Connection device for computing devices

Abstract
A connection device for computing devices is described. In one or more implementations, a connection device comprises a plurality of connection portions that are physically and communicatively coupled, one to another. Each of the plurality of connection portions has at least one communication contact configured to form a communicative coupling with a respective one of a plurality of computing devices and with at least one other communication contact of another one of the connections portions to support communication between the plurality of computing devices. Each of the plurality of connection portions also includes a magnetic coupling device to form a removable magnetic attachment to the respective one of the plurality of computing devices.
Description
BACKGROUND

Users have access to a wide variety of different computing devices. For example, a user may interact with a mobile phone, tablet computer, or other mobile computing device to check email, surf the web, compose texts, interact with applications, and so on.


However, conventional techniques that were utilized to interact with these devices were often limited to the individual devices, themselves. Consequently, even though a user may have access to a wide range of devices and may have that access at any one time (e.g., a mobile phone and a tablet), interaction with these devices could be disjointed, thereby leading to user frustration.


SUMMARY

A connection device for computing devices is described. In one or more implementations, a connection device comprises a plurality of connection portions that are physically and communicatively coupled, one to another. Each of the plurality of connection portions has at least one communication contact configured to form a communicative coupling with a respective one of a plurality of computing devices and with at least one other communication contact of another one of the connections portions to support communication between the plurality of computing devices. Each of the plurality of connection portions also includes a magnetic coupling device to form a removable magnetic attachment to the respective one of the plurality of computing devices.


In one or more implementations, a system includes a first computing device having a housing that assumes a slate configuration and a second computing device having a housing that assumes a slate configuration. The second computing device has a removable physical and communicative coupling with the second computing device, the removable physical communicative coupling provided at least in part through use of magnetism.


In one or more implementations, an apparatus comprises a plurality of connection portions that are configured to magnetically and physically communicatively couple a plurality of mobile computing devices having a slate form factor to each other.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.



FIG. 1 is an illustration of an environment in an example implementation that is operable to employ the connection techniques described herein.



FIG. 2 depicts a system showing a connection device in greater detail that is usable to communicatively couple computing devices to each other.



FIG. 3 depicts an example implementation of a connection portion of a connection device of FIG. 2.



FIG. 4 depicts a cross section taken of the connection portion and a corresponding cavity of a computing device.



FIG. 5 depicts example implementations of the conductors that may be employed by the connection device to communicatively couple the connection portions to each other.



FIG. 6 depicts another example of a cross section taken of the connection portion and a corresponding cavity of the computing device, the connection portion configured to support cam-like movement.



FIG. 7 depicts another example of a cross section taken of the connection portion and a corresponding cavity of the computing device in which communication contacts are configured as capacitive-coupling pads.



FIG. 8 depicts another example in which the connection portion is configured to support an optical connection.



FIG. 9 shows an example in which a cover of FIG. 8 is opened to expose an optical sensor.



FIG. 10 depicts yet another example in which the computing devices include magnetic coupling portions configured as rotating magnetic hinges.



FIGS. 11-12 illustrate examples of rotation of the magnetic coupling portions in relation to each other may support a variety of different computing device orientations.



FIG. 13 depicts an example arrangement that supports a connection between the computing device and an accessory.



FIGS. 14 and 15 depict yet other examples in which the computing devices include magnetic coupling portions configured as rotating magnetic hinges.



FIG. 16 depicts an example of a magnetic coupling portion that may be employed by the computing devices or connection device to implement a flux fountain.



FIG. 17 depicts an example of a magnetic coupling portion that may be employed by the connection device or computing device to implement a flux fountain.



FIG. 18 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-17 to implement embodiments of the techniques described herein.





DETAILED DESCRIPTION
Overview

Even though users may have access to a wide range of computing devices, conventional techniques to interact with these devices were provided by the computing devices separately. Accordingly, techniques are described herein to support physical and communicative connections between computing devices. For example, mobile computing devices such as tablets and phones may employ a slate form factor. A connection device may be used to provide a physical (e.g., magnetic) and communicative coupling between the devices, thereby permitting the devices to be used in combination, such as to expand an available display area, share processing and memory resources, and so on.


The connection device may be configured in a variety of ways. In one such example, the connection device includes a plurality of connection portions. Each of the connection portions is configured to connect to a respective computing device. This may be performed through a communication contact that is configured to support transmission bandwidths (e.g., hundreds of MHz) between the devices that are sufficient to communicate data for display without distortion, which may include the use of leaf springs, capacitive connections, optical connections, and so on.


A physical coupling may also be provided, at least in part, using magnets. The magnets, for instance, may be used to support a zero to negative insertion force to connect the computing device to the connection portion, e.g., such that the devices “click” together. Thus, a plurality of computing devices may be communicatively and physically coupled to the connection device, which may be used to support a variety of different usage scenarios, further discussion of which may be found in relation to the following sections.


In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures. Further, although connection of computing devices is described, other devices are also contemplated, such as covers. For example, these techniques are equally applicable to input devices and passive devices, e.g., a cover having one or more materials (e.g., magnets, ferrous material, and so on) that are configured and positioned within the cover to be attracted to magnetic coupling devices of the computing device, use of protrusions and connecting portion, and so on as further described below.


Example Environment


FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ the connection device techniques described herein. The illustrated environment 100 includes examples of computing devices 102, 104 that are physically and communicatively coupled via a connection device 106. The computing devices 102, 104 may be configured in a variety of ways. For example, computing devices 102, 104 may be configured for mobile use and therefore be referred to as mobile computing devices, such as a mobile phone, a tablet computer as illustrated, a portable game device, a portable music device, and so on. Other non-mobile examples are also contemplated, such as laptop computers, desktop computers, servers, and so on. Thus, the computing devices 102, 104 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing devices 102, 104 may also relate to software that causes the computing devices 102, 104 to perform one or more operations.


The computing devices 102, 104, for instance, are each illustrated as including a respective input/output module 108, 110. The input/output modules 108, 110 are representative of functionality relating to processing of inputs and rendering outputs of the respective computing device 102, 104. A variety of different inputs may be processed by the input/output modules 108, 110 such as inputs relating to functions that correspond to keys of an accessory device, keys of a virtual keyboard displayed by the display devices 112, 114 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through touchscreen functionality, and so forth. Thus, the input/output modules 108, 110 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.


The computing devices 102, 104 are illustrated as being physically and communicatively coupled through use of a connection device 106. The connection device 106 may thus be used to support a variety of different usage scenarios for the computing devices 102, 104. This may include use of the computing devices 102, 104 in a manner that mimics a multi-monitor setup, a parent/child control arrangement, and so on. This may also include sharing resources of the devices, such as processing, memory, network connection, and other resources. In the illustrated example, computing device 104 displays a start screen on the display device 114 that is usable to select applications for execution and display by the display device 112 of computing device 102 as well as on a display device 114 of the computing device 104, itself. The connection device 106 may be configured in a variety of ways to support this connection, an example of which is described as follows and shown in a corresponding figure.



FIG. 2 depicts a system 200 showing a connection device 202 in greater detail that is usable to communicatively couple the computing devices 102, 104 to each other. In this example, the connection device 106 includes a plurality of connection portions 202, 204. Each of the connection portions 202, 204 is configured to be received in a respective cavity of a respective computing device 102, 104. In the illustrated instance, the connection portions 202, 204 may be attached to the respective computing devices 102, 104 in either direction as the shapes of the portions is symmetrical.


The computing devices 102, 104 may be configured to use the cavities to support connections to peripheral devices, such as keyboard, input devices, electronic paper display devices, and so on. Accordingly, in this example the connection device 106 may be configured to leverage this connection to support a connection between computing devices as further described below.


The plurality of connection portions 202, 204 are communicatively coupled in this example using a flexible hinge 206. The flexible hinge 206 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one or more directions (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the computing device 104 in relation to the computing device 102. This may be used to support consistent alignment of the computing devices 102, 104.


The flexible hinge 206, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate inputs between the computing devices 102, 104, transfer power, perform authentication, and so on. The flexible hinge 206 may be configured in a variety of ways, further discussion of which may be found in relation to the following figure.



FIG. 3 depicts an example implementation 300 of the connection portion 202 of the connection device 106 of FIG. 2. In this example, the connection portion 202 is illustrated as having a protrusion 302 that is configured to be received in a cavity of a corresponding computing device 102 as described above. The protrusion 302 includes magnetic coupling devices 304, 306, mechanical coupling protrusions (e.g., “fangs”) 308, 310, and a plurality of communication contacts 312. The magnetic coupling devices 304, 306 are configured to magnetically couple to complementary magnetic coupling devices of the computing device 102 through use of one or more magnets. In this way, the connection portion 202 may be physically secured to the computing device 102 through use of magnetic attraction.


The connection portion 202 also includes mechanical coupling protrusions 308, 310 to form a mechanical physical connection between the connection portion 202 and the computing device 102. The mechanical coupling protrusions 308, 310 are configured to extend away from a surface of the connection portion 202, which in this case is perpendicular although other angles are also contemplated.


The mechanical coupling protrusions 308, 310 are configured to be received within complimentary cavities within a channel of the computing device 102. When so received, the mechanical coupling protrusions 308, 310 promote a mechanical binding between the devices when forces are applied that are not aligned with an axis that is defined as correspond to the height of the protrusions and the depth of the cavity. In this way, the connection portion 202 may be separated from the computing device in a motion similar to tearing a page from a book but mechanically binds when confronted with other motions, thereby promoting a secure connection between the devices.


The connection portion 202 is also illustrated as including a plurality of communication contacts 312. The plurality of communication contacts 312 is configured to contact corresponding communication contacts of the computing device 102 to form a communicative coupling between the devices as shown and discussed in greater detail in relation to the following figure.



FIG. 4 depicts a cross section 400 taken of the connection portion 202 and a corresponding cavity 402 of the computing device. In this example, the flexible hinge 206 is also shown in greater detail. The flexible hinge 206 in this cross section includes a conductor 404 that is configured to communicatively couple the connection portions 202, 204 to each other. The conductor 404 may be formed in a variety of ways, such as a copper trace that has an operational flexibility to permit operation as part of the flexible hinge, e.g., to support repeated flexing of the flexible hinge 206. Flexibility of the conductor 404, however, may be limited, e.g., may remain operational to conduct signals for flexing that is performed above a minimum bend radius.


Accordingly, the flexible hinge 206 may be configured to support a minimum bend radius based on the operational flexibility of the conductor 404 such that the flexible hinge 206 resists flexing below that radius. A variety of different techniques may be employed. The flexible hinge 206, for instance, may be configured to include first and second outer layers 406, 408, which may be formed from a fabric, microfiber cloth, and so on. Flexibility of material used to form the first and/or second outer layers 406, 408 may be configured to support flexibility as described above such that the conductor 404 is not broken or otherwise rendered inoperable during movement of the connection portions 202, 204 in relation to each other.


In another instance, the flexible hinge 206 may include a mid-spine 410 located between the connection portions 202, 204. The mid-spine 410, for example, includes a first flexible portion 414412 that flexibly connects the connection portion 202 to the mid-spine 410 and a second flexible portion 414 that flexibly connects the mid-spine 410 to the other connection portion 420204.


In the illustrated example, the first and second outer layers 406, 408 extend over the first and second flexible portions 412, 414 of the flexible hinge 206 and are secured to the connection portions 202, 204, e.g., via clamping, adhesive, and so on. The conductor 404 is disposed between the first and second outer layers 406, 408 with the mid-spine 410 configured to provide mechanical stiffness to a particular location of the flexible hinge 206 to support a desired minimum bend radius.


The communication contact 312 is also shown in cross section in this example. The communication contact 312 in this example is configured as a spring pin that support sliding movement as part of engagement with communication contacts 416 in the cavity of the computing device 102. This sliding motion may support surface cleaning of the communication contact 312, thereby promoting a robust connection.


The communication contact 312 may be formed in a variety of different ways. This may include use of electrical transmission line principles to avoid distortion of the digital waveforms to provide generally uniform impedance through use of differential pairs of communication contacts 312. A characteristic impedance may be set through controlled trace widths, trace-to-trace gaps, choice of dielectric material, and separations from a ground plane. Further, the communication contact 312 and/or conductor 404 may be disposed proximal to a dielectric that is adjacent to a ground plane to control impedance. Contact resistance of the communication contact 312 may also be configured. This in conventionally performed using a high insertion force to maintain a well-toleranced contact resistance.


