This application is a U.S. national phase application under 35 U.S.C. §371 of International Application No. PCT/EP2008/061706 filed Sep. 4, 2008, claiming priority under 35 U.S.C. §119 of Switzerland Application No. 1418/07 filed Sep. 11, 2007.
The present invention relates to a multipart rail-like profile comprising at least two or more joinable or insertable rail-like profile elements having at least one ratchet, a toothed rack compartment, or codings extending in the longitudinal direction, use of the profile, and methods for connecting two elements of a multipart rail-like profile.
For multipart rail-like profiles having a longitudinal ratchet or toothed rack compartment, it is a problem that in the transition from one profile to the next, the ratchet or toothed rack compartment continues with equidistant spacing. Since devices, means of transport, or vehicles are generally guided in the ratchet or toothed rack compartment or are driven by same, an imprecise transition results in interruptions of motion, reverse motions, or even the vehicle or device falling from the ratchet or toothed rack compartment.
Although it is possible to cut off the individual profile elements at the end in such a way that the transition is correct, this requires extremely accurate cutting equipment and a precise joining of the individual profile elements, which is very complicated.
The object of the present invention, therefore, is to provide a measure by means of which a connection of two rail-like profile elements ensures a precise transition of the ratchet or toothed rack compartment, i.e., that the ratchet or toothed rack compartment is guided with equidistant spacing from one element to the next.
The stated object is achieved according to the invention by use of a connection according to the invention as disclosed herein.
It is provided that the guide elements or profiles have pattern elements next to the ratchet or toothed rack compartment, extending in the longitudinal direction of the profile, and the individual elements are in the same relation to the ratchet or toothed rack compartment, the elements preferably being aligned on the ratchet or toothed rack compartment. For the connection, a connecting element is provided which likewise has further pattern elements which extend in the longitudinal direction along a longitudinal wall, and which are congruent with the pattern elements in the guide profiles.
If the pattern elements are hole patterns, for example, the connecting element is connected to each of the two profile elements via the hole patterns, using rivet or screw elements, for example, whereby no perforation of the pattern in the connecting element remains uncovered between the two profile ends. Because of the continuity of the pattern elements of the hole pattern from one profile to the next over the elements, i.e., the hole pattern in the connecting element, it is ensured that the transition in the ratchet or toothed rack compartment maintains equidistant spacing from one profile to the next.
As pattern elements, cams or elevations are also possible which project outwardly from the longitudinal wall with spring loading, for example, and which engage in corresponding hole patterns in the longitudinal wall adjacent thereto, for example to fixedly connect the connecting element to one of the profile elements. Instead of holes, however, merely punched depressions may be provided as pattern elements, in which the referenced elevations or cams engage to secure the connecting element to the profile.
Instead of a ratchet or toothed rack compartment, longitudinally extending coding may also be provided, along which a device, means of transport, or the like may be guided or driven. But also in the case of coding it is important for the transition from one profile element to the next to take place uniformly or consistently, which in turn may be carried out using the referenced pattern elements such as, for example, a hole pattern over the connecting element situated between the profiles.
The rail-like profile may have a U-, H-, T-, V-, L-, or O-shaped cross section, i.e., an open or closed cross section. The ratchet, toothed rack compartment, or coding extends in at least one longitudinally running wall, and the pattern elements such as the hole pattern, which are linearly arranged, for example, extend in at least one further longitudinal wall; i.e., one element of each pattern, such as a hole, comes to rest precisely next to each opening or section of the ratchet, toothed rack compartment, or coding. The connecting element may also have a corresponding U-, H-, T-, V-, L-, or O-shaped design, or may be designed as a two-dimensional longitudinal rail.
Such rail-like profiles may be manufactured from extruded steel or aluminum, for example, or may be made of another suitable material such as a reinforced polymer. For example, aramid fiber-or carbon fiber-reinforced polymers, such as acetals, polyamides, etc., are known which are extremely dimensionally stable, have high abrasion resistance, are impact-resistant, etc., and which are correspondingly suited as replacement materials for metals. Other polymeric materials having a much lower weight are currently being developed as replacements for metallic materials.
The selection of material depends on the use of the rail, for example as a guide for a vehicle, access equipment, a lift, rescue equipment, transport equipment, etc.
The invention is explained in greater detail with reference to the accompanying figures:
The guide profile 1 shown in
In order to join two rail-like guide profiles together in such a way that the ratchet or toothed rack compartment 5 is continued with equidistant spacing from one profile to the next, it is important that the two elements which are to be joined together are cut off precisely, so that on the connecting surface the distance between two ratchet holes is the same as that along the rail-like profiles. In practice, however, this is achievable, if at all, only by using complicated, extremely accurate cutting and joining equipment.
To enable a precise connection to be established, the invention provides for the use of at least one connecting element as schematically illustrated in a perspective view in
A second longitudinally extending hole pattern 25 having individual perforations 27 and in each case extending in the longitudinal direction is likewise provided in the two side legs 23 of the U-shaped connecting element 21. The individual perforations 27 are exactly the same, i.e., have at least substantially the same hole cross section, design, and spacing as the individual perforations 13′ and 13″ of the first hole pattern 11′ and 11″ in the side legs 9′ and 9″ of the respective rail-like profiles 1′ and 1″.
