The invention relates to a connection for elastic or rigid panel-type components, in particular for floor panels, in accordance with the preamble of claim 1, to a floor covering provided with such a connection, and to a profiled slide for such a connection.
Under the heading “click connection” a plurality of solutions are presently offered which enable the glueless connection of laminate or parquet floors/panels.
The long-side connection of the panels is performed via glueless tongue and groove joints with horizontal and vertical locking as described in EP 0 098 162 B1, WO 97/478 34 A1, or DE 199 62 830 C2. These connection profiles may be brought into locking engagement by angling or horizontal displacement. A problem with these solutions is the front-end connection of adjacent panels since they can only be connected by horizontal displacement (“hitting”). Such an installation is relatively complex. For this reason, connections have become prevalent in which the front-end connection takes place by angling a panel to be installed relative to a panel that has already been installed. Such connection profiles to be connected by angling are also referred to as “hook profiles” or “press button profiles”. With these profiles, a panel to be installed is positioned angularly along the long sides of a panel that has already been installed, wherein, for instance, a tongue of the panel to be installed immerses into a groove of the panel that has already been installed. Subsequently, the panel to be installed is angled from its angular position downward, with the tongue immersing completely into the groove and the horizontal locking means at the long sides engaging each other, so that the two panels are locked along the longitudinal edge. During this angling process the front-end profiles of the panel to be installed are also brought into locking engagement with a front-end adjacent panel without a “hitting” in the horizontal direction being necessary.
Such connection is, for instance, known from EP 1 276 941 B1. In this known solution, a locking projection immerses into a locking recess of the other panel during angling, wherein a locking projection of the panel then snaps into a locking recess of the other panel for vertical locking. These locking projections and locking recesses must, caused by the construction, be relatively small since a catch mechanism by elastic deformation of the material is possible. This document also illustrates a variant in which the locking projection is effected by an inserted flexible element.
Similar solutions are disclosed in DE 10 2005 002 297 A1 and in EP 1 415 056 B1.
EP 1 650 375 A1 describes a solution in which a tongue is inserted into an accommodation groove of a component for locking, said tongue being approximately U-shaped or arcuate in top view. In the unlocked condition, the basis of the U-shaped tongue projects toward the other panel and is deformed inwardly into the accommodation groove of the other panel during angling, and then, due to its resilience, snaps after the complete angling of the panel into an accommodation such that the panels are fixed in position at the front end.
A disadvantage of all these solutions is that a comparatively large force is required for locking since the elastic force of an insert has to be overcome or else the basic material of the panel, for instance, HDF/MDF has to be deformed elastically so as to effect the catch mechanism.
So-called “side push systems” have also been launched in the market in which a slide is incorporated at the front end of a panel which, by arranging a further panel at the long side, is adapted to be brought into locking engagement with a front-end adjacent panel that has already been installed. The first workable side push solution is described in DE 10 2007 018 309. Similar solutions are also explained in documents DE 10 2006 037 614 and WO 2008/004 960 A2 which were published later than the afore-mentioned one.
A disadvantage with these “side push solutions” is that the slide has to project at the long side—in the case of an undesired displacement of the slide position prior to the installation the establishing of the long-side connection is possible with increased effort only.
Recently, elastic floors of plastic material (PVC, PP, PET, etc.) have also been designed with connections that are used in the case of rigid, panel-type floors.
In DE 10 2011 056 156 of the applicant, the priority of which is claimed in the instant patent application, a connection for elastic or—in the broadest sense—rigid components, for instance, floor panels or tiles, is described for overcoming the afore-mentioned disadvantages. In this connection, the vertical lock is performed via a profiled slide which is, during the angling process of the component to be installed toward a component that has already been installed, moved in a sliding manner from a release position in the direction of a locked position due to a suitable design of the contact faces. This movement is performed without the overcoming of a resilient force or the like, so that this solution is distinctly superior to the initially described solutions. The advantage over side push systems consists in that the locking process is performed via the component to be positioned, whereas in the side push systems the locking process is performed by the positioning of a third component. If such a third component cannot be positioned (for example in the region of walls), this locking process has to be performed manually by a tool or the like.
A precondition of all these systems is, however, that elements for horizontal lock are provided in addition to the vertical lock via the tongue or the profiled slide used. This horizontal lock is usually performed via a shearing block on one component which is engaged behind by a locking projection on the other component and thus determines the withdrawal strength.
The forming of such a shearing block requires considerable manufacturing effort, wherein, on the one hand, complex milling cutters are required and, on the other hand, relatively much material has to be milled off to form the shearing block and the groove underlip with the locking projection.
As compared to this, it is an object of the invention to provide a connection for elastic or rigid panel-type components, in particular floor panels, a floor covering provided with such a connection, and a profiled slide, which enable easy vertical and horizontal locking.
This object is solved by a connection with the features of claim 1, by a profiled slide with the features of claim 21, and by a floor covering with the features of claim 31.
Advantageous further developments of the invention are the subject matters of the subclaims.
In accordance with the invention, such a connection for elastic or panel-type components, in particular floor panels, comprises a lock which acts along adjacent lateral edges of two components which can be brought into engagement by lowering or angling one of the components relative to the component that has already been installed. A locking element is thereby guided in a movable manner on one component, said locking element being adapted to be brought into locking engagement with a locking recess on the other component for the purpose of a vertical lock at said lateral edge. In accordance with the invention, this locking element is designed such that the horizontal lock and the vertical lock are substantially performed by this locking element, so that a separate horizontal lock, for instance, the manufacturing of a shearing block and of a locking projection engaging behind it, may be renounced. This means that the connection according to the invention may be designed without so-called “hook connections”. The effort with respect to manufacturing technology, in particular the milling of the front-side profile, is thus quite considerably facilitated as compared to the conventional solutions, wherein in addition less material has to be removed during the milling process, so that the material costs are reduced. On principle, the profiled slide may comprise at least two surface sections effecting a vertical lock which are spaced apart from each other and which are reversely effective. The applicant reserves the right to direct an own claim on the principle with two surface sections for horizontal lock.