However, in one or more implementations the connection portion 202 may be configured to employ a zero to negative insertion force. This may be performed by leveraging a clamping force provided by the magnetic coupling devices 304, 306 providing a zero to negative insertion force of the connection portion 202 to the computing device 102. In this way, the connection portion 202 and the computing device 102 may “click” together with alignment provided automatically through the magnetic coupling devices 304, 306. As shown in FIG. 4, for instance, a sliding and clamping motion may be supported in the same movement to connect the devices, thereby promoting consistent impedance and cleanliness of the communication contacts 312, 416.


Once connected, the computing devices may determine an orientation relative to each other, which may be used to configure a user interface that continues across the devices. For example, the orientation of the device may be deduced individually and separately, such as through use of one or more orientation sensors by the device and knowledge of location of where the communication contacts are disposed on the device. In this way, an orientation of the device may be determined as well as a like orientation of a connected device.


In another example, the two devicedevices may communicate with each other, such as to acknowledge a computed orientation, e.g., whether in portrait or landscape mode as well as to the “right” or “left”, “top” or “bottom,” and so on. Thus, this example may have increased robustness. Other examples are also contemplated.



FIG. 5 depicts example implementations 500 of the conductors 404 that may be employed by the connection device 106 to communicatively couple the connection portions 202, 204 to each other. In a first example 502, a microstrip transmission line is shown in which conductors 404 have widths, heights, and spacing to provide desired transmission properties.


In one or more implementations, placement of the magnetic coupling portions near the communication contacts 312 and conductors 404 may cause capacitance near these structures to be modified, which may cause impedance disturbance and distortion of signals transmitted by the conductors. Therefore, in the second example 504, a stripline transmission line is shown in which the conductor 404 is disposed between two ground planes. In this way, signals transmitted by the conductor 404 may be protected from modified capacitance that may be caused by the magnetic coupling devices 304, 306. A variety of other examples are also contemplated.



FIG. 6 depicts another example 600 of a cross section taken of the connection portion 202 and a corresponding cavity 402 of the computing device 102, the connection portion 202 configured to support cam-like movement. As before, the connection portion 202 is configured as a protrusion that is to be received within a cavity 402 of a computing device 102 such that communication contacts 312, 416 form a communicative coupling.


In this example, the connection portion includes a magnet 602 that is configured to be attracted to a magnet 604 disposed as part of the cavity 402 of the computing device 102. Due to the curved surfaces of the connection portion 202 and the cavity 402, a cam action is caused by the attraction of the magnets 602, 604 such that the connection portion 202 rotates 606 in relation to the cavity 402. This rotation 606 causes the communication contact 312 to slide against the communication contact 416 of the computing device 102, thereby cleaning the surfaces of the contacts and promoting a consistent communicative coupling as previously described. In these examples, the communication contact 312 is configured as a leaf spring, other examples are also contemplated which are described as follows and shown in a corresponding figure.



FIG. 7 depicts another example 700 of a cross section taken of the connection portion 202 and a corresponding cavity 402 of the computing device in which communication contacts 312, 416 are configured as capacitive-coupling pads. As before, the connection portion 202 is configured as a protrusion that is to be received within a cavity 402 of a computing device 102 such that communication contacts 312, 416 form a communicative coupling.


In this example, however, each of the communication contacts 312, 416 includes a dielectric 702, 704 disposed proximal to (e.g., covering) conductors of the communication contacts 312, 416. In this way, the communication contacts 312, 416 form AC-coupling capacitors, thereby avoiding issues such as a firm and clean physical contact between the communication contacts 312, 416.



FIG. 8 depicts another example 800 in which the connection portion 202 is configured to support an optical connection. In this example, the connection portion 202 includes a cover 802 and two cover rotation mechanisms 804, 806 that are coupled to the cover 802 using axles that are illustrated in phantom in the figure.


The two cover rotation mechanisms 804, 806 are configured to bias the cover 802 in the closed position as shown in FIG. 8, such as through use of one or more return springs. The cover rotation mechanisms 804, 806 include diametrically magnetized magnets that are configured to rotate the axles, which may be configured such that the magnets have magnetic field lines that are aligned at a right angle to a surface of the connection portion 202.


Therefore, the cover rotation mechanisms 804, 806 may be configured to rotate the cover 802 in the presence of a magnetic field having a corresponding alignment, e.g., from magnets of the computing device 102. A cylindrical magnet of the cover rotation mechanisms 804, 806, for instance, may rotate against a return force of a biasing mechanism (e.g., a spring) to align with the field lines of the adjacent magnet of the computing device 102, thereby opening the cover 802 as shown in the example implementation 900 of FIG. 9. Once the two devices are brought out of proximity, the biasing mechanism may cause the cover 802 to return to a closed position as shown in FIG. 8.


Once the cover 802 is opened as shown in FIG. 9, optical sensors 902 may be exposed on the connection portion 202 for communication with corresponding optical sensors of the computing device 102. In this way, the optical sensors 902 may be protected from contaminants and support a high bandwidth connection between the computing devices 102, 104.



FIG. 10 depicts yet another example 1000 in which the computing devices 102, 104 include magnetic coupling portions configured as rotating magnetic hinges. This example is shown through first and second stages 1002, 1004. At the first stage 1002, the magnetic coupling portions 1006, 1008 are integrated as part of the respective computing devices 102, 104. The magnetic coupling portions 1006, 1008 are configured to support hinge-able attachment of the devices to each other. Connections for data and power between the two computing devices 102, 104 may be connected to the same axle as the magnets so that the connections of the respective computing devices 102, 104 face each other when brought together.


The magnetic coupling portions 1006, 1008, for instance, may employ spring-loaded rotating magnets. The magnet polarity is S-symmetric around the center of the edge being joined so that an identical pair of computing devices 102, 104 may be connected by rotating one of the magnetic coupling portions 1006, 1008 at 180 degrees compared to the other, as shown in the second stage 1004. Thus, when the computing devices 102, 104 are brought together, the magnets rotate around their axis and pull the “hinge” together. Matching/interlocking dimples or ridges may also be employed for fine-grain alignment of the computing devices 102, 104 to each other. Thus, the magnets may rotate around an axis but are lightly spring-loaded to return to a neutral state as shown in the first stage. For sake of clarity in the figure, near-end magnet orientation is shown.


Rotation of the magnetic coupling portions 1006, 1008 in relation to each other may support a variety of different computing device 102, 104 orientations, examples 1100, 1200 are shown in FIGS. 11-12. In the example 1300 shown in FIG. 13, this arrangement may also be leveraged to support a connection between the computing device 102 and an accessory device 1302, such as a keyboard or other input device. The accessory device 1302 may also include a complementary arrangement of magnets 1304 to support a similar physical and communicative coupling. Although the magnets shown in the previous examples are cylindrical, the face configured to support the physical connection may also be configured as substantially flat, which may increase the strength of the magnetic connection.



FIGS. 14 and 15 depict yet other examples 1400, 1500 in which the computing devices 102, 104 include magnetic coupling portions configured as rotating magnetic hinges. Communication contacts are generally kept relatively small for cost, real-estate, and impedance reasons and may be spring-loaded to maintain a consistent connection. Connecting surfaces of the communication contacts may be coated with a non-reactive, highly conductive metal such as gold, which may help maintain this functionality. However, this may leave a thin coating of metal over a small area that may be exposed to abrasion or snagging when the connector is not engaged. Further, in the case of connecting two identical computing devices directly, traditional socket/plug which could afford opportunities to recess the contacting surfaces may not “line up” for use in connection the devices directly.


Accordingly, the computing device 102 and connection portion 202 and/or another computing device 104 may employ retracting communication contacts 312, 416. The connection portion 202 and the computing device 102, for instance, may include magnetic coupling devices 1402, 1404 that are configured to be attracted to each other. The magnetic coupling devices 1402, 1404 and respective communication contacts 312, 416 may be disposed on a surface that is biased to a retracted state through one or more springs 1406, 1408 as shown in FIG. 14.


As the computing device 102 and connection portion 202 are brought together, however, attraction of the magnetic coupling devices 1402, 1404 to each other may cause the springs 1406, 1408 to compress and cause the communication contacts 312 to emerge and eventually touch as shown in the example 1500 of FIG. 15. In this way, the communication contacts 312, 416 may be protected from abrasion and contaminants yet still support a consistent connection between the devices. Once influence of the magnets is removed, the communication contacts 312, 416 may return to a retracted state as shown in FIG. 14. A variety of different configurations of magnets may be used as part of the magnetic coupling devices described in this example as well as the previous examples of FIGS. 1-13, further examples of which are described as follows and shown in a corresponding figure.



FIG. 16 depicts an example 1600 of a magnetic coupling portion that may be employed by the connection device 106 or computing device 102 to implement a flux fountain. In this example, alignment of a magnet field is indicted for each of a plurality of magnets using arrows.


A first magnet 1602 is disposed in the magnetic coupling device having a magnetic field aligned along an axis. Second and third magnets 1604, 1606 are disposed on opposing sides of the first magnet 1602. The alignment of the respective magnetic fields of the second and third magnets 1604, 1606 is substantially perpendicular to the axis of the first magnet 1602 and generally opposed each other.


In this case, the magnetic fields of the second and third magnets are aimed towards the first magnet 1602. This causes the magnetic field of the first magnet 1602 to extend further along the indicated axis, thereby increasing a range of the magnetic field of the first magnet 1602.


The effect may be further extended using fourth and fifth magnets 1608, 1610. In this example, the fourth and fifth magnets 1608, 1610 have magnetic fields that are aligned as substantially opposite to the magnetic field of the first magnet 1602. Further, the second magnet 1604 is disposed between the fourth magnet 1608 and the first magnet 1602. The third magnet 1606 is disposed between the first magnet 1602 and the fifth magnet 1610. Thus, the magnetic fields of the fourth and fifth magnets 1608, 1610 may also be caused to extend further along their respective axes which may further increase the strength of these magnets as well as other magnets in the collection. This arrangement of five magnets is suitable to form a flux fountain. Although five magnets were described, any odd number of magnets of five and greater may repeat this relationship to form flux fountains of even greater strength.


To magnetically attach to another magnetic coupling device, a similar arrangement of magnets may be disposed “on top” or “below” of the illustrated arrangement, e.g., so the magnetic fields of the first, fourth and fifth magnets 1602, 1608, 1610 are aligned with corresponding magnets above or below those magnets. Further, in the illustrated example, the strength of the first, fourth, and fifth magnets 1602, 1608, 1610 is stronger than the second and third magnets 1604, 1606, although other implementations are also contemplated. Another example of a flux fountain is described in relation to the following discussion of the figure.



FIG. 17 depicts an example 1700 of a magnetic coupling portion that may be employed by the connection device 106 or computing device 102 to implement a flux fountain. In this example, alignment of a magnet field is also indicted for each of a plurality of magnets using arrows.


Like the example 1600 of FIG. 16, a first magnet 1702 is disposed in the magnetic coupling device having a magnetic field aligned along an axis. Second and third magnets 1704, 1706 are disposed on opposing sides of the first magnet 1702. The alignment of the magnetic fields of the second and third magnets 1704, 1706 are substantially perpendicular the axis of the first magnet 1702 and generally opposed each other like the example 1600 of FIG. 16.


In this case, the magnetic fields of the second and third magnets are aimed towards the first magnet 1702. This causes the magnetic field of the first magnet 1702 to extend further along the indicated axis, thereby increasing a range of the magnetic field of the first magnet 1702.


This effect may be further extended using fourth and fifth magnets 1708, 1710. In this example, the fourth magnet 1708 has a magnetic field that is aligned as substantially opposite to the magnetic field of the first magnet 1702. The fifth magnet 1710 has a magnetic field that is aligned as substantially corresponding to the magnet field of the second magnet 1704 and is substantially opposite to the magnetic field of the third magnet 1706. The fourth magnet 1708 is disposed between the third and fifth magnets 1706, 1710 in the magnetic coupling device.


This arrangement of five magnets is suitable to form a flux fountain. Although five magnets are described, any odd number of magnets of five and greater may repeat this relationship to form flux fountains of even greater strength. Thus, the magnetic fields of the first 1702 and fourth magnet 1708 may also be caused to extend further along its axis which may further increase the strength of this magnet.


