the detonating cord. Perforating guns when delivered to the field generally have the shaped charges and detonating cord installed; to facilitate detonator connection some extra length of detonating cord is provided within the gun. Connecting the detonator to the detonating cord involves retrieving the free end of the detonating cord and cutting it to a desired length then connecting, usually by crimping, the detonator to the detonating cord. These final steps can be problematic during inclement weather. Additionally, these final steps fully load a perforating gun and thus pose a threat to personnel in the vicinity. Accordingly benefits may be realized by reducing shipping and storage concerns, increasing technician safety, and minimizing the time required to finalize gun assembly in the field.
Disclosed herein is an example of a perforating string insertable into a wellbore. In this example the perforating string is made up of a perforating gun having an upstream end with a receptacle fitting, a signal line with an end electrically connected to the receptacle fitting. Included with the example perforating string is a cartridge sub having a connector inserted into electrical connection with the receptacle fitting, a detonator in the cartridge sub and having a detonating end adjacent to and directed towards the upstream end, and a lead line in the cartridge sub having an end in selective communication with an electrical source and another end in communication with an inlet to the detonator. Optionally, the connector is an annular member that circumscribes a downstream end of the cartridge sub, and wherein the connector coaxially inserts into the receptacle fitting. In an embodiment, the perforating string further includes a switch in the lead line for selectively regulating electricity to the detonator. In this example, a ground lead is optionally included that is connected between the detonator and the switch, wherein the switch selectively communicates the ground lead to ground. In one example, the switch, the lead line, and the detonator are provided within an elongated body that coaxially inserts within an annular housing to define the cartridge sub. In one optional embodiment, further included with the perforating string is a transfer lead line having an end in selective communication with the electrical source and another end in communication with the connector for selectively providing communication between the electrical source and the signal line. A downstream cartridge sub may also optionally be included that has an inlet line in electrical communication with the signal line, an outlet lead line in communication with a bridge plug assembly, so that when an electrical signal is applied to the signal line, the electrical signal is transferred through the downstream cartridge sub to the bridge plug assembly for deploying a bridge plug in the bridge plug assembly.
Also provided herein is an example of a connector assembly for connecting an upstream perforating gun to a downstream perforating gun. In one example the connector assembly includes an annular housing, an elongated cartridge body inserted within the housing, an annular connector provided on a downstream end of the body and inserted into electrical contact with a receptacle in the downstream perforating gun, a detonator in the cartridge body for initiating a detonating cord in the perforating gun, and a lead line in the cartridge body having an end in selective communication with an electrical source and another end electrically connected to the connector. Optionally, a switch may be included in the body that is connected to the lead line and to an inlet line on the detonator. Also further Optionally included is an outline line that connects between the switch and the detonator, and a ground line that connects between the switch and ground, so that when a detonation signal and detonation current is sent to the switch, the inlet line, outlet line, and ground line form a circuit for flowing current through the detonator for initiating detonation of the detonator and the detonating cord.
An example method of perforating is provided herein that in one example includes providing a perforating gun with shaped charges, a detonation cord, a receptacle connection, and a signal line in communication with the receptacle connection. A cartridge sub is also provided that has an upstream end, a downstream end, a connector in the downstream end, and a lead line electrically connected to the connector. In the example method, the connector is connected with the signal line by inserting the downstream end of the cartridge sub into the receptacle connection, the shaped charges are detonated by providing a detonation signal to the detonator. In one example, the step of providing a detonation signal to the detonator includes directing electricity from an electrical source to an inlet line connected to the detonator. Optionally in the method, a switch is provided in the cartridge sub for providing electrical communication between the electrical source and the detonator, and for providing electrical communication between an outlet line on the detonator and ground for completing an electrical circuit through the detonator. In one example of the method, the perforating gun is a downstream perforating gun. In this example, further includes is a step of diverting some of the electricity from the electrical source through the lead line, to the connector and the receptacle for initiating detonation of shaped charges in a perforating gun downstream of the downstream perforating gun.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. For the convenience in referring to the accompanying figures, directional terms are used for reference and illustration only. For example, the directional terms such as “upper”, “lower”, “above”, “below”, and the like are being used to illustrate a relational location.
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
In
Coupled in series with the downstream perforating gun 622 is a cartridge sub 68 having a cartridge assembly 70 set within the housing of the cartridge sub 68. In the embodiment of
When an initiating signal is received by the switch assembly 72, the circuit board 74 operates to provide an initiating current through the signal line 84 and further allow continuity between the ground lead 86 and ground lead 78, thereby closing a circuit through the detonator 88 for initiating the detonator 88. As shown, an end of the detonator 88 is directed towards the detonating cord 66 within the downstream perforating gun 622, so that as the pressure wave of detonation passes along the length of the detonating cord 66, the attached shaped charges 64 will in turn initiate to create perforations in an adjacent formation (not shown). Further illustrated in the embodiment of
In one example embodiment, the connection between the cartridge sub 68 and upstream perforating gun may be a terminal assembly made up of a rod and pin connector, where the pin connector is mounted on a free end of the rod. In this example, a bushing circumscribes a mid-portion of the rod. The pin connector is in electrical communication with connector in the sub 68 by connections that extend through the end wall of the sub 68. Circumscribing the portion of the terminal assembly adjacent the end wall is a spring connector that is in electrical communication with another connector in the sub 68 by connections extending through the end wall. Provided at a downstream end of the cartridge sub 68 opposite the terminal assembly is a downstream connector in which the exit lead 80 is connected at an end opposite its connection to the switch assembly 72. Coaxially projecting from the end of the cartridge sub 68 and adjacent the detonator 88 is a spring connector; the spring connector communicates with the downstream connector by connection through the end wall at the downstream end of the sub 68.