In accordance with the invention, the function of a shearing block used with the “hook connections” mentioned is thus incorporated in the profiled slide, wherein appropriately effective functional elements are formed thereon which, on the one hand, provide a vertical lock and, on the other hand, a horizontal lock.
In one embodiment, the locking element is a profiled slide provided with a locking projection having a first guiding surface that is positioned angularly relative to the installation plane. A locking surface or another region of the locking recess will run on said guiding surface during the angling process, so that the profiled slide is movable from a release position into a locked position. This movement is performed directly from the release position into the locked position and not, as in prior art, by a tongue first being elastically deformed contrary to the locking direction and then snapping back.
The solution of the invention has the advantage that locking is effected alone by the lowering or angling of a component, wherein the profiled slide is pushed to slide into its locked position without noticeable resistance. Thus, a resilient force or elasticity of a locking projection such as with the afore-described “push button profiles” need not be overcome to effect the locking engagement. In these known systems, the lowering of a panel toward the other panel that has already been installed causes the tongue or the locking projection to be elastically deflected inwardly. It will then snap back into its locked position after the complete lowering of the panel. In the system according to the invention the profiled slide is moved directly in the locking direction without noticeable resistance.
As compared to the side push systems the system according to the invention has the advantage that the arranging of a third panel at the long side is not necessary. Accordingly, the connection according to the invention is, on the one hand, characterized by a high installation comfort and, on the other hand, by little effort with respect to the device technology.
The profiled slide according to the invention may be guided both in the component that has already been installed and in the component to be installed.
In one embodiment of the invention the guiding surface in the locked position engages behind the locking surface or another circumferential section of the locking recess, wherein the locking projection comprises a support face being in contact with an abutment wall of the locking recess in this locked position. This double-sided contact of the profiled slide with the lowered/angled component causes a reliable horizontal and vertical locking since the profiled slide is positively locked with the angled/lowered component.
The connection is particularly uncritical in the case of a change of position of the profiled slide prior to the installation if the locking projection is designed such that during lowering the guiding surface runs on the locking surface, so that the profiled slide, during further lowering, is, by a force component acting in the locking direction, movable in the locking direction until the support face is in contact with the abutment wall in the locked position. The slide is thus restraint-guided in the direction of its locked position.
For the sake of good order it is pointed out that the term “run on” does not necessarily define that the moving component runs on a stationary component. This term is used in the instant application also if a face provided on a component that has already been installed gets, during the lowering process of another component, into contact with a corresponding face of this component. This means that the face section that runs on may be provided on the component that has already been installed or on the component to be installed.
In one embodiment of the invention it is provided to form at least one tongue on the profiled slide which extends from the profiled slide, in particular from a flat slide plane, and effects part of the horizontal lock. One tongue is preferably oriented in counter-direction to the locking projection. A further tongue (flexible tongue) may be formed on the profiled slide which effects a locking in counter-direction.
The manufacturing of such a tongue is particularly simple if it is formed by a region of the flat slide section that has been cut clear. This clear cut is preferably made in slot- or U-shape, wherein the “U” encompasses the flexible tongue. Such clear cuts can be formed in a relatively simple manner in the injection molding tool.
In one variant of the invention, an abutment wall is formed on one component, said abutment wall being adapted to be brought into contact with an element of the profiled slide. This element is preferably formed on the afore-mentioned tongue.
The abutment wall is preferably provided as a front face of a groove on the component on which the profiled slide is guided in a movable manner.
In one embodiment this groove is formed as a shifting recess in which the element, for instance, the end section of the tongue, is accommodated during the movement from the release position into the locked position.
The forming of the profiled slide is particularly easy if one tongue extends from the side that is far from the locking projection and a further one extends in counter-direction. Both tongues then act as functional elements for horizontal lock.
For improving the elasticity of the tongues, they may be provided with recesses or slots.
In one embodiment the guiding surface and the support face may be designed to be approximately parallel to each other.
The locking may, for instance, also be improved in the case of an uneven underground in that the abutment wall or else the locking surface are designed such that a substantially linear or punctual abutment exists in this region and undesired releasing is thus prevented. This effect may, for instance, be caused by a concave curvature of the abutment wall, so that no extensive contact exists between the locking surface and the abutment wall. It will be understood that other geometries may also be chosen to avoid an extensive contact in the area between the locking surface and the abutment wall. On principle, the contact area between the guiding surface and the support face might also be designed such that no extensive contact exists in the locked position, so that undesired releasing is avoided.
The pitch angle of the guiding surface may be between 30° and 60°, preferably approximately 50°.
In an embodiment that is particularly easy to manufacture the locking projection has, in a view parallel to the installation face, approximately the shape of a triangle, with the guiding surface being provided at the rear side. Furthermore, the profiled slide is designed with a front face facing the locking recess, which is spaced apart from a rear wall of the locking surface in the locked position.
In one embodiment of the invention the locking projection of the profiled slide is provided with a slot. This slot ends preferably in a front face of the locking projection. Due to the design of the locking projection which is elastic to a certain extent the movement process from the release position into the locked position can be improved.
In one variant of the invention the profiled slide has a flat slide section guided in a movable manner in the locking direction in a guide groove of the first component.
The depth of a guide groove is preferably chosen such that the guide face is aligned with respect to the locking surface when the locking profile fully immerses into the guide groove. Thus, the wrong positioning of the slide in the first component which would aggravate installation is made difficult.
The shifting of the profiled slide in the front edge direction may be prevented by suitable stops.