To magnetically attach to another magnetic coupling device, a similar arrangement of magnets may be disposed “on top” or “below” of the illustrated arrangement, e.g., so the magnetic fields of the first and fourth magnets 1702, 1708 are aligned with corresponding magnets above or below those magnets. Further, in the illustrated example, the strength of the first and fourth magnets 1702, 1708 (individually) is stronger than a strength of the second, third and fifth magnets 1704, 1706, 1710, although other implementations are also contemplated.


Further, the example 1600 of FIG. 16, using similar sizes of magnets, may have increased magnetic coupling as opposed to the example 1700 of FIG. 17. For instance, the example 1600 of FIG. 16 uses three magnets (e.g. the first, fourth, and fifth magnets 1602, 1608, 1610) to primarily provide the magnetic coupling, with two magnets used to “steer” the magnetic fields of those magnets, e.g., the second and third magnets 1604, 1606. However, the example 1700 of FIG. 17 uses two magnets (e.g., the first and fourth magnets 1702, 1708) to primarily provide the magnetic coupling, with three magnets used to “steer” the magnetic fields of those magnets, e.g., the second, third, and fifth magnets 1704, 1706, 1708.


Accordingly, though, the example 1700 of FIG. 17, using similar sizes of magnets, may have increased magnetic alignment capabilities as opposed to the example 1600 of FIG. 16. For instance, the example 1700 of FIG. 17 uses three magnets (e.g. the second, third, and fifth magnets 1704, 1706, 1710) to “steer” the magnetic fields of the first and fourth magnets 1702, 1708, which are used to provide primary magnetic coupling. Therefore, the alignment of the fields of the magnets in the example 1700 of FIG. 17 may be closer than the alignment of the example 1600 of FIG. 16.


Regardless of the technique employed, it should be readily apparent that the “steering” or “aiming” of the magnetic fields described may be used to increase an effective range of the magnets, e.g., in comparison with the use of the magnets having similar strengths by themselves in a conventional aligned state. In one or more implementations, this causes an increase from a few millimeters using an amount of magnetic material to a few centimeters using the same amount of magnetic material.


Example System and Device


FIG. 18 illustrates an example system generally at 1800 that includes an example computing device 1802 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. The computing device 1802 may be, for example, be configured to assume a mobile configuration through use of a housing formed and size to be grasped and carried by one or more hands of a user, illustrated examples of which include a mobile phone, mobile game and music device, and tablet computer although other examples are also contemplated.


The example computing device 1802 as illustrated includes a processing system 1804, one or more computer-readable media 1806, and one or more I/O interface 1808 that are communicatively coupled, one to another. Although not shown, the computing device 1802 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.


The processing system 1804 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1804 is illustrated as including hardware element 1810 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1810 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.


The computer-readable storage media 1806 is illustrated as including memory/storage 1812. The memory/storage 1812 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1812 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1812 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1806 may be configured in a variety of other ways as further described below.


Input/output interface(s) 1808 are representative of functionality to allow a user to enter commands and information to computing device 1802, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1802 may be configured in a variety of ways to support user interaction.


The computing device 1802 is further illustrated as being communicatively and physically coupled to an input device 1814 that is physically and communicatively removable from the computing device 1802. In this way, a variety of different input devices may be coupled to the computing device 1802 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 1814 includes one or more keys 1816, which may be configured as pressure sensitive keys, mechanically switched keys, and so forth.


The input device 1814 is further illustrated as include one or more modules 1818 that may be configured to support a variety of functionality. The one or more modules 1818, for instance, may be configured to process analog and/or digital signals received from the keys 1816 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 1814 for operation with the computing device 1802, and so on.


Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1802. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”


“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.


“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1802, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.


As previously described, hardware elements 1810 and computer-readable media 1806 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.


Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1810. The computing device 1802 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1802 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1810 of the processing system 1804. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1802 and/or processing systems 1804) to implement techniques, modules, and examples described herein.


CONCLUSION

Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

Claims
  • 1. A connection device comprising: a plurality of connection portions that are physically and communicatively coupled, one to another, the plurality of connection portions connected using a flexible hinge, each of the plurality of connection portions having: at least one communication contact configured to form a communicative coupling with a respective one of a plurality of computing devices and with at least one other communication contact of another one of the connections portions to support communication between the plurality of computing devices, the flexible hinge having one or more conductors configured to communicatively couple the at least one communication contact with the at least one other communication contact; anda magnetic coupling device to form a removable magnetic attachment to the respective one of the plurality of computing devices;a flexible hinge connecting the plurality of connection portions, the flexible hinge including: a first connection portion of the plurality of connection portions;a second connection portion of the plurality of connection portions;a first outer layer extending between and secured to the first connection portion and the second connection portion;a second outer layer extending between and secured to the first connection portion and the second connection portion;a mid-spine between the first connection portion and the second connection portion, the mid-spine being located between the first outer layer and the second outer layer, the mid-spine being made from a stiffer material than the first outer layer and the second outer layer;a first flexible portion between the first connection portion and the mid-spine;a second flexible portion between the mid-spine and the second connection portion; andone or more conductors disposed between the first outer layer and the second outer layer, the one or more conductors being configured to communicatively couple the at least one communication contact with the at least one other communication contact.
  • 2. A connection device described in claim 1, wherein the flexible hinge is configured not to exceed a minimum bend radius that is defined at least in part based on flexibility of the one or more conductors.
  • 3. A connection device as described in claim 1, wherein at least one of the plurality of connection portions is configured as a projection that is configured to be received within a channel of a housing of the respective one of the plurality of computing devices, the projection including the at least one communication contact and the magnetic coupling device.
  • 4. A connection device as described in claim 1, wherein the plurality of computing devices include housings that support a slate configuration.
  • 5. A connection device as described in claim 1, wherein the at least one communication contact is configured to support sliding motion as part of a physical coupling of the communication contact to the respective one of the plurality of computing devices, the sliding motion configured to at least partially clean a surface of the at least one communication contact.
  • 6. A connection device as described in claim 5, wherein the sliding motion is configured to be assisted at least in part using magnetic attraction of the magnetic coupling device to the respective one of the plurality of computing devices.
  • 7. A connection device as described in claim 1, wherein the at least one communication contact is configured to include a spring.
  • 8. A connection device as described in claim 1, wherein at least one of the plurality of connection portions is formed such that the magnetic coupling device causes the respective connection portion to employ a cam action to support rotational movement as part of engagement of the at least one communication contact with the respective one of the plurality of computing devices.
  • 9. A connection device as described in claim 1, wherein the at least one communication contact includes a dielectric coating in an amount sufficient to form a capacitive connection with a corresponding contact of the respective one of the plurality of computing devices.
  • 10. A connection device as described in claim 1, wherein the at least one communication contact is configured to support an optical connection.
  • 11. A connection device as described in claim 1, wherein at least one of the plurality of connection portions includes a rotating cover on an axle that is biased in a closed position and is configured to assume an open position in which the at least one communication contact is exposed responsive to a magnetic field.
  • 12. A connection device as described in claim 1, wherein the at least one communication contact and the at least one other communication contact are connected using one or more conductors configured as strip lines.
  • 13. A connection device as described in claim 1, wherein the magnetic coupling device has one or more rotatable magnets that have a symmetric magnetic polarity.
  • 14. A connection device as described in claim 1, wherein the at least one communication contact is configured to be moveable with respect to the respective connection portion between a retracted position and an exposed position responsive to magnetic interaction.
  • 15. A connection device as described in claim 1, wherein the magnetic coupling device is configured as a flux fountain.
  • 16. A system comprising: a first computing device having a housing that assumes a slate configuration; anda second computing device having a housing that assumes a slate configuration, the second computing device having: a removable physical and communicative coupling with the first computing device, the removable physical communicative coupling provided at least in part through use of: a flexible hinge physically and communicatively coupling a plurality of connection portions, one to another, each of the plurality of connection portions having at least one communication contact configured to form a communicative coupling with the first computing device and at least one other communication contact configured to form a communicative coupling with the second computing device, the flexible hinge having: a first connection portion of the plurality of connection portions;a second connection portion of the plurality of connection portions;a first outer layer extending between and secured to the first connection portion and the second connection portion;a second outer layer extending between and secured to the first connection portion and the second connection portion;a mid-spine between the first connection portion and the second connection portion, the mid-spine being located between the first outer layer and the second outer layer, the mid-spine being made from a stiffer material than the first outer layer and the second outer layer;a first flexible portion between the first connection portion and the mid-spine;a second flexible portion between the mid-spine and the second connection portion; and one or more conductors between the first outer layer and the second outer layer, the one or more conductors being configured to communicatively couple the at least one communication contact with the at least one other communication contact.
  • 17. A system as described in claim 16, wherein the flexible hinge has one or more rotatable magnets that have a symmetric magnetic polarity.
  • 18. A system as described in claim 16, wherein the flexible hinge is configured not to exceed a minimum bend radius that is defined at least in part based on flexibility of the one or more conductors.
  • 19. An apparatus comprising: a plurality of connection portions that are configured to magnetically and physically communicatively couple a plurality of mobile computing devices having a slate form factor to each other, the plurality of connection portions connected using: a flexible hinge having: a first connection portion of the plurality of connection portions;a second connection portion of the plurality of connection portions;a first outer layer extending between and secured to the first connection portion and the second connection portion;a second outer layer extending between and secured to the first connection portion and the second connection portion;a mid-spine between the first connection portion and the second connection portion, the mid-spine being located between the first outer layer and the second outer layer, the mid-spine being made from a stiffer material than the first outer layer and the second outer layer;a first flexible portion between the first connection portion and the mid-spine;a second flexible portion between the mid-spine and the second connection portion; and one or more conductors located between the first outer layer and the second outer layer and configured to communicatively couple at least one communication contact configured to form a communicative coupling with a respective one of the plurality of mobile computing devices with at least one other communication contact of another one of the connections portions.
  • 20. An apparatus as described in claim 19, wherein the magnetic coupling is provided by a magnetic coupling device configured to form a removable magnetic attachment to the respective one of the plurality of mobile computing devices, the removable magnetic attachment configured to provide a zero or negative insertion force of the connection portion to the respective one of the plurality of computing devices.
Parent Case Info

This application is a continuation-in-part and claims priority to U.S. patent application Ser. No. 13/470,633, filed May 14, 2012, entitled “Flexible Hinge and Removable Attachment,” which further claims priority under 35 U.S.C. §119(e) to the following U.S. Provisional Patent Applications, the entire disclosures of each of these applications being incorporated by reference in their entirety: U.S. Provisional Patent Application No. 61/606,321, filed Mar. 2, 2012, and titled “Screen Edge;” U.S. Provisional Patent Application No. 61/606,301, filed Mar. 2, 2012, and titled “Input Device Functionality;” U.S. Provisional Patent Application No. 61/606,313, filed Mar. 2, 2012, and titled “Functional Hinge;” U.S. Provisional Patent Application No. 61/606,333, filed Mar. 2, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/613,745, filed Mar. 21, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/606,336, filed Mar. 2, 2012, and titled “Kickstand and Camera;” and U.S. Provisional Patent Application No. 61/607,451, filed Mar. 6, 2012, and titled “Spanaway Provisional.”

