1. Field of the Invention
This invention relates to pipelines which are lined with a plastics material.
Pipelines are constructed by first forming lengths or “stalks” of pipe, and subsequently joining the stalks together. The stalks may be joined in the field for a land-based pipeline. for a subsea pipeline, the stalks may be joined on a lay barge, or may be joined while the pipe is being reeled onto a reel laying vessel.
In many applications a metal, typically a steel, pipeline must be lined with a plastic liner in order to prevent corrosion of the internal surface of the pipe because of the nature of the fluid to be transported and on conditions of use such as pressure and temperature. When connecting stalks of lined pipe together, it is necessary to ensure that the corrosion protection provided by the liner is continuous across the connection.
In onshore use, it is common to connect together stalks of pipe by flanged connections, with the liner material being trapped between the flanges. However, in some land based applications and in many subsea uses, it is not possible to use flanged connections. This is particularly the case when laying undersea pipelines by reel-laying methods.
In these cases it is necessary to connect the pipe stalks by butt welding, and to do so in such a way that the plastic liner is not degraded by the heat of welding. Various means of achieving this have been proposed in the prior art.
It is also known to use plastic liners which are provided on their outer faces with continuous longitudinal grooves. This is done because gas within the transported fluid can permeate through the liner and accumulate at the liner/pipe interface. The grooves allow the gas to travel along the interface to some point where a gas draw-off is provided through the pipe. Prior art methods of joining lined pipe stalks do not permit such grooves or equivalent gas seepage paths to extend across the join.
In the case of reeled pipeline for offshore applications, the assembly of the stalks is made during reeling of the pipe onto the vessel. It is therefore important to reduce the time taken for connecting the stalks, in order to minimise the immobilisation of the vessel.
2. Description of Related Art
U.S. Pat. No. 5,998,691 shows a method of connecting stalks of lined pipe which makes use of pup pieces welded within the ends of the pipe stalks. This method requires continuous corrosion-resistant welds to be made between the pipes and the pup pieces. This method is complicated to implement and takes time. Also, it cannot provide gas drainage grooves extending across the join.
U.S. Pat. No. 5,348,211 also relies on the use of metal inserts welded into the pipe stalk ends, with similar disadvantages.
EP 0,366,299 shows an arrangement using a thermoplastic insert which carries a ceramic ring on top of which welding is performed, insulation being provided between the ceramic ring and the thermoplastic material. However, the arrangement disclosed in this document has the disadvantage that the location of the ceramic ring can vary; this is because the liners and the insert are typically joined under tension, and when abutting the external pipe there can be no assurance that the liner has kept its position. Also, during service the liner can move within the pipe. It is therefore difficult to ensure that the ring is positioned under the pipe welding location in all circumstances. Also, this prior art considerably reduces the size of the internal bore while keeping the thickness of the liner at the connection, and it cannot be implemented with a grooved liner.
A primary object of the present invention is to provide a method of joining lined pipelines, and an insert for use in said method, which give a simple and quick connection with reduced risk of damage to the liner. Preferred forms of the invention are also capable of providing connection between grooved liners.
The present invention provides an insert for use in connecting two lengths of pipe each of which has a plastics liner, the insert comprising:
The invention further provides a method of connecting a first pipe containing a first liner to a second pipe containing a second liner, the method comprising the steps of:
Preferred features and advantages of the invention will be apparent from the following description and the claims.
An embodiment of the invention will now be described, by way of example only, with reference to the drawings, in which:
Referring to
As best seen in
In alternative embodiments of the invention, the sheath 24 can be designed to withstand the working pressure and so it can be fabricated of high strength steel for example. In these embodiments, the internal diameter of the bore of the pipeline will experience a reduction through the connection but the risk of damaging the tubular body 12 of the insert 10 due to the collapse of the sleeve 14 will be reduced or eliminated.
As best seen in
The sheath 24 allows the sleeve 14 to be bonded to the host pipe during the connection process, preferably by use of an epoxy adhesive. The use of bonding obviates the need for welding the sleeve in place, thus reducing the risk of introducing a fatigue initiation point. This bonding ensures that the heat resistant element is placed at the correct location during external pipe welding operations.
Furthermore, due to the boding of the sheath 24 to one stalk of pipe, the insert is anchored in the host pipeline at each connection location. the acute angle α assists in anchoring the liner during installation and in service by reducing the risk of the liner pulling through the insulating sleeve.
The insert 10 may suitably be assembled by forming the tubular member 12 in two parts which are joined by fusion along the line 18 after the sleeve 14 and ring 16 have been positioned.
In the illustrated embodiment, the tubular member 12 is formed with grooves, in this embodiment six grooves 20, which extend along its length and beneath the sleeve 14. The provision of the grooves 20 allows the insert 10, when used with grooved pipe liners, to provide a gas drain path extending through the connection. In alternative embodiments of the invention the grooves 20 may be omitted, or may be replaced with longitudinal bores extending within the insert body which may be advantageous in reducing strains on the insert material. In the illustrated embodiment, the sheath 24 is useful in protecting the grooves 20 from the insulation material 22. In this case, the sleeve 14 and its sheath 24 can be calculated to withstand the bore working pressure in order to protect the grooves 20.
The first stages shown in
The liner 42 is then extended under tension and released to establish where a cut must be made to produce a cut end at a desired location within the pipe stalk 40. Then, as seen in
The insert 10 is then positioned abutting the cut liner 42 (
The pipe stalk 40 is now reeled onto the reel vessel with the end illustrated extending from the reel.
The next steps will usually be performed in the tie-in shed adjacent the vessel as the stalk 44 arrives. The liner 46 is extended and held by the clamp 51 (
The ends of the pipe stalks are then aligned for butt welding (
A preferred feature of the insert 10 is that it is designed to partially collapse or compress under the working pressure of the eventual pipeline, due to the design of the insulating sleeve. The exemplary construction detailed above is suitable for this purpose in a typical subsea pipeline. The encapsulated insulating material collapses, allowing the body of the insert to move radially outward. This feature minimises the reduction of flow area in the pipeline caused by the insert. Where a grooved liner is being used, the metal sheath will prevent the grooves being obstructed by the insulating material. The present invention also makes it possible to provide a join between pipe stalks which has bending characteristics similar to those of the pipe.
Modifications may be made to the foregoing embodiment within the scope of the invention. For example, the sleeve could be only partially, as opposed to entirely, encased in metal but it is desirable to provide a metal portion at least in an area suitable for bonding to the pipe. This could be done by having metal covering to the ends and the outer surface only, or to the ends, the inner surface and end portions of the outer surface. An inner metallic portion is useful in maintaining the grooves open.
It is also possible to incorporate material in the insert which acts as a reflector for radiographic examination, which can be useful in checking the positioning of the insert within the pipe.
Number | Date | Country | Kind |
---|---|---|---|
0201864.6 | Jan 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/00263 | 1/24/2003 | WO | 00 | 11/19/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/062691 | 7/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3508766 | Berg et al. | Apr 1970 | A |
4386629 | Cook et al. | Jun 1983 | A |
4913465 | Abbema et al. | Apr 1990 | A |
5104152 | Galfant | Apr 1992 | A |
5346261 | Abbema | Sep 1994 | A |
5348211 | White et al. | Sep 1994 | A |
5547228 | Abbema et al. | Aug 1996 | A |
5685572 | Linton et al. | Nov 1997 | A |
5984370 | Lewis | Nov 1999 | A |
Number | Date | Country |
---|---|---|
0366 299 | May 1990 | EP |
Number | Date | Country | |
---|---|---|---|
20050087980 A1 | Apr 2005 | US |