The connection of the long sides of the components is preferably performed by a locking profile that is adapted to be brought into locking engagement by angling.
As already mentioned, the locking element, in particular the profiled slide, may be provided in the component to be installed or else in the component that has already been installed. This means that in the latter case the component to be installed is lowered toward the profiled slide. It has turned out that this variant has a certain advantage since in the case when the profiled slide is guided in the component to be angled, the upper flange of the groove is of relatively weak design and thus tends to stand up since no counteraction takes place in this region. This standing up in turn results in an overshot. If the profiled slide is guided in the component that has already been installed, the lower flange of the groove will be wakened in correspondence with the inversion of the profile geometry, but this weakening does not result in a standing up in the effective area, but at most in the support area. There, however, this standing up does not play any role since an insulating layer or the like is usually provided to compensate for such standing up.
The horizontal lock is particularly effective if the profiled slide, as already mentioned, is designed with a further tongue, in the following referred to as flexible tongue, extending in the direction of the locking projection and having a horizontal locking face formed thereon which engages behind a lock face on the other component in the locked position. This engagement behind and possibly the effective engagement of the afore-described tongue substantially determine the withdrawal strength of the two connected components and moreover reliably prevent a relative movement of the profiled slide with respect to the connected components in cooperation with the horizontal locking projection on the other flexible tongue, so that high withdrawal forces can also be implemented.
In accordance with the invention it is preferred if this horizontal locking face is inclined relative to the vertical to a higher degree than the locking surface of the locking projection.
The structure of the profiled slide is particularly compact if the lock face is formed on a notch of the locking recess. This notch may, for instance, end in the locking surface of the locking recess.
The flexible tongues/tongues may be deflected elastically to some extent during the movement of the profiled slide, so that the functional elements formed thereon slide off without noticeable resistance during the movement of the profiled slide and then snap back into their predetermined position on reaching the locked position and thus prevent that the profiled slide can be moved back.
In one embodiment of the invention a support face of the profiled slide is formed in sections by a support finger extending laterally away from the locking projection in the direction to the other component.
This support finger may be formed by the clear cut by which the flexible tongue or the tongue is formed.
It is of advantage if the profiled slide is provided with a plurality of recesses or cuts. These recesses or cuts which extend transversely to the longitudinal direction of the profiled slide provide it with certain elasticity. The result of this is that the profiled slide is adapted to be deflected elastically in the direction of movement and is thus capable of adapting itself automatically toward the other component during the lowering process of the one component, so that squeezing of the areas which are successively getting into contact with each other during the lowering movement is avoided.
The profiled slide according to the invention preferably has a flat slide section that is guided in a guide groove of a component, and a locking projection effecting the horizontal locking with the other component.
The profiled slide according to the invention is furthermore formed with a tongue effecting part of the horizontal lock or the fixing of the position of the profiled slide.
As mentioned above, this tongue may be formed by a clear cut preferably of slot- or U-shape.
Furthermore, the profiled slide comprises a support finger forming part of the support face of the locking projection.
This laterally projecting support finger is particularly simple to manufacture if it is part of the clear cut by which the tongue/flexible tongue is formed.
In one embodiment the profiled slide has a further flexible tongue extending in the direction of the locking projection and having a horizontal locking face formed thereon.
This further flexible tongue projects preferably from the locking projection of the profiled slide.
The horizontal locking face of this further flexible tongue may be inclined relative to the vertical with respect to a guiding surface of the locking projection.
The sliding guiding of the guide section within the guide groove is facilitated if a plurality of nubs, preferably of plastics, is provided on the flat slide section by means of which the flat slide section slides off in the guide groove.
In order to avoid squeezing of the areas that are successively getting into contact during the angling of the one component in the direction of the other component, in particular the locking surface and the abutment wall, the profiled slide is designed to have a predetermined elasticity in the installing direction which enables the locking projection to slide into the locking recess of the other component without excessive resistance. This transverse elasticity may be provided by cuts or recesses of the profiled slide. These recesses may be provided on the flat slide section and/or else in the region of the locking projection. Particularly good elasticity is achieved if such recesses are provided alternately on the flat slide section and on the locking projection. This transverse elasticity is explained in detail in the parallel patent application, so that, with reference to these explanations which count among the disclosure of the instant patent application, a repetition of the statements is renounced.
In all embodiments, a chamfer-like bevel in which a peak of the locking projection and/or a guiding surface of the locking projection ends may be formed on the front side of the locking projection of the profiled slide. This bevel is preferably arranged on the side of the profiled slide which is the first to get into contact with the floor element to be angled or that has already been installed, so that the run-in behavior is improved and hence “squeezing” can be prevented.
The floor covering consisting of a plurality of floor panels with the connection according to the invention is characterized by being very simple to install, with the formation of gaps during heating periods being reduced to a minimum.
The connection according to the invention is not restricted to the use with panels for floors, wall or ceiling coverings. On principle, such a connection may be used with all applications in which planar, elastic or rigid components have to be connected with each other in a detachable manner. Thus, the connection may, for instance, be used in furniture industry for cabinet systems or the like.
In the embodiments according to the invention, the profiled slide is supported in the horizontal locking direction on sections of the panels. For optimizing stability, it is provided in accordance with the invention that these support or holding webs have a breadth between 1 mm and 4 mm, preferably in the range between 2.0 mm and 2.5 mm (see for example
Preferred embodiments of the invention will be explained in more detail in the following by means of schematic drawings. There show:
a to 3d an installation process of two front-end adjacent floor panels with a connection according to
a to 4c sections along line A-A in
a to 6d views of a profiled slide of the embodiment according to
a to 8e views of a profiled slide of the embodiment of
a to 10f views of a profiled slide of the embodiment pursuant to
a to 13d various views of a profiled slide of the connection of
The floor panel may be used for a comparatively rigid floor covering such as, for instance, a parquet floor, a laminate floor, or a tiled floor. On principle, the floor panel may also be designed with an elastic, soft cover face in the case of an elastic floor covering, for instance, a PVC floor or a floor of PVC substitute material. Such floors may also be designed with a carrier of plastics, HDF/MDF, or wood-plastics compound.