US Referenced Citations (969)
Number Name Date Kind
578325 Fleming Mar 1897 A
3600528 Leposavic Aug 1971 A
3777082 Hatley Dec 1973 A
3879586 DuRocher et al. Apr 1975 A
3968336 Johnson Jul 1976 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4086451 Boulanger Apr 1978 A
4243861 Strandwitz Jan 1981 A
4279021 See et al. Jul 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4323740 Balash Apr 1982 A
4326193 Markley et al. Apr 1982 A
4365130 Christensen Dec 1982 A
4375018 Petersen Feb 1983 A
4420744 Jesson Dec 1983 A
4492829 Rodrique Jan 1985 A
4503294 Matsumaru Mar 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4602135 Phalen Jul 1986 A
4607147 Ono et al. Aug 1986 A
4651133 Ganesan et al. Mar 1987 A
4652704 Franklin Mar 1987 A
4684767 Phalen Aug 1987 A
4724605 Fiorella Feb 1988 A
4735394 Facco Apr 1988 A
4795977 Frost Jan 1989 A
4801771 Mizuguchi et al. Jan 1989 A
4824268 Diernisse H. V. Apr 1989 A
4864084 Cardinale Sep 1989 A
5008497 Asher Apr 1991 A
5021638 Nopper et al. Jun 1991 A
5107401 Youn Apr 1992 A
5128829 Loew Jul 1992 A
5138119 Demeo Aug 1992 A
5204517 Cates et al. Apr 1993 A
5218177 Coleman et al. Jun 1993 A
5220318 Staley Jun 1993 A
5220521 Kikinis Jun 1993 A
5235495 Blair et al. Aug 1993 A
5253362 Nolan et al. Oct 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5340528 Machida et al. Aug 1994 A
5363075 Fanucchi Nov 1994 A
5375076 Goodrich et al. Dec 1994 A
5404133 Moriike et al. Apr 1995 A
5480118 Cross Jan 1996 A
5491313 Bartley et al. Feb 1996 A
5510783 Findlater et al. Apr 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5574447 Roylance Nov 1996 A
5576981 Parker et al. Nov 1996 A
5581682 Anderson et al. Dec 1996 A
5596700 Darnell et al. Jan 1997 A
5618232 Martin Apr 1997 A
5661279 Kenmochi Aug 1997 A
5666112 Crowley et al. Sep 1997 A
5681220 Bertram et al. Oct 1997 A
5737183 Kobayashi et al. Apr 1998 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5803748 Maddrell et al. Sep 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5861990 Tedesco Jan 1999 A
5874697 Selker et al. Feb 1999 A
5905485 Podoloff May 1999 A
5920317 McDonald Jul 1999 A
5924555 Sadamori et al. Jul 1999 A
5926170 Oba Jul 1999 A
5957191 Okada et al. Sep 1999 A
5971635 Wise Oct 1999 A
6002389 Kasser Dec 1999 A
6002581 Lindsey Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6042075 Burch, Jr. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6061644 Leis May 2000 A
6108200 Fullerton Aug 2000 A
6112797 Colson et al. Sep 2000 A
6128007 Seybold Oct 2000 A
6137675 Perkins Oct 2000 A
6141388 Servais et al. Oct 2000 A
6147859 Abboud Nov 2000 A
6178085 Leung Jan 2001 B1
6178443 Lin Jan 2001 B1
6188391 Seely et al. Feb 2001 B1
6198474 Roylance Mar 2001 B1
6228926 Golumbic May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6266685 Danielson et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6305073 Badders Oct 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6366440 Kung Apr 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6437682 Vance Aug 2002 B1
6442764 Badillo et al. Sep 2002 B1
6450046 Maeda Sep 2002 B1
6469755 Adachi et al. Oct 2002 B1
6506983 Babb et al. Jan 2003 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6585435 Fang Jul 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6603461 Smith, Jr. et al. Aug 2003 B2
6608664 Hasegawa Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6675865 Yoshida Jan 2004 B1
6684166 Bellwood et al. Jan 2004 B2
6685369 Lien Feb 2004 B2
6687614 Ihara et al. Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6738049 Kiser et al. May 2004 B2
6758615 Monney et al. Jul 2004 B2
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6780019 Ghosh et al. Aug 2004 B1
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6798887 Andre Sep 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6819547 Minaguchi et al. Nov 2004 B2
6856506 Doherty et al. Feb 2005 B2
6856789 Pattabiraman et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6864573 Robertson et al. Mar 2005 B2
6882337 Shetter Apr 2005 B2
6898315 Guha May 2005 B2
6909354 Baker et al. Jun 2005 B2
6914197 Doherty et al. Jul 2005 B2
6948136 Trewin Sep 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6962454 Costello Nov 2005 B1
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
7007238 Glaser Feb 2006 B2
7018678 Gronbeck et al. Mar 2006 B2
7051149 Wang et al. May 2006 B2
7066634 Kitamura et al. Jun 2006 B2
7068496 Wong et al. Jun 2006 B2
7083295 Hanna Aug 2006 B1
7091436 Serban Aug 2006 B2
7091955 Kramer Aug 2006 B2
7095404 Vincent et al. Aug 2006 B2
7099149 Krieger et al. Aug 2006 B2
7106222 Ward et al. Sep 2006 B2
7116309 Kimura et al. Oct 2006 B1
7123241 Bathiche Oct 2006 B2
7123292 Seeger et al. Oct 2006 B1
7136282 Rebeske Nov 2006 B1
7152985 Benitez et al. Dec 2006 B2
D535292 Shi et al. Jan 2007 S
7169460 Chen et al. Jan 2007 B1
7194662 Do et al. Mar 2007 B2
7201508 Misaras Apr 2007 B2
7202837 Ihara Apr 2007 B2
7213323 Baker et al. May 2007 B2
7213991 Chapman et al. May 2007 B2
7218830 Iimura May 2007 B2
7224830 Nefian et al. May 2007 B2
7239505 Keely et al. Jul 2007 B2
7252512 Tai et al. Aug 2007 B2
7260221 Atsmon Aug 2007 B1
7277087 Hill et al. Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7365967 Zheng Apr 2008 B2
7374312 Feng et al. May 2008 B2
7400805 Abu-Ageel Jul 2008 B2
7401992 Lin Jul 2008 B1
7415676 Fujita Aug 2008 B2
7417564 Tolonen et al. Aug 2008 B2
7417626 Bhesania et al. Aug 2008 B2
7423557 Kang Sep 2008 B2
7437193 Parramon et al. Oct 2008 B2
7447934 Dasari et al. Nov 2008 B2
7453376 De Nov 2008 B2
7457108 Ghosh Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7486165 Ligtenberg et al. Feb 2009 B2
7486276 Yajima et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7502803 Culter et al. Mar 2009 B2
7542052 Solomon et al. Jun 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
RE40891 Yasutake Sep 2009 E
7583500 Ligtenberg Sep 2009 B2
7594638 Chan et al. Sep 2009 B2
7620244 Collier Nov 2009 B1
7622907 Vranish Nov 2009 B2
7623121 Dodge Nov 2009 B2
7626358 Lam et al. Dec 2009 B2
7636921 Louie Dec 2009 B2
7639329 Takeda et al. Dec 2009 B2
7639876 Clary et al. Dec 2009 B2
7656392 Bolender Feb 2010 B2
7686066 Hirao Mar 2010 B2
7722358 Chatterjee et al. May 2010 B2
7722792 Uezaki et al. May 2010 B2
7728923 Kim et al. Jun 2010 B2
7729493 Krieger et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7761119 Patel Jul 2010 B2
7773076 Pittel et al. Aug 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7774155 Sato et al. Aug 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7815358 Inditsky Oct 2010 B2
7817428 Greer, Jr. et al. Oct 2010 B2
7822338 Wernersson Oct 2010 B2
7865639 McCoy et al. Jan 2011 B2
7884807 Hovden et al. Feb 2011 B2
7893921 Sato Feb 2011 B2
7907394 Richardson et al. Mar 2011 B2
D636397 Green Apr 2011 S
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7932890 Onikiri et al. Apr 2011 B2
7936501 Smith et al. May 2011 B2
7944520 Ichioka et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7967462 Ogiro et al. Jun 2011 B2
7970246 Travis et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8018386 Qi et al. Sep 2011 B2
8018579 Krah Sep 2011 B1
8026904 Westerman Sep 2011 B2
8053688 Conzola et al. Nov 2011 B2
8059384 Park et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
8077160 Land et al. Dec 2011 B2
8090885 Callaghan et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8120166 Koizumi et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8149219 Lii et al. Apr 2012 B2
8154524 Wilson et al. Apr 2012 B2
8159372 Sherman Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8189973 Travis et al. May 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8231099 Chen Jul 2012 B2
8243432 Duan et al. Aug 2012 B2
8248791 Wang et al. Aug 2012 B2
8255708 Zhang Aug 2012 B1
8263730 Shimizu Sep 2012 B2
8264310 Lauder et al. Sep 2012 B2
8267368 Torii et al. Sep 2012 B2
8269093 Naik et al. Sep 2012 B2
8269731 Molne Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8281041 Butterfield Oct 2012 B2
8322290 Mignano Dec 2012 B1
8346206 Andrus et al. Jan 2013 B1
8363036 Liang Jan 2013 B2
8373664 Wright Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8387078 Memmott Feb 2013 B2
8387938 Lin Mar 2013 B2
8389078 Lin et al. Mar 2013 B2
8403576 Merz Mar 2013 B2
8416559 Agata et al. Apr 2013 B2
8424160 Chen Apr 2013 B2
8446359 Doczy et al. May 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
8514568 Qiao et al. Aug 2013 B2
8520371 Peng et al. Aug 2013 B2
8543227 Perek et al. Sep 2013 B1
8548608 Perek et al. Oct 2013 B2
8564944 Whitt, III et al. Oct 2013 B2
8570725 Whitt, III et al. Oct 2013 B2
8576031 Lauder et al. Nov 2013 B2
8582280 Ryu Nov 2013 B2
8587701 Tatsuzawa Nov 2013 B2
8599542 Healey et al. Dec 2013 B1
8610015 Whitt et al. Dec 2013 B2
8614666 Whitman et al. Dec 2013 B2
8646999 Shaw et al. Feb 2014 B2
8654030 Mercer Feb 2014 B1
8674941 Casparian et al. Mar 2014 B2
8686961 Yamano Apr 2014 B2
8699215 Whitt, III et al. Apr 2014 B2
8719603 Belesiu et al. May 2014 B2
8724302 Whitt et al. May 2014 B2
8744070 Zhang et al. Jun 2014 B2
8744391 Tenbrook et al. Jun 2014 B2
8762746 Lachwani et al. Jun 2014 B1
8767388 Ahn et al. Jul 2014 B2
8780541 Whitt et al. Jul 2014 B2
8791382 Whitt, III et al. Jul 2014 B2
8797765 Lin et al. Aug 2014 B2
8823652 Linegar et al. Sep 2014 B2
8825187 Hamrick et al. Sep 2014 B1
8830668 Whit, III et al. Sep 2014 B2
8836662 Liu Sep 2014 B2
8850241 Oler et al. Sep 2014 B2
8854799 Whitt, III et al. Oct 2014 B2
8873227 Whitt et al. Oct 2014 B2
8891232 Wang Nov 2014 B2
8896993 Belesiu et al. Nov 2014 B2
8903517 Perek et al. Dec 2014 B2
8908858 Chiu et al. Dec 2014 B2
8934221 Guo Jan 2015 B2
8935774 Belesiu et al. Jan 2015 B2
8939422 Liu et al. Jan 2015 B2
8947864 Whitt, III et al. Feb 2015 B2
8952892 Chai Feb 2015 B2
8964376 Chen Feb 2015 B2
8988876 Corbin Mar 2015 B2
8991473 Bornemann et al. Mar 2015 B2
9027631 Bornemann et al. May 2015 B2
9047207 Belesiu et al. Jun 2015 B2
9075566 Whitt, III et al. Jul 2015 B2
9098117 Lutz, III et al. Aug 2015 B2
9134807 Shaw et al. Sep 2015 B2
9134808 Siddiqui et al. Sep 2015 B2
9158383 Shaw et al. Oct 2015 B2
9176900 Whitt, III et al. Nov 2015 B2
9176901 Whitt, III et al. Nov 2015 B2
9246487 Casparian et al. Jan 2016 B2
9268373 Whitt et al. Feb 2016 B2
9298236 Oler et al. Mar 2016 B2
9304549 Siddiqui Apr 2016 B2
9304948 Whitman et al. Apr 2016 B2
9304949 Whitman et al. Apr 2016 B2
9348605 Drasnin May 2016 B2
9360893 Bathiche et al. Jun 2016 B2
20010023818 Masaru et al. Sep 2001 A1
20010035859 Kiser Nov 2001 A1
20020000977 Vranish Jan 2002 A1
20020005108 Ludwig Jan 2002 A1
20020044216 Cha Apr 2002 A1
20020070883 Dosch Jun 2002 A1
20020126445 Minaguchi et al. Sep 2002 A1
20020126446 Miyako et al. Sep 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020135457 Sandbach et al. Sep 2002 A1
20020154099 Oh Oct 2002 A1
20020163510 Williams et al. Nov 2002 A1
20020188721 Lemel et al. Dec 2002 A1
20030000821 Takahashi et al. Jan 2003 A1
20030007648 Currell Jan 2003 A1
20030011576 Sandbach et al. Jan 2003 A1
20030016282 Koizumi Jan 2003 A1
20030044215 Monney et al. Mar 2003 A1
20030051983 Lahr Mar 2003 A1
20030067450 Thursfield et al. Apr 2003 A1
20030108720 Kashino Jun 2003 A1
20030132916 Kramer Jul 2003 A1
20030163611 Nagao Aug 2003 A1
20030173195 Federspiel Sep 2003 A1
20030197687 Shetter Oct 2003 A1
20030198008 Leapman et al. Oct 2003 A1
20030231243 Shibutani Dec 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040046796 Fujita Mar 2004 A1
20040048941 Raffel et al. Mar 2004 A1
20040056843 Lin et al. Mar 2004 A1
20040085716 Uke May 2004 A1
20040095333 Morag et al. May 2004 A1
20040100457 Mandle May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040156168 LeVasseur et al. Aug 2004 A1
20040160734 Yim Aug 2004 A1
20040169641 Bean et al. Sep 2004 A1
20040174670 Huang et al. Sep 2004 A1
20040174709 Buelow, II et al. Sep 2004 A1
20040190239 Weng et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040212601 Cake et al. Oct 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050030728 Kawashima et al. Feb 2005 A1
20050047773 Satake et al. Mar 2005 A1
20050052831 Chen Mar 2005 A1
20050055498 Beckert et al. Mar 2005 A1
20050057515 Bathiche Mar 2005 A1
20050057521 Aull et al. Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050062715 Tsuji et al. Mar 2005 A1
20050064765 Simpson et al. Mar 2005 A1
20050099400 Lee May 2005 A1
20050134717 Misawa Jun 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050190159 Skarine Sep 2005 A1
20050206737 Gim et al. Sep 2005 A1
20050236848 Kim Oct 2005 A1
20050240949 Liu et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050283731 Saint-Hilaire et al. Dec 2005 A1
20050285703 Wheeler et al. Dec 2005 A1
20060002101 Wheatley et al. Jan 2006 A1
20060007645 Chen et al. Jan 2006 A1
20060049920 Sadler et al. Mar 2006 A1
20060049993 Lin et al. Mar 2006 A1
20060061555 Mullen Mar 2006 A1
20060082973 Egbert et al. Apr 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060092139 Sharma May 2006 A1
20060096392 Inkster et al. May 2006 A1
20060102914 Smits et al. May 2006 A1
20060103633 Gioeli May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060132423 Travis Jun 2006 A1
20060152499 Roberts Jul 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060155391 Pistemaa et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060174143 Sawyers et al. Aug 2006 A1