Correspondingly, the connecting element 21, initially as illustrated in
The use of rivets to connect the connecting element to the rail profiles may be advantageous, especially when high strength is required. In contrast to the use of screw connections, when a rivet is affixed its cross section expands inside the perforation, and the rivet is compressed in the cross-sectional area of the perforation. Thus, the perforation is completely filled when the rivet is set. In addition, when a rivet is set the two parts to be connected, such as the profile wall and the wall of the connecting element, are initially guided toward one another and finally are fully pressed together. When a screw connection is used, there is no complete and compressive filling of the perforations. Thus, higher strength results when rivets are used, and in addition the two parts to be connected adhere much more strongly to one another. Specifically for the rail-like profiles described according to the invention, increased strength in the region of the connection of the two profiles may be an important factor.
Top covers and cover caps 32 and 34 are provided on the respective ends of the connecting element 21.
After the connecting element 21 has been affixed to the rail-like profile 1″, the further rail-like profile 1′ may be guided over the connecting element 21, thus allowing the longitudinal tubes 15′ provided in the corners of the U-shaped profile to be guided over projecting pins 33 situated in the longitudinal tubes 15″ of the other rail-like profile 1″ in order to establish a connection.
Due to the fact that the two hole patterns 11′ and 11″ are continued equidistantly from one rail-like profile to the next, it is also ensured that the ratchet situated in the end face 3′ or 3″ is continued equidistantly from one profile to the next. The gap 35 which results between the two rail-like profiles may be different for the various transitions, but the ratchet or toothed rack compartment always continues consistently from one profile to the next.
As stated at the outset, such rail-like guide profiles may be used for guiding or driving transport equipment, vehicles such as rail vehicles, access equipment, etc. The use of such rail-like profiles is known, for example, for guiding access equipment and lifts on the walls of houses, transmission line towers, for guiding rescue equipment, etc. It is important that the individual rail-like profiles as well as the entire multipart rail-like profile in particular can be stably mounted or installed on a substrate such as, for example, a wall of a house, a transmission line tower, a cable railway pylon, etc. This may also be ensured, for example, using the above-referenced connecting element according to the invention. Correspondingly, by way of example
On account of this dual function of the connecting element, the connecting element may also be provided at any location on the rail-like guide profile in order to mount the guide profile on a house facade or a transmission line tower. In other words, connecting elements which also have a mounting element may be situated along the rail-like guide profile, i.e., not in the region of the connection of two rail-like guide profiles, to additionally increase the mounting strength of the rail-like guide profiles.
Correspondingly, the connecting element may be V-shaped, H-shaped, T-shaped, U-shaped, L-shaped, open, closed, or designed as a two-dimensional longitudinal plate. In addition, the rail-like guide profile is not limited to any particular use; it may be designed strictly in the form of a toothed rack as a drive mechanism for a vehicle, or as a guide and drive rail for access equipment, for a lift, etc.
Instead of a ratchet or toothed rack compartment, any other divisions of the profile provided in the longitudinal direction may be selected, in particular codings, which are stored on longitudinally extending magnetic strips. These codings are designed similarly to the ratchet as uniform, periodically recurring pattern elements which correspondingly continue or are to be transferred uniformly, also in the transition from one profile element to the next. In this case as well, it is practical to use the connecting element provided according to the invention.
As previously mentioned, it is also not absolutely necessary to use the hole pattern described in the examples; rather, equidistantly spaced elevations, cams, or the like may be used which engage in corresponding depressions. These elevations or cams may be situated either in the rail-like profile elements, with the depressions or recesses correspondingly provided in the connecting element, or vice versa. These cams may also be pretensioned in an outwardly projecting manner, and may snap or lock, for example, into the corresponding recesses when the connecting element is inserted into the profiles.
The multipart rail-like profile provided according to the invention is particularly suited for climbing aids or access equipment as described in International Patent applications WO 2005/016461 and WO 2007/051341.
It is important that a longitudinally extending ratchet, toothed rack compartment, or coding is provided in the multipart guide profile, and that longitudinally extending pattern elements, which are aligned on the ratchet, toothed rack compartment, or coding or match same. Also provided is a connecting element for connecting two rail-like profiles, which likewise has pattern elements which extend in the longitudinal direction and are in a consistent relation to the pattern elements in the rail-like profile elements, such as congruency, for example.
Number | Date | Country | Kind |
---|---|---|---|
1418/07 | Sep 2007 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/061706 | 9/4/2008 | WO | 00 | 3/11/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/034010 | 3/19/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
341639 | Clark | May 1886 | A |
3884153 | Sugimoto | May 1975 | A |
3968858 | Vollan et al. | Jul 1976 | A |
4499966 | Milne et al. | Feb 1985 | A |
4629032 | Armstrong | Dec 1986 | A |
4709782 | Lipinski | Dec 1987 | A |
4828072 | Ho | May 1989 | A |
4838412 | Backman | Jun 1989 | A |
4887694 | Ho | Dec 1989 | A |
6161647 | Braden et al. | Dec 2000 | A |
20020014568 | Faucher et al. | Feb 2002 | A1 |
20070189883 | Maurer et al. | Aug 2007 | A1 |
20090218165 | Maurer et al. | Sep 2009 | A1 |
20100252645 | Maurer et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
567 801 | Dec 1987 | AU |
10 12 320 | Jul 1957 | DE |
103 19 175 | Jan 2005 | DE |
103 37 121 | Jun 2005 | DE |
1 506 799 | Feb 2005 | EP |
2 547 859 | Dec 1984 | FR |
WO 2005016461 | Feb 2005 | WO |
WO 2007051341 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100252645 A1 | Oct 2010 | US |