At the long sides locking profiles are formed, such as they are explained in the introduction of the description. With these profiles, for instance, the panel 2 is locked at the long side by arranging it angularly with respect to the panel 6 that has already been installed, and by subsequent angling. The front-end connection of two adjacent panels 2, 4 will be explained by means of the following Figures.
In the illustration of
A—in FIG. 1—lower part of the front face section 36 is recessed relative to the adjacent front face section 34.
A—in FIG. 2—lower horizontal face 40 of the guide groove 26 is extended beyond the plane of the front face sections 34, 36 to the right (illustration in
The lower horizontal face 40 extends up to a vertical face 44 of the panel 2. From there, the groove underlip 22 extends, at the end section of which the horizontal locking projection 20 is formed. It has an inclined horizontal locking surface 46 being in contact with a rear-side beveled face 48 of the shearing block 18 in the locked position, wherein the two faces 46, 48 extend in parallel.
The rear-side beveled face 48 of the shearing block 18 is confined by a recess 50 on the bottom side of the panel 4 into which the horizontal locking projection 20 immerses. The type of horizontal lock via a shearing block 18 resting on a groove underlip 22 and being engaged behind by a locking projection 20 has also been implemented in prior art already, so that further explanations in this respect are superfluous.
The somewhat recessed portion of the front face section 36 of the panel 4 is followed by a locking recess 52 into which a locking projection 54 of the profiled slide 16 immerses in the illustrated locked position. This locking projection 54 has, in the illustration of
The guiding surface 56 of the locking projection 54 transitions via a horizontal face 72 into the recessed portion of the front face section 36 of the panel 4. This horizontal portion 72 is distinctly spaced apart from the flat slide section 24 of the profiled slide 16.
The illustration of
By means of
During the further angling of the panel 4, the support face 62 then gets into contact with the abutment wall 64, wherein the beveled face 48 of the shearing block approaches the horizontal locking surface 46 of the groove underlip 22. During the further lowering process of the panel 4, the locked position illustrated in
In the illustrated embodiment the faces 56 and 62 or 66 and 64, respectively, are positioned in parallel to each other—on principle, however, this parallel arrangement or a planar contact of the areas 56, 66 and/or 62, 64 is not required, though.
As explained by means of
The embodiment illustrated in
In the afore-described embodiments, locking in the horizontal direction is performed through the shearing block 18 which is engaged behind by the horizontal locking projection 20 and thus substantially determines the horizontal withdrawal forces. The milling of the profiling of the shearing block 18 and of the horizontal locking projection 20 requires substantial effort, wherein the material consumption is also high due to the great length of the groove underlip 22.
By means of
a to 4c illustrate in a strongly schematic manner a first embodiment of a connection with integrated horizontal lock. The profiled slide 16 is mounted in a movable manner in the panel 4 to be angled and immerses, pursuant to
This horizontal lock is performed inter alia via a tongue 108 that is either designed integrally with the profiled slide 16 or is hinged thereon as an additional component. This tongue 108 immerses into a shifting recess 110 of the panel 4 (see
b illustrates the panel 4 with the profiled slide 16 in the locked position in which the front side 112 is in contact with the abutment wall 114, wherein a part of the tongue 108 which projects from a large area 116 immerses to be flush with the recess 110.
c illustrates the panel 4 in the release position prior to the lowering process on the panel 2 that has already been installed. As explained before, in this release position the profiled slide 16 is fully or largely pushed into the guide groove 26, wherein the locking projection 54 is substantially covered by the region of the panel 4 which is confined by the front face section 36. The tongue 108 immerses into the shifting recess 110 with a small end section only, so that the front side 112 and the abutment wall 114 are spaced apart. During the lowering process, the guiding surface 56 then runs on the locking surface 66, so that the profiled slide 16 is moved out of the guide groove 26 in the locking direction in the afore-described manner, wherein the tongue 208 immerses with its projecting end section into the shifting recess 110 until it runs on the abutment wall 114 with its front face 112 (
As explained, the tongue 108 may be designed to be elastically deflectable on the profiled slide 16. On principle it is, however, possible to mount the tongue 108 as a pivotable element or the like on the profiled slide 16.
In this embodiment, the tongue 108 is mounted to be swiveled around a swivel joint 124 on the profiled slide 16. Such a variant is also illustrated in the embodiment pursuant to
a to 6d illustrate different views of a profiled slide 16 as may be used in the embodiments pursuant to
Such a profiled slide 16 may, for instance, be manufactured by a stamping and bending process from metal or else from a plastic material in an injection molding process.
b illustrates a bottom view of the profiled slide 16 of
c illustrates a top view pursuant to
d illustrates a side view of the profiled slide 16. In this view one recognizes the part of the support finger 118 which projects over the front edges 122 and which is with the front face section 120 in contact with the abutment wall 64. The part of the tongue 108 which is bent out and the locking projection 54 projecting downward can also be seen.