20060176377 Miyasaka Aug 2006 A1
20060181514 Newman Aug 2006 A1
20060181521 Perreault et al. Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060192763 Ziemkowski Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060197755 Bawany Sep 2006 A1
20060227393 Herloski Oct 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060239006 Chaves et al. Oct 2006 A1
20060254042 Chou et al. Nov 2006 A1
20060265617 Priborsky Nov 2006 A1
20060267931 Vainio et al. Nov 2006 A1
20060272429 Ganapathi et al. Dec 2006 A1
20070003267 Shibutani Jan 2007 A1
20070047221 Park Mar 2007 A1
20070047260 Lee et al. Mar 2007 A1
20070051766 Spencer Mar 2007 A1
20070051792 Wheeler et al. Mar 2007 A1
20070056385 Lorenz Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070116929 Fujimori et al. May 2007 A1
20070117600 Robertson et al. May 2007 A1
20070121956 Bai et al. May 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070172229 Wernersson Jul 2007 A1
20070176902 Newman et al. Aug 2007 A1
20070178891 Louch et al. Aug 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070185590 Reindel et al. Aug 2007 A1
20070188478 Silverstein et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070220708 Lewis Sep 2007 A1
20070230227 Palmer Oct 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070236873 Yukawa et al. Oct 2007 A1
20070247338 Marchetto Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070252674 Nelson et al. Nov 2007 A1
20070257821 Son et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070268273 Westerman et al. Nov 2007 A1
20070274094 Schultz et al. Nov 2007 A1
20070274095 Destain Nov 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20070296709 Guanghai Dec 2007 A1
20070297125 Maatta Dec 2007 A1
20070297625 Hjort et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080018611 Serban et al. Jan 2008 A1
20080030937 Russo et al. Feb 2008 A1
20080042978 Perez-Noguera Feb 2008 A1
20080053222 Ehrensvard et al. Mar 2008 A1
20080059888 Dunko Mar 2008 A1
20080074398 Wright Mar 2008 A1
20080080166 Duong et al. Apr 2008 A1
20080104437 Lee May 2008 A1
20080129520 Lee Jun 2008 A1
20080151478 Chern, Jr. Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080167832 Soss Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080180411 Solomon et al. Jul 2008 A1
20080186660 Yang Aug 2008 A1
20080219025 Spitzer et al. Sep 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080232061 Wang et al. Sep 2008 A1
20080233326 Hegemier et al. Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080273297 Kumar Nov 2008 A1
20080297878 Brown et al. Dec 2008 A1
20080307242 Qu Dec 2008 A1
20080309636 Feng et al. Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316183 Westerman et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090002218 Rigazio et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090009476 Daley, III Jan 2009 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090046416 Daley, III Feb 2009 A1
20090049979 Naik et al. Feb 2009 A1
20090065267 Sato Mar 2009 A1
20090066653 Wang Mar 2009 A1
20090067156 Bonnett et al. Mar 2009 A1
20090073060 Shimasaki et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090079639 Hotta et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090089600 Nousiainen Apr 2009 A1
20090102794 Lapstun et al. Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090127005 Zachut et al. May 2009 A1
20090131134 Baerlocher et al. May 2009 A1
20090135142 Fu et al. May 2009 A1
20090140985 Liu Jun 2009 A1
20090158221 Nielsen et al. Jun 2009 A1
20090163147 Steigerwald et al. Jun 2009 A1
20090167728 Geaghan et al. Jul 2009 A1
20090174687 Ciesla et al. Jul 2009 A1
20090174759 Yeh et al. Jul 2009 A1
20090182901 Callaghan et al. Jul 2009 A1
20090189873 Peterson et al. Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090195518 Mattice et al. Aug 2009 A1
20090201254 Rais Aug 2009 A1
20090207144 Bridger Aug 2009 A1
20090219250 Ure Sep 2009 A1
20090231275 Odgers Sep 2009 A1
20090239586 Boeve et al. Sep 2009 A1
20090244009 Staats et al. Oct 2009 A1
20090244832 Behar et al. Oct 2009 A1
20090244872 Yan Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090269943 Palli Oct 2009 A1
20090285491 Ravenscroft et al. Nov 2009 A1
20090296331 Choy Dec 2009 A1
20090303137 Kusaka et al. Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090315830 Westerman Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100021022 Pittel et al. Jan 2010 A1
20100023869 Saint-Hilaire et al. Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039081 Sip Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045540 Lai et al. Feb 2010 A1
20100045609 Do et al. Feb 2010 A1
20100045633 Gettemy Feb 2010 A1
20100051356 Stern et al. Mar 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100052880 Laitinen et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100054435 Louch et al. Mar 2010 A1
20100056130 Louch et al. Mar 2010 A1
20100072334 Le Gette et al. Mar 2010 A1
20100073329 Raman et al. Mar 2010 A1
20100075517 Ni et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079379 Demuynck et al. Apr 2010 A1
20100081377 Chatterjee et al. Apr 2010 A1
20100083108 Rider et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100103131 Segal et al. Apr 2010 A1
20100105443 Vaisanen Apr 2010 A1
20100106983 Kasprzak et al. Apr 2010 A1
20100115309 Carvalho et al. May 2010 A1
20100117993 Kent May 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100128427 Iso May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100148995 Elias Jun 2010 A1
20100148999 Casparian et al. Jun 2010 A1
20100149104 Sim et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149134 Westerman et al. Jun 2010 A1
20100149377 Shintani et al. Jun 2010 A1
20100154171 Lombardi et al. Jun 2010 A1
20100156798 Archer Jun 2010 A1
20100156913 Ortega et al. Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100188338 Longe Jul 2010 A1
20100205472 Tupman et al. Aug 2010 A1
20100206614 Park et al. Aug 2010 A1
20100206644 Yeh Aug 2010 A1
20100214214 Corson et al. Aug 2010 A1
20100214257 Wussler et al. Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100231498 Large et al. Sep 2010 A1
20100231510 Sampsell et al. Sep 2010 A1
20100231556 Mines et al. Sep 2010 A1
20100235546 Terlizzi et al. Sep 2010 A1
20100238075 Pourseyed Sep 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100238138 Goertz et al. Sep 2010 A1
20100238620 Fish Sep 2010 A1
20100245221 Khan Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100259482 Ball Oct 2010 A1
20100259876 Kim Oct 2010 A1
20100265182 Ball et al. Oct 2010 A1
20100271771 Wu et al. Oct 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100291331 Schaefer Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100304793 Kim Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100309617 Wang et al. Dec 2010 A1
20100313680 Joung et al. Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321301 Casparian et al. Dec 2010 A1
20100321339 Kimmel Dec 2010 A1
20100321877 Moser Dec 2010 A1
20100324457 Bean et al. Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100328203 Hsu Dec 2010 A1
20100331059 Apgar et al. Dec 2010 A1
20110007008 Algreatly Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110032127 Roush Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110050576 Forutanpour et al. Mar 2011 A1
20110050587 Natanzon et al. Mar 2011 A1
20110050626 Porter et al. Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057724 Pabon Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110095994 Birnbaum Apr 2011 A1
20110096513 Kim Apr 2011 A1
20110102326 Casparian et al. May 2011 A1
20110102356 Kemppinen et al. May 2011 A1
20110102752 Chen et al. May 2011 A1
20110107958 Pance et al. May 2011 A1
20110113368 Carvajal et al. May 2011 A1
20110115738 Suzuki et al. May 2011 A1
20110115747 Powell et al. May 2011 A1
20110117970 Choi May 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110134043 Chen Jun 2011 A1
20110134112 Koh et al. Jun 2011 A1
20110157046 Lee et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110167992 Eventoff et al. Jul 2011 A1
20110169762 Weiss Jul 2011 A1
20110170289 Allen et al. Jul 2011 A1
20110176035 Poulsen Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110183120 Sharygin et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110184824 George et al. Jul 2011 A1
20110188199 Pan Aug 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110193938 Oderwald et al. Aug 2011 A1
20110199389 Lu et al. Aug 2011 A1
20110202878 Park et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110216266 Travis Sep 2011 A1
20110221678 Davydov Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110228457 Moon et al. Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110234494 Peterson et al. Sep 2011 A1
20110234502 Yun et al. Sep 2011 A1
20110242138 Tribble Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110259788 Zeliff et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110261083 Wilson Oct 2011 A1
20110265287 Li et al. Nov 2011 A1
20110266672 Sylvester Nov 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110267300 Serban et al. Nov 2011 A1
20110273475 Herz et al. Nov 2011 A1
20110284420 Sajid Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110298919 Maglaque Dec 2011 A1
20110302518 Zhang Dec 2011 A1
20110304577 Brown Dec 2011 A1
20110304962 Su Dec 2011 A1
20110305875 Sanford et al. Dec 2011 A1
20110310038 Park et al. Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20110317399 Hsu Dec 2011 A1
20110320204 Locker et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120007821 Zaliva Jan 2012 A1
20120011462 Westerman et al. Jan 2012 A1
20120013490 Pance Jan 2012 A1
20120013519 Hakansson et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120023401 Arscott et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026048 Vazquez et al. Feb 2012 A1
20120026096 Ku Feb 2012 A1
20120032887 Chiu et al. Feb 2012 A1
20120032891 Parivar Feb 2012 A1
20120032901 Kwon Feb 2012 A1
20120038495 Ishikawa Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120062564 Miyashita Mar 2012 A1
20120068919 Lauder et al. Mar 2012 A1
20120068933 Larsen Mar 2012 A1
20120069540 Lauder et al. Mar 2012 A1
20120072167 Cretella, Jr. et al. Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120077384 Bar-Niv et al. Mar 2012 A1
20120081316 Sirpal et al. Apr 2012 A1
20120084548 Cheng et al. Apr 2012 A1
20120087078 Medica et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120099263 Lin Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120103778 Obata et al. May 2012 A1
20120106082 Wu et al. May 2012 A1
20120113137 Nomoto May 2012 A1
20120113579 Agata et al. May 2012 A1
20120115553 Mahe et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120127126 Mattice et al. May 2012 A1
20120133561 Konanur et al. May 2012 A1
20120139727 Houvener et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120155015 Govindasamy et al. Jun 2012 A1
20120161406 Mersky Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120182249 Endo et al. Jul 2012 A1
20120182743 Chou Jul 2012 A1
20120194393 Uttermann et al. Aug 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120195063 Kim et al. Aug 2012 A1
20120200802 Large Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120212438 Vaisanen Aug 2012 A1
20120218194 Silverman Aug 2012 A1
20120223866 Ayala et al. Sep 2012 A1
20120224073 Miyahara Sep 2012 A1
20120227259 Badaye et al. Sep 2012 A1
20120229634 Laett et al. Sep 2012 A1
20120235635 Sato Sep 2012 A1
20120235921 Laubach Sep 2012 A1
20120242584 Tuli Sep 2012 A1
20120243165 Chang et al. Sep 2012 A1
20120243204 Robinson Sep 2012 A1
20120246377 Bhesania Sep 2012 A1
20120249443 Anderson et al. Oct 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120256829 Dodge Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120260177 Sehrer Oct 2012 A1
20120268912 Minami et al. Oct 2012 A1
20120274811 Bakin Nov 2012 A1
20120287562 Wu et al. Nov 2012 A1
20120298491 Ozias et al. Nov 2012 A1
20120299872 Nishikawa et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20120326003 Solow et al. Dec 2012 A1
20120328349 Isaac et al. Dec 2012 A1
20130009413 Chiu et al. Jan 2013 A1
20130015311 Kim Jan 2013 A1
20130016468 Oh Jan 2013 A1
20130021289 Chen et al. Jan 2013 A1
20130027867 Lauder et al. Jan 2013 A1
20130044059 Fu Feb 2013 A1
20130044074 Park et al. Feb 2013 A1
20130046397 Fadell et al. Feb 2013 A1
20130050922 Lee et al. Feb 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130067126 Casparian et al. Mar 2013 A1
20130069916 Estève Mar 2013 A1
20130073877 Radke Mar 2013 A1
20130076617 Csaszar et al. Mar 2013 A1
20130076635 Lin Mar 2013 A1
20130082824 Colley Apr 2013 A1
20130082950 Lim et al. Apr 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130100082 Bakin et al. Apr 2013 A1
20130106723 Bakken et al. May 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130107144 Marhefka et al. May 2013 A1
20130107572 Holman et al. May 2013 A1
20130118878 Purcocks May 2013 A1
20130135214 Li et al. May 2013 A1
20130154959 Lindsay et al. Jun 2013 A1
20130162554 Lauder et al. Jun 2013 A1
20130172906 Olson et al. Jul 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130207937 Lutian et al. Aug 2013 A1
20130212483 Brakensiek et al. Aug 2013 A1
20130217451 Komiyama et al. Aug 2013 A1
20130222272 Martin, Jr. Aug 2013 A1
20130222274 Mori et al. Aug 2013 A1
20130222323 McKenzie Aug 2013 A1
20130227836 Whitt, III Sep 2013 A1