The spring connectors can provide connectivity on the upstream and downstream sides of the cartridge sub 68. More specifically when the cartridge sub 68 is inserted within an example embodiment of a perforating string 60, a connector sub couples to the upstream end of the cartridge sub 68 and receives the terminal assembly, within an axial bore formed through the connector sub. A receptacle is formed within the connector sub at a location set back from the entrance to the bore. The receptacle provides terminals for communication between a signal wire within the connector sub and the pin connector. As such, a signal traveling through the signal wire is transmitted through the terminals to the pin connector for delivery to the switch assembly. Also the insertion of the downstream side of the cartridge sub 68 into an end of the downstream perforating gun 622. A connection assembly may be set within a bore formed in the end of the downstream perforating gun 622. The connection assembly can be made up of a disc-like flange member set into close contact with the spring connector. A cylindrically-shaped base may depend coaxially from a side of the flange opposite the spring connector and set within a reduced diameter portion of the bore. Setting the base and bore diameters at about the same value anchors the connector assembly within the perforating gun 622. A communication line, similar to the line 82 of
One example of a substantially complete perforating system 60 in accordance with the present disclosure is shown in a partial sectional view in
In one example, the string 115 is assembled by providing cartridge subs 68 with a cartridge 70 within. Each of the cartridge subs 68 can then be coupled with a perforating gun 62 so connectors 90 in their respective downstream ends 91 mate into electrical receptacles 92 as illustrated in
Further illustrated in the example embodiment of
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. For example, the signals may include instructions for selective operation of the switch assemblies, may include electricity, or may be in the form of a pressure wave within a detonation cord. Optionally, instructions may be provided in the switch assemblies, either by storing the instructions in hardware, such as the circuit boards, or by signals traveling in the perforating string. Moreover, the connection embodiments described above may be used for connecting to any ballistic device in a downhole string. Examples include release tools, multiple backoff shots, firing heads, redundant firing heads, severing tools, setting tools, combinations thereof, and the like. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of U.S. Provisional Application Ser. No. 61/439,217, filed Feb. 3, 2011, the full disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2821136 | Castel | Jan 1958 | A |
2871784 | Blair | Feb 1959 | A |
3010396 | Coleman | Nov 1961 | A |
3086589 | McGowen, Jr. | Apr 1963 | A |
3208378 | Boop | Sep 1965 | A |
3246707 | Bell | Apr 1966 | A |
3517758 | Schuster | Jun 1970 | A |
3768408 | Hallmark | Oct 1973 | A |
3773120 | Stroud et al. | Nov 1973 | A |
3860865 | Stroud et al. | Jan 1975 | A |
4007796 | Boop | Feb 1977 | A |
4852494 | Williams | Aug 1989 | A |
4886126 | Yates, Jr. | Dec 1989 | A |
5436791 | Turano et al. | Jul 1995 | A |
5756926 | Bonbrake et al. | May 1998 | A |
6082265 | Sakamoto et al. | Jul 2000 | A |
6164375 | Carisella | Dec 2000 | A |
6182750 | Edwards et al. | Feb 2001 | B1 |
6213203 | Edwards et al. | Apr 2001 | B1 |
6283227 | Lerche et al. | Sep 2001 | B1 |
6354374 | Edwards et al. | Mar 2002 | B1 |
6604584 | Lerche et al. | Aug 2003 | B2 |
6752083 | Lerche et al. | Jun 2004 | B1 |
6779202 | Alldredge | Aug 2004 | B1 |
6962202 | Bell et al. | Nov 2005 | B2 |
7301750 | DeVries et al. | Nov 2007 | B2 |
7387162 | Mooney, Jr. et al. | Jun 2008 | B2 |
7487833 | Grigar et al. | Feb 2009 | B2 |
7536942 | Bell | May 2009 | B2 |
7565927 | Gerez et al. | Jul 2009 | B2 |
7565930 | Seekford | Jul 2009 | B2 |
7600562 | Christian | Oct 2009 | B2 |
7902469 | Hurst | Mar 2011 | B2 |
7913603 | LaGrange et al. | Mar 2011 | B2 |
8006779 | Moore et al. | Aug 2011 | B2 |
8061431 | Moore et al. | Nov 2011 | B2 |
8074737 | Hill et al. | Dec 2011 | B2 |
8079296 | Barton et al. | Dec 2011 | B2 |
8136439 | Bell | Mar 2012 | B2 |
8186435 | Seekford | May 2012 | B2 |
8302523 | Bell | Nov 2012 | B2 |
8369063 | Vicente | Feb 2013 | B2 |
8490686 | Rodgers et al. | Jul 2013 | B2 |
8661978 | Backhus et al. | Mar 2014 | B2 |
20020062991 | Farrant et al. | May 2002 | A1 |
20050252403 | DeVries et al. | Nov 2005 | A1 |
20070074624 | Bell | Apr 2007 | A1 |
20070125540 | Gerez et al. | Jun 2007 | A1 |
20080202325 | Bertoja et al. | Aug 2008 | A1 |
20100000789 | Barton et al. | Jan 2010 | A1 |
20100212480 | Bell | Aug 2010 | A1 |
20110024116 | McCann et al. | Feb 2011 | A1 |
20110271823 | Vicente | Nov 2011 | A1 |
20120111217 | Bell | May 2012 | A1 |
20120181012 | Strickland | Jul 2012 | A1 |
20120199031 | Lanclos | Aug 2012 | A1 |
20120199352 | Lanclos et al. | Aug 2012 | A1 |
20130014990 | Barton et al. | Jan 2013 | A1 |
20130125772 | Backhus et al. | May 2013 | A1 |
20130133889 | Schacherer et al. | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20120199352 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61439217 | Feb 2011 | US |