The embodiments of the profiled slides 16 explained by means of the embodiments pursuant to
In the embodiments pursuant to
The support finger 118 projects, like in the afore-described embodiment, from the front face 58 of the locking projection 54 toward the component 2 that has already been installed. In the embodiment pursuant to
In order to increase this withdrawal force even more, an additional horizontal lock is provided in the embodiment illustrated in
The structure of the profiled slide 16 is explained by means of
b shows the profiled slide 16 in a three-dimensional illustration. One recognizes the tongue 108 curving out upwardly from the flat slide section 24 and the support fingers 118 extending laterally from the front face plane of the locking projection 54. The concrete structure becomes clearer when looking at
As results in particular form
The—in the illustrations right—leg 94 of the clear cut 92 is extended relative to the other leg 96 and penetrates the locking projection 54, so that the support finger 118 is formed which is confined toward the tongue 108 by the basis 98 and on the front side by the leg 94 of the clear cut 92 which opens downward in the illustration pursuant to
A further advantage is achieved by this design of the leg 94 of the clear cut 92 which opens toward the front face on the locking projection side. During the angling process of the panel 4 that has already been connected with its long side, it is first of all positioned angularly to the panel 2 that has already been installed, so that during this angling process and the involved shifting movement of the profiled slide 16 the support face 62 does not get into contact with the abutment wall 64 along its total length, but increasingly in the course of the angling process of the panel 4. Pilot tests have shown that this angling movement and a rigid design of the profiled slide 16 may cause “squeezing” in the region in which—depending on the stage of angling—the support face 62 runs into the abutment wall 64. In order to avoid this “squeezing”, the construction of the profiled slide 16 has been chosen such that it can be deflected in the direction of the installation plane, so that the afore-described running of the support face 62 into the abutment wall 64 is facilitated since the profiled slide 16 yields, wherein this elastic connection then propagates in the horizontal plane as a function of the stage of angling in the longitudinal direction through the profiled slide 16 until it has achieved its locked position (the panel 4 is completely angled). It thus performs an approximately “meandering” movement. For the sake of illustration, such a connection region is indicated in
For minimizing the weight, a plurality of oval holes 150 is also provided in the flat slide section 24.
By means of
Also the profiled slide 16 illustrated in
In all the embodiments described in the instant application the locking forces acting in the horizontal direction are substantially transferred over the profiled slide 16, wherein the latter in turn supports on the panels 2, 4 in the horizontal direction. These support regions are designated by way of example with reference numbers A, B in
The breadth of the holding webs of the other embodiments is to be chosen appropriately.
In all the embodiments described a panel is supported on the so-called groove underlip (it has in fact no locking function). On principle, this vertical support on the groove underlip 22 may be renounced. In this case, however, care should be taken that the fit between the horizontal face 72 of the panel 4 and the corresponding horizontal face section 73 of the profiled slide 16 and the further, lower horizontal face section 75 as well as the adjacent support face section 76 of the other floor panel 2 are matched with each other such that the support forces can be transferred. This geometry with the suitable fit of the face sections 72, 73, 75 and 76 as mentioned may also be implemented in the other embodiments described in the instant application if the support on the lower “groove underlip” 22 is to be renounced.
a shows an detailed illustration of the profiled slide 16 of
c illustrates a bottom view of the profiled slide 16. In this illustration the end sections of the tongues 108 are visible with their vertically extending front sides 112 which extend from the basis of the flat slide section 24 toward the viewer. The flexible tongues 100 are visible in
d to 10f illustrate a bottom view (
The flexible tongues 100 are formed on both sides by continuous recesses 82, 83 opening toward the locking projection 54. Also these flexible tongues 100 are bound to the flat slide section 24 via a respective binding 158, wherein, however, the wall thickness of the flexible tongues 100 is somewhat smaller than that of the flat slide section 24, so that a step 160 (
The afore-described L-leg 154 extends in the illustration of 10f toward the viewer and forms the horizontal locking face 46 extending substantially in the vertical direction.
The slots 82, 83 confining the flexible tongues 100 again produce the afore-described transverse elasticity which facilitates the locking process. For further improvement of the transverse elasticity and for reducing material aggregation during injection molding, further recesses 172 or slots 174—as indicated in
Pilot tests have shown that in particular with the last-described embodiment withdrawal forces can be implemented which lie in the range of conventional connections.
The material of the profiled slide may also be optimized with respect to these withdrawal forces, wherein fiber-reinforced plastics or metal profiles may be used for stabilizing the flexible elements (100, 108).
For the actual horizontal and vertical lock it plays a subordinate role whether the profiled slide 16 is guided in the panel 4 to be installed or in the panel 2 that has already been installed.
As already explained, “squeezing” may occur during the lowering process of the one panel 4 on the panel 2 that has already been installed if the profiled slide gets for the first time into contact with the respectively other panel. In order to enable the running in and hence the angling process without squeezing or to avoid another blocking, pursuant to
Similar as in the afore-described embodiment, the horizontal lock is performed via the flexible tongue 100 projecting from the locking projection 66 of the profiled slide 16 and the tongue 108 projecting downward from the flat slide section 24 in counter-direction. The tongue 108 is guided in the shifting recess 110 during the shifting process of the profiled slide 16 into its locked position. During the angling process the flexible tongue 100 immerses into the locking recess 52. A difference to the afore-described embodiment consists in that, in the locked position, the guiding surface 56 of the locking projection 66 is not in contact with a circumferential wall of the locking recess 52, but that this horizontal lock in withdrawal direction, i.e. in a direction in which the panel 4 moves to the right (
As in the afore-described embodiments, however, during the angling process the panel 4 gets with an edge or a face section of the locking recess 52 into contact with the guiding surface 56, so that the profiled slide 24, due to the inclination of the guiding surface 56, is moved to the illustrated locked position in which the tongue 108 moves along the shifting recess 110. During the shifting process of the profiled slide 16 the flexible tongue 100 is, due to its elasticity, moved into the plane of the guiding surface 56 and then springs into the locking recess 52 in the locked position. The essential difference to the initially-described solutions consists in that the flexible tongue 100 contributes practically nothing to the vertical lock. In prior art, extra tongue noses are provided for vertical lock.