20130228023 Drasnin Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130228434 Whitt, III Sep 2013 A1
20130228435 Whitt, III Sep 2013 A1
20130228439 Whitt, III Sep 2013 A1
20130229100 Siddiqui Sep 2013 A1
20130229335 Whitman Sep 2013 A1
20130229347 Lutz, III Sep 2013 A1
20130229350 Shaw Sep 2013 A1
20130229351 Whitt, III Sep 2013 A1
20130229354 Whitt, III Sep 2013 A1
20130229356 Marwah Sep 2013 A1
20130229363 Whitman Sep 2013 A1
20130229366 Dighde Sep 2013 A1
20130229380 Lutz, III Sep 2013 A1
20130229386 Bathiche Sep 2013 A1
20130229534 Panay Sep 2013 A1
20130229568 Belesiu Sep 2013 A1
20130229570 Beck et al. Sep 2013 A1
20130229756 Whitt, III Sep 2013 A1
20130229757 Whitt, III Sep 2013 A1
20130229758 Belesiu Sep 2013 A1
20130229759 Whitt, III Sep 2013 A1
20130229760 Whitt, III Sep 2013 A1
20130229761 Shaw Sep 2013 A1
20130229762 Whitt, III Sep 2013 A1
20130229773 Siddiqui Sep 2013 A1
20130230346 Shaw Sep 2013 A1
20130231755 Perek Sep 2013 A1
20130232280 Perek Sep 2013 A1
20130232348 Oler Sep 2013 A1
20130232349 Oler Sep 2013 A1
20130232350 Belesiu et al. Sep 2013 A1
20130232353 Belesiu Sep 2013 A1
20130232571 Belesiu Sep 2013 A1
20130241860 Ciesla et al. Sep 2013 A1
20130262886 Nishimura Oct 2013 A1
20130278552 Kamin-Lyndgaard Oct 2013 A1
20130300590 Dietz Nov 2013 A1
20130300647 Drasnin Nov 2013 A1
20130301199 Whitt Nov 2013 A1
20130301206 Whitt Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130304944 Young Nov 2013 A1
20130321992 Liu et al. Dec 2013 A1
20130322000 Whitt Dec 2013 A1
20130322001 Whitt Dec 2013 A1
20130329360 Aldana Dec 2013 A1
20130332628 Panay Dec 2013 A1
20130335330 Lane Dec 2013 A1
20130335902 Campbell Dec 2013 A1
20130335903 Raken Dec 2013 A1
20130339757 Reddy Dec 2013 A1
20130342464 Bathiche et al. Dec 2013 A1
20130342465 Bathiche Dec 2013 A1
20130342976 Chung Dec 2013 A1
20130346636 Bathiche Dec 2013 A1
20140012401 Perek Jan 2014 A1
20140028635 Krah Jan 2014 A1
20140029183 Ashcraft et al. Jan 2014 A1
20140043275 Whitman Feb 2014 A1
20140048399 Whitt, III Feb 2014 A1
20140049894 Rihn Feb 2014 A1
20140085814 Kielland Mar 2014 A1
20140117928 Liao May 2014 A1
20140118241 Chai May 2014 A1
20140119802 Shaw May 2014 A1
20140131000 Bornemann et al. May 2014 A1
20140135060 Mercer May 2014 A1
20140139989 Mori et al. May 2014 A1
20140148938 Zhang May 2014 A1
20140154523 Bornemann et al. Jun 2014 A1
20140159867 Sartee Jun 2014 A1
20140166227 Bornemann et al. Jun 2014 A1
20140167585 Kuan et al. Jun 2014 A1
20140185215 Whitt Jul 2014 A1
20140185220 Whitt Jul 2014 A1
20140204514 Whitt Jul 2014 A1
20140204515 Whitt Jul 2014 A1
20140233237 Lutian Aug 2014 A1
20140247546 Whitt Sep 2014 A1
20140248506 McCormack Sep 2014 A1
20140291134 Whitt Oct 2014 A1
20140293534 Siddiqui Oct 2014 A1
20140313665 Delpier et al. Oct 2014 A1
20140362506 Whitt, III et al. Dec 2014 A1
20140372914 Byrd et al. Dec 2014 A1
20140379942 Perek et al. Dec 2014 A1
20150005953 Fadell et al. Jan 2015 A1
20150036274 Belesiu et al. Feb 2015 A1
20150234478 Belesiu et al. Aug 2015 A1
20150261262 Whitt, III et al. Sep 2015 A1
20150311014 Shaw et al. Oct 2015 A1
20150378392 Siddiqui et al. Dec 2015 A1
20160124467 Whitt et al. May 2016 A1
Foreign Referenced Citations (94)
Number Date Country
990023 Jun 1976 CA
1653411 Aug 2005 CN
1787605 Jun 2006 CN
101198925 Jun 2008 CN
101335147 Dec 2008 CN
101366001 Feb 2009 CN
101410781 Apr 2009 CN
101452334 Jun 2009 CN
101464750 Jun 2009 CN
101490642 Jul 2009 CN
101500388 Aug 2009 CN
101908428 Dec 2010 CN
102096494 Jun 2011 CN
201853163 Jun 2011 CN
102124532 Jul 2011 CN
102138113 Jul 2011 CN
102214040 Oct 2011 CN
202441167 Sep 2012 CN
103455149 Dec 2013 CN
203606723 May 2014 CN
0271956 Jun 1988 EP
645726 Mar 1995 EP
1003188 May 2000 EP
1223722 Jul 2002 EP
1480029 Nov 2004 EP
1591891 Nov 2005 EP
2006869 Dec 2008 EP
2009660 Dec 2008 EP
2026178 Feb 2009 EP
2353978 Aug 2011 EP
2378607 Oct 2011 EP
2400365 Dec 2011 EP
2423787 Feb 2012 EP
1100331 Jan 1968 GB
2123213 Jan 1984 GB
2178570 Feb 1987 GB
2305780 Apr 1997 GB
2402460 Dec 2004 GB
2482932 Feb 2012 GB
52107722 Sep 1977 JP
56108127 Aug 1981 JP
56159134 Dec 1981 JP
6014315 Jan 1985 JP
08273471 Oct 1996 JP
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11338575 Dec 1999 JP
11345041 Dec 1999 JP
2000010654 Jan 2000 JP
2001142564 May 2001 JP
2001243707 Sep 2001 JP
2002170458 Jun 2002 JP
2004038950 Feb 2004 JP
2005117161 Apr 2005 JP
2006163459 Jun 2006 JP
2006294361 Oct 2006 JP
2010244514 Oct 2010 JP
2011027815 Feb 2011 JP
2003077368 Mar 2014 JP
20010107055 Dec 2001 KR
20040003709 Jan 2004 KR
20050014299 Feb 2005 KR
20060003093 Jan 2006 KR
20060055307 May 2006 KR
20080006404 Jan 2008 KR
20090029411 Mar 2009 KR
20100022059 Feb 2010 KR
20100067366 Jun 2010 KR
20100115675 Oct 2010 KR
1020110087178 Aug 2011 KR
20110109791 Oct 2011 KR
20110120002 Nov 2011 KR
20110122333 Nov 2011 KR
20110138943 Dec 2011 KR
101113530 Feb 2012 KR
20120015749 Feb 2012 KR
1038411 May 2012 NL
WO-9108915 Jun 1991 WO
WO-9919995 Apr 1999 WO
WO-03106134 Dec 2003 WO
WO-2005027696 Mar 2005 WO
WO-2006044818 Apr 2006 WO
WO-2007112172 Oct 2007 WO
WO-2008055039 May 2008 WO
2009020264 Feb 2009 WO
WO-2009034484 Mar 2009 WO
WO-2010011983 Jan 2010 WO
WO-2010074116 Jul 2010 WO
WO-2010105272 Sep 2010 WO
WO-2011049609 Apr 2011 WO
WO-2012036717 Mar 2012 WO
WO-2013012699 Jan 2013 WO
WO-2013033067 Mar 2013 WO
WO-2014209818 Dec 2014 WO
Non-Patent Literature Citations (458)
Entry
“Office Action Issued in Korean Patent Application No. 10-2020-7016522”, dated Jul. 25, 2020, 26 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 13/471,393”, dated Jul. 24, 2020, 22 Pages.
“Office Action Issued in European Patent Application No. 13858620.1”, dated Jul. 13, 2020, 5 Pages.
“Office Action Issued In Korean Patent Application No. 10-2014-7024479”, dated Jul. 22, 2019, 18 Pages.
“Office Action Issued In Korean Patent Application No. 10-2014-7024479”, dated Jan. 30, 2020, 10 Pages.
“Notice of Allowance Issued in Korean Patent Application No. 10-2014-7024487”, dated Feb. 10, 2020, 5 Pages.
“Office Action Issued in Korean Patent Application No. 10-2014-7024487”, dated Aug. 7, 2019, 10 pages.
“Office Action Issued in Korean Patent Application No. 10-2014-7024500”, dated Aug. 7, 2019, 15 Pages.
“Office Action Issued in Korean Patent Application No. 10-2014-7024552”, dated Aug. 7, 2019, 14 Pages.
“Office Action Issued In Korean Patent Application No. 10-2014-7024555”, dated Jul. 22, 2019, 14 Pages.
“Office Action Issued In Korean Patent Application No. 10-2014-7024555”, dated Jan. 20, 2020, 10 Pages.
“Office Action Issued in Korean Patent Application No. 10-2014-7024564”, dated Jan. 9, 2020, 10 Pages.
“Office Action Issued in Korean Patent Application No. 10-2014-7024564”, dated Jul. 25, 2019, 9 Pages.
“Office Action Issued in European Patent Application No. 13758583.2”, dated Sep. 26, 2019, 6 Pages.
“Summons to Attend Oral Proceedings Issued in European Patent Application No. 13857958.6”, dated Aug. 2, 2019, 9 Pages.
“Office Action Issued in European Patent Application No. 13859280.3”, dated Aug. 23, 2019, 5 Pages.
“Final Office Action Issued in U.S. Appl. No. 15/083,008”, dated Jan. 16, 2020, 14 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 15/083,008”, dated Feb. 28, 2020, 14 Pages.
“Non Final Office Action Issued In U.S. Appl. No. 15/083,008”, dated Jul. 19, 2019, 15 Pages.
“Office Action Issued in European Patent Application No. 18157310.6”, dated Apr. 6, 2020, 5 Pages.
“Office Action Issued in European Patent Application No. 19164804.7”, dated Jun. 21, 2019. 8 Pages.
“Extended European Search Report Issued in European Patent Application No. 20192228.3”, dated Dec. 1, 2020, 8 Pages.
“Office Action Issued in Indian Patent Application No. 5767/CHENP/2015”, dated Jun. 25, 2020, 6 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 13/471,393”, dated Jun. 24, 2021, 25 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/471,393”, dated Mar. 8, 2021, 24 Pages.
“Office Action Issued in European Patent Application No. 13859280.3”, dated Jan. 15, 2021, 5 Pages.
“Office Action Issued in European Patent Application No. 19164804.7”, dated Feb. 2, 2021, 4 Pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 12, 2013), 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 23, 2013), 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,726, (Sep. 17, 2013), 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, (Jul. 25, 2013), 20 pages.
“Final Office Action”, U.S. Appl. No. 13/471,139, (Sep. 16, 2013), 13 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, (Aug. 28, 2013), 18 pages.
“Final Office Action”, U.S. Appl. No. 13/651,976, (Jul. 25, 2013), 21 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, (Aug. 2, 2013), 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, (Jul. 19, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/938,930, (Aug. 29, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, (Aug. 28, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,032, (Aug. 29, 2013), 7 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/029461, (Jun. 21, 2013), 11 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/028948, (Jun. 21, 2013), 11 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 30, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, Oct. 6, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/043546, Oct. 9, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Sep. 15, 2014, 18 pages.
“Notice of Allowance”, U.S. Appl. No. 14/277,240, Sep. 16, 2014, 4 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 2, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Dec. 19, 2013, 12 pages.
“FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP”, FingerWorks, Inc. Retrieved from <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, 2002, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, Dec. 5, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,918, Dec. 26, 2013, 18 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages.
“Notice to Grant”, CN Application No. 201320097124.7, Oct. 8, 2013, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,321, Dec. 18, 2013, 4 pages.
“Foreign Office Action”, CN Application No. 201320097066.8, Oct. 24, 2013, 5 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, Dec. 20, 2013, 5 pages.
“Final Office Action”, U.S. Appl. No. 13/939,032, Dec. 20, 2013, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 13/468,918, Nov. 29, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/715,133, Dec. 3, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/715,133, Jan. 6, 2014, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/603,918, Nov. 27, 2013, 8 pages.
Ramirez, “Applying Solventless Elastomeric Polyurethanes on Concrete in Wastewater Service”, In Proceedings: Journal of Protective Coatings and Linings, May 1995, 13 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/277,240, Jan. 8, 2015, 2 pages.
“Final Office Action”, U.S. Appl. No. 14/225,276, Dec. 17, 2014, 6 pages.
“First Examination Report”, NZ Application No. 628690, Nov. 27, 2014, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, Jan. 15, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/147,252, Feb. 23, 2015, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,976, Jan. 21, 2015, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 17, 2015, 2 pages.
“Restriction Requirement”, U.S. Appl. No. 14/147,252, Dec. 1, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Dec. 17, 2014, 5 pages.
“Advisory Action”, U.S. Appl. No. 13/939,032, Feb. 24, 2014, 2 pages.
“Notice of Allowance”, U.S. Appl. No. 13/938,930, Feb. 20, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,002, Mar. 3, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,139, Mar. 17, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 24, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Apr. 13, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/715,229, Apr. 16, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/177,018, Mar. 2, 2015, 2 pages.
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, Nov. 14, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/468,949, Oct. 6, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/471,054, Oct. 23, 2014, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/471,412, Dec. 15, 2014, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Oct. 9, 2014, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/647,479, Dec. 12, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 2, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, Sep. 17, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Apr. 10, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 13/974,994, Oct. 6, 2014, 26 pages.
“Final Office Action”, U.S. Appl. No. 13/975,087, Sep. 10, 2014, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/225,250, Mar. 13, 2015, 7 pages.
“Foreign Notice on Reexamination”, CN Application No. 201320097066.8, Apr. 3, 2015, 7 Pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Jul. 28, 2014, 4 pages.