In the concrete solution pursuant to
A further difference to the afore-described embodiments consists in that the flat slide section 24 is tapered by a notch face 182 in the transition region to the locking projection 54. This notch face 182 is at a small distance to the face 178 of the panel 4 in the locked position and is inclined relative to the horizontal, so that the guiding surface 56 and the notch face 182 form a V-shaped notch/groove in the profile pursuant to
In the afore-described embodiments a profile peak 184 confining the maximum height extension of the locking projection 54 is designed in vertical direction (perpendicular to the installation direction) higher than the corresponding peak face of the flexible tongue 100 (this relates only to embodiments in which the profiled slide 16 is arranged in the panel 2 that has already been installed). In the embodiment pursuant to
As in the afore-described embodiments, the support face 62 is in contact with the abutment wall 64 in the locked position, so that the panel is fixed in position in the vertical direction by the faces 62, 64, on the one hand, and by the contact of the guiding surface 56 with the sliding edge 76, on the other hand. In the vertical direction the panel 4 is further supported by the resting of the lower side 104 on the upper side 106 of the lip 22. In the embodiment illustrated in
a shows the profiled slide 24 of
In order to avoid a so-called “overshot”, i.e. a vertical displacement of the panels 2, 4, a step 196 may be formed pursuant to the illustration in
As for the rest, the embodiment pursuant to
The connection according to the invention with the profiled slide adapted to be shifted by angling or positioning of a panel can be used with floor as well as with wall and ceiling panels or similar components. They may be manufactured of laminate, but also of wood, for instance as a parquet, or completely or partially of an elastic material, wherein in the latter case the whole component is elastic or may comprise a rigid core of wood, HDF/MDF or a composite material. As explained, this profiled slide 16 may be arranged in the panel to be angled or in the panel that has already been installed.
Disclosed is a connection for elastic or rigid components, in particular for floor panels, wherein a locking element is adapted to be brought into a locked position by lowering a component relative to a component that has already been installed. The locking element effects a horizontal and vertical lock. It may be guided in the component that has already been installed or in the component to be installed.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 052 300 | Jul 2011 | DE | national |
10 2011 052 342 | Aug 2011 | DE | national |
10 2011 053 283 | Sep 2011 | DE | national |
10 2011 054 860 | Oct 2011 | DE | national |
10 2011 056 146 | Dec 2011 | DE | national |
10 2011 057 098 | Dec 2011 | DE | national |
10 2012 102 339 | Mar 2012 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/064905 | 7/30/2012 | WO | 00 | 5/13/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/017574 | 2/7/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
87853 | Kappes | Mar 1869 | A |
108068 | Utley | Oct 1870 | A |
124228 | Stuart | Mar 1872 | A |
213740 | Conner | Apr 1879 | A |
261030 | Orcutt | Jul 1882 | A |
274354 | McCarthy et al. | Mar 1883 | A |
301775 | Thompson | Jul 1884 | A |
316176 | Ransom | Apr 1885 | A |
526044 | Merrill | Sep 1894 | A |
634581 | Miller | Oct 1899 | A |
861911 | Stewart | Jul 1907 | A |
917352 | Palmer | Apr 1909 | A |
1194636 | Joy | Aug 1916 | A |
1352620 | Onsrud | Sep 1920 | A |
1723306 | Sipe | Aug 1929 | A |
1743492 | Sipe | Jan 1930 | A |
1809393 | Rockwell | Jun 1931 | A |
1902716 | Newton | Mar 1933 | A |
1911598 | Ashum | May 1933 | A |
2005647 | Crouch | Jun 1935 | A |
2026511 | Storm | Dec 1935 | A |
2054828 | Melde | Sep 1936 | A |
2204675 | Grunert | Jun 1940 | A |
2277758 | Hawkins | Mar 1942 | A |
2430200 | Wilson | Nov 1947 | A |
2571861 | Gegumis | Oct 1951 | A |
2596280 | Nystrom | May 1952 | A |
2732706 | Friedman | Jan 1956 | A |
2740167 | Rowley | Apr 1956 | A |
2791247 | Gerson | May 1957 | A |
2863185 | Riedi | Dec 1958 | A |
2865058 | Andersson et al. | Dec 1958 | A |
2876812 | Waldron | Mar 1959 | A |
2889016 | Warren | Jun 1959 | A |
3023681 | Worson | Mar 1962 | A |
3077703 | Bergstrom | Feb 1963 | A |
3082802 | Dickson et al. | Mar 1963 | A |
3099110 | Spaight | Jul 1963 | A |
3147522 | Schumm | Sep 1964 | A |
3271787 | Clary | Sep 1966 | A |
3325585 | Brenneman | Jun 1967 | A |
3378958 | Parks et al. | Apr 1968 | A |
3396640 | Fujihara | Aug 1968 | A |
3512324 | Reed | May 1970 | A |
3517927 | Kennel | Jun 1970 | A |
3526071 | Watanabe | Sep 1970 | A |
3535844 | Glaros | Oct 1970 | A |
3572224 | Perry | Mar 1971 | A |
3579941 | Tibbals | May 1971 | A |
3720027 | Christensen | Mar 1973 | A |
3722379 | Koester | Mar 1973 | A |
3742669 | Mansfeld | Jul 1973 | A |
3760547 | Brenneman | Sep 1973 | A |
3760548 | Sauer et al. | Sep 1973 | A |
3774660 | Morey et al. | Nov 1973 | A |
3778954 | Meserole | Dec 1973 | A |
3817305 | Gibbs | Jun 1974 | A |
3849235 | Gwynne | Nov 1974 | A |
3913642 | Porter | Oct 1975 | A |
3919820 | Green | Nov 1975 | A |
3950915 | Cole | Apr 1976 | A |
3986543 | Slayton et al. | Oct 1976 | A |
4007994 | Brown | Feb 1977 | A |
4030852 | Hein | Jun 1977 | A |
4064571 | Phipps | Dec 1977 | A |
4080086 | Watson | Mar 1978 | A |
4082129 | Morelock | Apr 1978 | A |
4100710 | Kowallik | Jul 1978 | A |
4107892 | Bellem | Aug 1978 | A |
4113399 | Hansen, Sr. | Sep 1978 | A |
4151869 | Halloran et al. | May 1979 | A |
4169688 | Toshio | Oct 1979 | A |
4196554 | Anderson et al. | Apr 1980 | A |
4227430 | Jansson et al. | Oct 1980 | A |
4299070 | Oltmanns et al. | Nov 1981 | A |
4304083 | Anderson | Dec 1981 | A |
4426820 | Terbrack et al. | Jan 1984 | A |
4447172 | Galbreath | May 1984 | A |
4512131 | Laramore | Apr 1985 | A |
4599841 | Haid | Jul 1986 | A |
4648165 | Whitehorne | Mar 1987 | A |
5007222 | Raymond | Apr 1991 | A |
5071282 | Brown | Dec 1991 | A |
5148850 | Urbanick | Sep 1992 | A |
5173012 | Ortwein et al. | Dec 1992 | A |
5182892 | Chase | Feb 1993 | A |
5247773 | Weir | Sep 1993 | A |
5272850 | Mysliwiec et al. | Dec 1993 | A |
5344700 | McGath et al. | Sep 1994 | A |
5348778 | Knipp et al. | Sep 1994 | A |
5465546 | Buse | Nov 1995 | A |
5485702 | Sholton | Jan 1996 | A |
5548937 | Shimonohara | Aug 1996 | A |
5598682 | Haughian | Feb 1997 | A |
5618602 | Nelson | Apr 1997 | A |
5634309 | Polen | Jun 1997 | A |
5658086 | Brokaw et al. | Aug 1997 | A |
5694730 | Del Rincon et al. | Dec 1997 | A |
5755068 | Ormiston | May 1998 | A |
5899038 | Stroppiana | May 1999 | A |
5950389 | Porter | Sep 1999 | A |
5970675 | Schray | Oct 1999 | A |
6006486 | Moriau et al. | Dec 1999 | A |
6029416 | Andersson | Feb 2000 | A |
6052960 | Yonemura | Apr 2000 | A |
6065262 | Motta | May 2000 | A |
6164349 | Hsieh | Dec 2000 | A |
6164351 | Weathers | Dec 2000 | A |
6173548 | Hamar et al. | Jan 2001 | B1 |
6182410 | Pervan | Feb 2001 | B1 |
6216409 | Roy et al. | Apr 2001 | B1 |
6314701 | Meyerson | Nov 2001 | B1 |
6363677 | Chen et al. | Apr 2002 | B1 |
6385936 | Schneider | May 2002 | B1 |
6386250 | Liu | May 2002 | B1 |
6418683 | Martensson et al. | Jul 2002 | B1 |
6446413 | Gruber | Sep 2002 | B1 |
6449918 | Nelson | Sep 2002 | B1 |
6450235 | Lee | Sep 2002 | B1 |
6505452 | Hannig et al. | Jan 2003 | B1 |
6553724 | Bigler | Apr 2003 | B1 |
6601359 | Olofsson | Aug 2003 | B2 |
6617009 | Chen et al. | Sep 2003 | B1 |
6647689 | Pletzer et al. | Nov 2003 | B2 |
6647690 | Martensson | Nov 2003 | B1 |
6651400 | Murphy | Nov 2003 | B1 |
6670019 | Andersson | Dec 2003 | B2 |
6685391 | Gideon | Feb 2004 | B1 |
6763643 | M.ang.rtensson | Jul 2004 | B1 |
6766622 | Thiers | Jul 2004 | B1 |
6804926 | Eisermann | Oct 2004 | B1 |
6865855 | Knauseder | Mar 2005 | B2 |
6874291 | Weber | Apr 2005 | B1 |
6948716 | Drouin | Sep 2005 | B2 |
7051486 | Pervan | May 2006 | B2 |
7108031 | Secrest | Sep 2006 | B1 |
7152383 | Wilkinson, Jr. et al. | Dec 2006 | B1 |
7219392 | Mullet et al. | May 2007 | B2 |
7257926 | Kirby et al. | Aug 2007 | B1 |
7337588 | Moebus | Mar 2008 | B1 |
7377081 | Ruhdorfer | May 2008 | B2 |
7533500 | Morton et al. | May 2009 | B2 |
7556849 | Thompson et al. | Jul 2009 | B2 |
7584583 | Bergelin et al. | Sep 2009 | B2 |
7614197 | Nelson | Nov 2009 | B2 |
7617651 | Grafenauer | Nov 2009 | B2 |
7654055 | Ricker | Feb 2010 | B2 |
7716889 | Pervan | May 2010 | B2 |
7806624 | McLean et al. | Oct 2010 | B2 |
7954523 | Liu | Jun 2011 | B2 |
8302367 | Schulte | Nov 2012 | B2 |
8336272 | Prager et al. | Dec 2012 | B2 |
20010024707 | Andersson et al. | Sep 2001 | A1 |
20020031646 | Chen et al. | Mar 2002 | A1 |
20020069611 | Leopolder | Jun 2002 | A1 |