“neXus Charging Cradle”, Retrieved from <http://www.gen-xtech.com/neXus.php> on Jul. 28, 2014, Apr. 17, 2012, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Mar. 13, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Mar. 27, 2015, 28 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Mar. 26, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Oct. 20, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, Nov. 24, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,184, Dec. 1, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,218, Mar. 4, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Dec. 19, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/852,848, Mar. 26, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jan. 23, 2015, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, Feb. 27, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Apr. 23, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,949, Apr. 24, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Apr. 8, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Apr. 6, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/599,763, Feb. 18, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/603,918, Jan. 22, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Mar. 30, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,184, Mar. 10, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/653,682, Sep. 24, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/656,055, Mar. 4, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/666,958, Aug. 29, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/715,229, Jan. 9, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 14/177,018, Nov. 21, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 25, 2015, 4 pages.
“Rechargeable Stylus Pen”, Retrieved from <http://www.e-pens.com/uk/rechargeable-stylus-pen.html> on Jul. 28, 2014, Jul. 5, 2013, 1 pages.
“Restriction Requirement”, U.S. Appl. No. 13/653,218, Nov. 7, 2014, 6 pages.
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from <https://web.archive.org/web/20120810202056/http://www.amazon.com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, Apr. 10, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/603,918, Apr. 20, 2015, 8 pages.
“Writer 1 for iPad 1 keyboard + Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages.
Harrison, “UIST 2009 Student Innovation Contest—Demo Video”, Retrieved From: <https://www.youtube.com/watch?v=PDI8eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages.
Schafer, “Using Interactive Maps for Navigation and Collaboration”, CHI '01 Extended Abstracts on Human Factors in Computing Systems, Mar. 31, 2001, 2 pages.
Van “Lenovo Thinkpad Tablet 2 Review”, Retrieved from: <http://www.digitaltrends.com/tablet-reviews/lenovo-thinkpad-tablet-2-review/> Jan. 29, 2014, Feb. 12, 2013, 7 Pages.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 10 pages.
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric_liquid_crystal> on Aug. 6, 2012,(Jun. 10, 2012), 2 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, (Jan. 2013), 1 page.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Apr. 9, 2013), 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Jul. 2, 2013), 2 pages.
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=%support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing_wp.pdf&src=SearchResults>,(Aug. 30, 2010), pp. 1-10.
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, (Feb. 4, 2011), 38 pages.
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H_LOGO.pdf> on Sep. 17, 2012, 4 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, (Apr. 18, 2013), 13 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, (May 21, 2013), 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, (May 3, 2013), 16 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An_Exploring_Technology.pdf>,(Feb. 1990), pp. 1-6.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages.
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 3 pages.
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i_Interactor_electronic_pen.html> on Jun. 19, 2012, 5 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages.
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors_motion.html> May 25, 2012, 7 pages.
“MPC Fly Music Production Controller”, AKAI Professional, <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages.
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, (Dec. 13, 2012), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013), 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013), 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, (Apr. 15, 2013), 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651 871 (Jul. 1, 2013), 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, (Feb. 22, 2013), 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013), 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013), 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Jun. 3, 2013), 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, (Apr. 23, 2013), 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, (Feb. 1, 2013), 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, (Jun. 5, 2013), 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, (May 2, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, (Jul. 1, 2013), 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, (Jun. 11, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, (May 31, 2013), 5 pages.
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, Feb. 2, 2011, 3 pages.
“Optical Sensors in Smart Mobile Devices”, ON Semiconductor, TND415/D, Available at <http://www.onsemi.jp/pub_link/Collateral/TND415-D.PDF>,(Nov. 2010), pp. 1-13.
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptolQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display-articles.laser-focus-world.volume-46.issue-1.world-news.optics-for_displays.html> on Nov. 2, 2010,(Jan. 1, 2010), 3 pages.
“Position Sensors”, Android Developers, <http://developer.android.com/guide/topics/sensors/sensors_position.html> May 25, 2012, 5 pages.
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages.
“SMART Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>,(2009), 2 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: <http://www.solarcsystems.com/us_multidirectional_uv_light_therapy_1_intro.html > on Jul. 25, 2012,(2011), 4 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Getting_Started_Guide/index.html> on Jun. 13, 2012, 24 pages.
“What is Active Alignment?”, http://www.kasalis.com/active_alignment.html, retrieved on Nov. 22, 2012, 2 Pages.
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> May 25, 2012,(Jul. 12, 2011), 14 pages.
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938_105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009), 2 pages.
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM Symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight_crv3.pdf> May 29, 2012,(Oct. 19, 2008), 4 pages.
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages.
Das, Apurba et al., “Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from http://www.autexrj.com/cms/zalaczone_pliki/5_013_11.pdf>, (Jun. 2011), 7 pages.
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages.
Gaver, William W., et al, “A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012,(May 7, 1995), 9 pages.
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012,2 pages.
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012,(Jan. 15, 2006), 5 pages.
Harada, Susumu et al., “VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People With Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf> on Jun. 1, 2012,(Oct. 15, 2007), 8 pages.
Iwase, Eiji “Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at «http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861» Proceedings: Journal of Microelectromechanical Systems, (Dec. 2005), 7 pages.
Kaufmann, Benoit et al., “Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09, retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012,(Apr. 3, 2010), 10 pages.
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop- satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages.
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156.
Li, et al., “Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Mulitple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>s,(Feb. 2012), 13 pages.
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech_shows_cloth_keyboard_for_pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages.
Manresa-Yee, Cristina et al., “Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%.pdf> Jun. 1, 2012,(Oct. 13, 2008), pp. 261-262.
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012,(Jul. 17, 2006), 9 pages.
Nakanishi, Hideyuki et al., “Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp_2009_chi.pdf> on Jun. 1, 2012,(Apr. 6, 2009), 10 pages.
Piltch, Avram “ASUS Eee Pad Slider SL 101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, Sep. 22, 2011, 5 pages.
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860.
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages.
Qin, Yongqiang et al., “pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010, Available<http://www.dfki.de/its2010/papers/pdf/po172.pdf>,(Nov. 2010), pp. 283-284.
Reilink, Rob et al., “Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob_online.pdf> on Jun. 1, 2012,(Sep. 26, 2010), pp. 510-515.
Sumimoto, Mark “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012,(Aug. 7, 2009), 4 pages.
Sundstedt, Veronica “Gazing at Games: Using Eye Tracking to control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica_sundstedtpdf> Jun. 1, 2012,(Jul. 28, 2010), 85 pages.
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages.
Travis, Adrian et al., “Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, 6 pages.
Travis, Adrian et al., “The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages.
Valli, Alessandro “Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012,(Sep. 2005), 80 pages.
Valliath, G T., “Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44_05.pdf> on Sep. 17, 2012, 5 pages.
Vaucelle, Cati “Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012,(Oct. 17, 2011), 2 pages.
Williams, Jim “A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995), 124 pages.
Xu, Zhang et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012,(Feb. 8, 2009), 5 pages.
Xu, Zhi-Gang et al., “Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012,(Dec. 5, 2009), pp. 223-226.
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380.
Zhu, Dingyun et al., “Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO_ICT_Centre/Papers?page=5> on Jun. 1, 2012,(Aug. 24, 2009),14 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jun. 10, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 6, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/200,595, Jun. 4, 2015, 3 pages.
“Final Office Action”, U.S. Appl. No. 14/059,280, Jul. 22, 2015, 25 pages.
“Final Office Action”, U.S. Appl. No. 14/147,252, Jun. 25, 2015, 11 pages.
“Foreign Office Action”, CN Application No. 201310067335.0, Jun. 12, 2015, 15 Pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, Jun. 24, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/727,001, Jul. 10, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 14/225,276, Jun. 22, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/457,881, Jul. 22, 2015, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 4, 2015, 2 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Jun. 5, 2015, 2 pages.
Cunningham,“Software Infrastructure for Natural Language Processing”, In Proceedings of the fifth conference on Applied natural language processing, Mar. 31, 1997, pp. 237-244.
“Advisory Action”, U.S. Appl. No. 14/059,280, Sep. 25, 2015, 7 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Aug. 10, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Aug. 27, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Sep. 29, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Aug. 20, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Oct. 2, 2015, 2 pages.
“Extended European Search Report”, EP Application No. 13859280.3, Sep. 7, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13859406.4, Sep. 8, 2015, 6 pages.
“Foreign Office Action”, CN Application No. 201310067592.4, Oct. 23, 2015, 12 Pages.
“Non-Final Office Action”, U.S. Appl. No. 14/162,529, Sep. 18, 2015, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Aug. 19, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Aug. 19, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Oct. 2, 2015, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Aug. 7, 2015, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Sep. 14, 2015, 2 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, (Dec. 22. 1996), 364 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, (Oct. 18, 2013), 16 pages.
“Final Office Action”, U.S. Appl. No. 13/656,055, (Oct. 23, 2013), 14 pages.
“Final Office Action”, U.S. Appl. No. 13/938,930, (Nov. 8, 2013), 10 pages.
“Final Office Action”, U.S. Appl. No. 13/939,002, (Nov. 8, 2013), 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044871, (Aug. 14, 2013), 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, (Sep. 5, 2013), 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, (Sep. 16, 2013), 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/042550, (Sep. 24, 2013),14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/371,725, (Nov. 7, 2013), 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, (Oct. 30, 2013), 12 pages.