20020170259 | Ferris | Nov 2002 | A1 |
20020178674 | Pervan | Dec 2002 | A1 |
20020178680 | Martensson et al. | Dec 2002 | A1 |
20030009971 | Palmberg | Jan 2003 | A1 |
20030024199 | Pervan et al. | Feb 2003 | A1 |
20030037504 | Schwitte et al. | Feb 2003 | A1 |
20030084636 | Pervan | May 2003 | A1 |
20030094230 | Sjoberg | May 2003 | A1 |
20030101681 | Tychsen | Jun 2003 | A1 |
20030180091 | Stridsman | Sep 2003 | A1 |
20030188504 | Ralf | Oct 2003 | A1 |
20030196405 | Pervan | Oct 2003 | A1 |
20040031227 | Knauseder | Feb 2004 | A1 |
20040049999 | Krieger | Mar 2004 | A1 |
20040060255 | Knauseder | Apr 2004 | A1 |
20040123548 | Gimpel et al. | Jul 2004 | A1 |
20040128934 | Hecht | Jul 2004 | A1 |
20040139676 | Knauseder | Jul 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040168392 | Konzelmann et al. | Sep 2004 | A1 |
20040182033 | Wernersson | Sep 2004 | A1 |
20040182036 | Sjoberg et al. | Sep 2004 | A1 |
20040200175 | Weber | Oct 2004 | A1 |
20040211143 | Hanning | Oct 2004 | A1 |
20040250492 | Becker | Dec 2004 | A1 |
20040261348 | Vulin | Dec 2004 | A1 |
20050028474 | Kim | Feb 2005 | A1 |
20050050827 | Schitter | Mar 2005 | A1 |
20050160694 | Pervan | Jul 2005 | A1 |
20050166514 | Pervan | Aug 2005 | A1 |
20050210810 | Pervan | Sep 2005 | A1 |
20050235593 | Hecht | Oct 2005 | A1 |
20060101769 | Pervan et al. | May 2006 | A1 |
20060156670 | Knauseder | Jul 2006 | A1 |
20060236642 | Pervan | Oct 2006 | A1 |
20060260254 | Pervan | Nov 2006 | A1 |
20070006543 | Engstrom | Jan 2007 | A1 |
20070028547 | Grafenauer et al. | Feb 2007 | A1 |
20070065293 | Hannig | Mar 2007 | A1 |
20070108679 | Grothaus | May 2007 | A1 |
20070151189 | Yang | Jul 2007 | A1 |
20070175156 | Pervan et al. | Aug 2007 | A1 |
20070193178 | Groeke et al. | Aug 2007 | A1 |
20070209736 | Deringor et al. | Sep 2007 | A1 |
20080000185 | Duernberger | Jan 2008 | A1 |
20080010931 | Pervan et al. | Jan 2008 | A1 |
20080017274 | Burkholder | Jan 2008 | A1 |
20080028707 | Pervan | Feb 2008 | A1 |
20080104921 | Pervan et al. | May 2008 | A1 |
20080110125 | Pervan | May 2008 | A1 |
20080134607 | Pervan et al. | Jun 2008 | A1 |
20080134613 | Pervan | Jun 2008 | A1 |
20080236088 | Hannig | Oct 2008 | A1 |
20090019806 | Muehlebach | Jan 2009 | A1 |
20090100782 | Groeke et al. | Apr 2009 | A1 |
20090133353 | Pervan et al. | May 2009 | A1 |
20090151290 | Liu | Jun 2009 | A1 |
20090193741 | Cappelle | Aug 2009 | A1 |
20090193748 | Boo et al. | Aug 2009 | A1 |
20090193753 | Schitter | Aug 2009 | A1 |
20090308014 | Muehlebach | Dec 2009 | A1 |
20100043333 | Hannig | Feb 2010 | A1 |
20100043921 | Liu | Feb 2010 | A1 |
20100083603 | Goodwin | Apr 2010 | A1 |
20100135740 | Harif | Jun 2010 | A1 |
20100173122 | Susnjara | Jul 2010 | A1 |
20100293879 | Pervan et al. | Nov 2010 | A1 |
20100300029 | Braun et al. | Dec 2010 | A1 |
20100319291 | Pervan et al. | Dec 2010 | A1 |
20110030303 | Pervan et al. | Feb 2011 | A1 |
20110167750 | Pervan | Jul 2011 | A1 |
20110225922 | Pervan et al. | Sep 2011 | A1 |
20120017533 | Pervan et al. | Jan 2012 | A1 |
20120145805 | Yamada | Jun 2012 | A1 |
20120279161 | Hakansson et al. | Nov 2012 | A1 |
20130008117 | Pervan | Jan 2013 | A1 |
20130014463 | Pervan | Jan 2013 | A1 |
20130019555 | Pervan et al. | Jan 2013 | A1 |
20130042562 | Pervan et al. | Feb 2013 | A1 |
20130042563 | Pervan et al. | Feb 2013 | A1 |
20130042564 | Pervan et al. | Feb 2013 | A1 |
20130042565 | Pervan et al. | Feb 2013 | A1 |
20130047536 | Pervan | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
199 62 830 | Jul 2002 | DE |
10 2005 002 297 | Aug 2005 | DE |
10 2006 037 614 | Dec 2007 | DE |
10 2011 056 156 | Jun 2012 | DE |
10 2007 018 309 | Jul 2013 | DE |
0 098 162 | May 1991 | EP |
1 415 056 | Jan 2006 | EP |
1 650 375 | Apr 2006 | EP |
1 276 941 | Jan 2009 | EP |
WO 9747834 | Dec 1997 | WO |
WO 0047841 | Aug 2000 | WO |
WO 2007008139 | Jan 2007 | WO |
WO 2008004960 | Jan 2008 | WO |
WO 2011085825 | Jul 2011 | WO |
WO 2011127981 | Oct 2011 | WO |
Entry |
---|
International Preliminary Report on Patentability issued in International Application No. PCT/EP2012/064905 dated Feb. 4, 2014. |
International Search Report issued in International Application No. PCT/EP2012/064905 dated Oct. 19, 2012 (with translation). |
U.S. Appl. No. 14/235,887, filed Jan. 29, 2014. |
Number | Date | Country | |
---|---|---|---|
20140290173 A1 | Oct 2014 | US |