“Notice of Allowance”, U.S. Appl. No. 13/563,435, (Nov. 12, 2013), 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,871, (Oct. 2, 2013), 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/656,520, (Oct. 2, 2013), 5 pages.
“Notice to Grant”, CN Application No. 201320097089.9, (Sep. 29, 2013), 2 Pages.
“Restriction Requirement”, U.S. Appl. No. 13/715,133, (Oct. 28, 2013), 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/715,229, (Aug. 13, 2013), 7 pages.
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, (Sep. 16, 2009), 3 pages.
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN--SPELLBOARD--ADV--71000,J1DFHE.PDF>, (2006), 22 pages.
Bathiche, Steven N., et al., “Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, (Aug. 23, 2013), 51 pages.
Lance, David M., et al., “Media Processing Input Device”, U.S. Appl. No. 13/655,065, filed Oct. 18, 2012, 43 pages.
Prospero, Michael “Samsung Outs Series Hybrid PC Tablet”, Retrieved from: http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, (Jun. 4, 2012), 7 pages.
“Advisory Action”, U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,520, Jan. 16, 2014, 3 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/715,133, Apr. 2, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, Jun. 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, Jun. 19, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jun. 26, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jul. 15, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/653,682, Jun. 11, 2014, 11 pages.
“Foreign Notice of Allowance”, CN Application No. 201320096755.7, Jan. 27, 2014, 2 pages.
“Foreign Office Action”, CN Application No. 201320097079.5, Sep. 26, 2013, 4 pages.
“Interlink Electronics FSR (TM) Force Sensing Resistors (TM)”, Retrieved at «http://akizukidenshi.com/download/ds/interlinkelec/94-00004+Rev+B%20FSR%201ntegration%20Guide.pdf on Mar. 21, 2013, 36 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/031531, Jun. 20, 2014, 10 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/065154, Feb. 5, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/067905, Apr. 15, 2014, 9 pages.
“Microsoft Tablet PC”, Retrieved from <http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft_Tablet_PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,949, Jun. 20, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/470,951, Jul. 2, 2014, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, Jun. 17, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, May 15, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Jun. 3, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 16, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/595,700, Jun. 18, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, May 28, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, Jan. 31, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, Jul. 3, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, Jun. 16, 2014, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 4, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Jun. 17, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Jun. 13, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/277,240, Jun. 13, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 17, 2014, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,186, Jul. 3, 2014, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,405, Jun. 24, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages.
“Restriction Requirement”, U.S. Appl. No. 13/595,700, May 28, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, May 6, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 22, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 5, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/371,725, Apr. 2, 2014, 22 pages.
“Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/603,918, Mar. 21, 2014, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/063,912, Apr. 29, 2014, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages.
“Foreign Office Action”, CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, Mar. 12, 2014, 19 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, Nov. 22, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 25, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,186, Feb. 27, 2014, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, May 7, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Apr. 2, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,405, Feb. 20, 2014, 37 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Apr. 30, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Feb. 26, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 24, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, Mar. 12, 2014, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, May 8, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, Apr. 10, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, Apr. 11, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 25, 2014, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,287, May 2, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/939,032, Apr. 3, 2014, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/653,321, Mar. 28, 2014, 4 pages.
Hinckley, et al., “Codex: A Dual Screen Tablet Computer”, Retrieved at «http://www.dgp.utoronto.ca/˜ravin/papers/chi2009_codex.pdf», In Proceedings of the 27th International Conference on Human Factors in Computing Systems, Apr. 9, 2009, pp. 10.
“Basic Cam Motion Curves”, Retrieved From: <http://ocw.metu.edu.tr/pluginfile.php/6886/mod_resource/content/1/ch8/8-3.htm> Nov. 22, 2013, Middle East Technical University,1999, 14 Pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 31, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,287, Aug. 21, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages.
“Final Office Action”, U.S. Appl. No. 13/471,376, Aug. 18, 2014, 24 pages.
“Final Office Action”, U.S. Appl. No. 13/595,700, Aug. 15, 2014, 6 pages.
“Final Office Action”, U.S. Appl. No. 13/599,635, Aug. 8, 2014, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 8, 2014, 20 pages.
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, Nov. 21, 2013, 2 pages.
“Foreign Office Action”, CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028483, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028484, Jun. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028485, Jun. 25, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028769, Jun. 26, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028771, Jun. 19, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028486, Jun. 20, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/041017, Jul. 17, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028489, Jun. 20, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028767, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016654, May 16, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028490, Jun. 24, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028766, Jun. 26, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028772, Jun. 30, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028768, Jun. 24, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028482, Jun. 20, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028487, May 27, 2014, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028770, Jun. 26, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, Jul. 9, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,282, Sep. 3, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, Jul. 11, 2014, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Sep. 2, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/715,229, Aug. 19, 2014, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/773,496, Jun. 23, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 2, 2014, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 5, 2014, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/653,184, Sep. 5, 2014, 6 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Aug. 29, 2014, 5 pages.
“Teach Me Simply”, Retrieved From: <http://techmesimply.blogspot.in/2013/05/yugatech_3.html> on Nov. 22, 2013, May 3, 2013, pp. 1-6.
Chavan, et al., “Synthesis, Design and Analysis of a Novel Variable Lift Cam Follower System”, In Proceedings: International Journal of Design Engineering, vol. 3, Issue 4, Inderscience Publishers,Jun. 3, 2010, 1 Page.
Justin, “Seidio Active with Kickstand for the Galaxy SIII”, Retrieved From: <http://www.t3chniq.com/seidio-active-with-kickstand-gs3/> on Nov. 22, 2013, Jan. 3, 2013, 5 Pages.
Lahr, “Development of a Novel Cam-based Infinitely Variable Transmission”, Proceedings: In Thesis of Master of Science in Mechanical Engineering, Virginia Polytechnic Institute and State University, Nov. 6, 2009, 91 pages.
Lambert, “Cam Design”, In Proceedings: Kinematics and dynamics of Machine, University of Waterloo Department of Mechanical Engineering, Jul. 2, 2002, pp. 51-60.
Lee, et al., “LED Light Coupler Design for a Ultra Thin Light Guide”, Journal of the Optical Society of Korea, vol. 11, Issue.3, Retrieved from <http://opticslab.kongju.ac.kr/pdf/06.pdf>,Sep. 2007, 5 pages.
Sanap, et al., “Design and Analysis of Globoidal Cam Index Drive”, Proceedings: In International Journal of Scientific Research Engineering & Technology, Jun. 2013, 6 Pages.
Siddiqui, “Hinge Mechanism for Rotatable Component Attachment”, U.S. Appl. No. 13/852,848, filed Mar. 28, 2013, 51 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Jan. 25, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.
“Extended European Search Report”, EP Application No. 13858283.8, Nov. 23, 2015, 10 pages.
“Extended European Search Report”, EP Application No. 13858674.8, Nov. 27, 2015, 6 pages.
“Extended European Search Report”, EP Application No. 13861292.4, Nov. 23, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/471,336, Dec. 10, 2015, 17 pages.
“Foreign Office Action”, CN Application No. 201310067373.6, Dec. 23, 2015, 15 Pages.
“Foreign Office Action”, CN Application No. 201310067429.8, Nov. 25, 2015, 12 Pages.
“Foreign Office Action”, CN Application No. 201310067631.0, Dec. 10, 2015, 11 Pages.
“Foreign Office Action”, CN Application No. 201310067641.4, Dec. 30, 2015, 12 Pages.
“Notice of Allowance”, U.S. Appl. No. 14/059,280, Nov. 23, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages.
“Restriction Requirement”, U.S. Appl. No. 14/794,182, Dec. 22, 2015, 6 pages.
“Foreign Office Action”, CN Application No. 201310067356.2, Feb. 4, 2016, 15 Pages.
“Non-Final Office Action”, U.S. Appl. No. 14/794,182, Apr. 13, 2016, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/994,737, Apr. 5, 2016, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 14/517,048, Feb. 24, 2016, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 14/307,262, Mar. 21, 2016, 6 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/517,048, Apr. 13, 2016, 2 pages.
“Final Office Action”, U.S. Appl. No. 14/225,250, Jan. 29, 2016, 10 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/527,263, Apr. 12, 2016, 2 pages.
Corrected Notice of Allowance, U.S. Appl. No. 13/527,263, Apr. 25, 2016, 2 pages.
Extended European Search Report, EP Application No. 13728568.0, Mar. 14, 2016, 16 pages.
Extended European Search Report, EP Application No. 13858403.2, Mar. 16, 2016, 12 pages.
Extended European Search Report, EP Application No. 13860271.9, May 4, 2016, 8 pages.
Extended European Search Report, EP Application No. 13861059.7, Apr. 29, 2016, 8 pages.
Final Office Action, U.S. Appl. No. 13/471,393, Mar. 9, 2016, 17 pages.
Final Office Action, U.S. Appl. No. 13/492,232, May 25, 2016, 12 pages.
Final Office Action, U.S. Appl. No. 13/780,228, Mar. 23, 2016, 16 pages.
Foreign Notice of Allowance, CN Application No. 201310065273.X, Mar. 31, 2016, 4 Pages.
Foreign Notice of Allowance, CN Application No. 201320097079.5, Apr. 1, 2016, 4 Pages.
Foreign Notice of Allowance, CN Application No. 201310067531.8, Jun. 7, 2016, 4 pages.
Foreign Notice of Allowance, CN Application No. 201310067592.4, May 17, 2016, 4 pages.
Foreign Notice of Allowance, CN Application No. 201310067808.7, May 4, 2016, 4 pages.
Foreign Office Action, CN Application No. 201310067385.9, Apr. 14, 2016, 14 Pages.
Foreign Office Action, CN Application No. 201310067627.4, May 3, 2016, 7 pages.
Foreign Office Action, CN Application No. 201310096345.7, May 25, 2016, 16 Pages.
Foreign Office Action, CN Application No. 201310316114.2, Apr. 18, 2016, 11 pages.
Foreign Office Action, CN Application No. 201380025290.9, May 10, 2016, 15 pages.
Non-Final Office Action, U.S. Appl. No. 13/653,218, Apr. 20, 2016, 17 pages.
Non-Final Office Action, U.S. Appl. No. 13/689,541, Apr. 14, 2016, 23 pages.
Non-Final Office Action, U.S. Appl. No. 14/162,529, Apr. 6, 2016, 17 pages.
Non-Final Office Action, U.S. Appl. No. 14/307,262, Apr. 20, 2016, 10 pages.
Notice of Allowance, U.S. Appl. No. 13/468,882, May 24, 2016, 5 pages.
Notice of Allowance, U.S. Appl. No. 13/470,951, Mar. 24, 2016, 8 pages.
Provisional Applications (7)
Number Date Country
61606321 Mar 2012 US
61606301 Mar 2012 US
61606313 Mar 2012 US
61606333 Mar 2012 US
61613745 Mar 2012 US
61606336 Mar 2012 US
61607451 Mar 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13470633 May 2012 US
Child 13891109 US
Reissues (1)
Number Date Country
Parent 13891109 May 2013 US
Child 16846055 US