The invention generally relates to safety razors and, more particularly, to structures for connecting a replaceable blade cartridge to a handle of such safety razors.
Safety razors typically comprise a handle and a cartridge having a plurality of blades arranged between a guard and a cap. Some safety razors provide a mechanism to allow the user to detach the cartridge from the handle to allow replacement of the cartridge when the blades have become dulled.
One embodiment provides a connection system for connecting a safety razor handle to a replaceable blade cartridge, comprising: a cartridge connecting structure attached to the replaceable blade cartridge; and a handle connecting structure attached to the safety razor handle and configured to be brought into engagement with the cartridge connecting structure along a connection axis, wherein the handle connecting structure comprises a lever mounted to a body, the lever having a user end to be actuated by a user, a working end, and a rotation axis about which the lever is rotatable with respect to the body, the rotation axis being situated between the user end and the working end, and the working end of the lever is configured to exert a pushing force on the cartridge connecting structure when the lever is rotated by actuation of the user end, to eject the cartridge connecting structure from the handle connecting structure.
According to this connection system there is little friction between the rotating lever and the other elements of the handle connecting structure, in contrast particularly to push button-type mechanisms in which the force on the button when pushed by the user can give rise to large friction forces between the button and the handle that need to be overcome in order to release the cartridge from the handle. As a result, in this connection system a low overall force may be sufficient to eject the cartridge from the handle (i.e., the cartridge connecting structure from the handle connecting structure). This means that there may be a low variability in the force used to eject the cartridge from the handle, thereby enabling more controlled ejection of the cartridge by the user.
In addition, the provision of a rotating lever may reduce the risk of jamming, especially compared to mechanisms that utilise a sliding ‘pusher’, which typically is of a certain length in the direction of the movement relative to the direction perpendicular to the movement. The provision of a rotating lever may also provide space savings in the handle connecting structure which can be used for other components such as securing elements. Also, the lever can be actioned with a single digit only (such as the forefinger) to eject the cartridge. Thus the mechanism is safer than those that require use of two fingers, or a finger and thumb for example.
The handle connecting structure may be releasably secured to the cartridge connecting structure by complementary securing elements. These may comprise mechanical means (e.g., complementary projections, a projection and a complementary recess or hole) that may form a snap-fit, friction fit, or interference fit, magnetic means (e.g., a magnet and corresponding ferrous metal), or any other suitable means. Thus, the pushing force on the cartridge connecting structure may also release complementary securing elements of the handle and cartridge connecting structures. However, the handle and cartridge connecting structures may be provided with complementary securing elements that may be released by a separate force, i.e., a separate action from the rotating of the lever by the user.
Friction between the working end of the lever and a generally flat inner surface of the cartridge connecting structure when the lever is rotated may be sufficient to eject the cartridge connecting structure from handle connecting structure. However, to aid in the ejection of the cartridge connecting structure from the handle connecting structure, an inner surface of the cartridge connecting structure may be provided with a protrusion (e.g., a rib) against which the working end of the lever urges when the lever is rotated by actuation of the user end.
The pushing force may be exerted directly on the cartridge connecting structure by the working end of the lever, i.e., without any intermediate element between the working end of the lever and the cartridge connecting structure. The pushing force may deform a wall of the cartridge connecting structure. This deformation may cause the complementary securing elements of the handle and cartridge connecting structures to disengage. The wall of the cartridge connecting structure may return to its original shape once the pushing force ceases to be applied, i.e., the wall may be elastically deformed with little or no permanent deformation, so that the cartridge may be re-attached. Alternatively the cartridge connecting structure may be permanently deformed. The working end of the lever need not deform the cartridge connecting structure, and instead the working end of the lever may engage a protrusion, recess, or hole of the cartridge connecting structure to convert rotating movement into linear motion.
The lever may be mounted to the body so that the user end is to be actuated in a direction toward the handle, i.e., in a direction opposite to that in which the handle connecting structure is brought into engagement with the cartridge connecting structure. This means that the space between the handle and the user end of the lever can be for the ‘travel’ of the user end. The space for the finger of the user to reach the user end of the lever is on the cartridge side on which more space may be available, e.g., to allow pivoting of the cartridge. Thus, the connecting system may have a compact form factor that allows it to fit into a relatively small ‘neck’ area between the handle and the cartridge, yet still enables the user to easily actuate the lever.
The lever may be rigid and may be any suitable shape(s), e.g., straight, bent, or curved. A straight lever is one in which the user end and the working end are in the same generally straight line. Straight levers provide a simple construction for converting a rotation into a linear motion. The working end of the lever is the portion of the lever that performs the function of pushing against the cartridge connecting structure. It may have a chamfered surface. Such a shape may provide a greater contact area between the working end of the lever and the cartridge connecting structure. This may aid in converting the rotation of the lever into a displacement (ejection) of the cartridge connecting structure.
The working end of the lever may comprise a pair of arms, each arm having a contact portion with a contact surface, and each arm being joined to the user end of the lever at the rotation axis. This allows contact forces between the working end of the lever and the cartridge connecting structure to be distributed over a plurality of surfaces or over a greater surface area.
For example, the user end may be C-, U- or V-shaped, with the arms of the working end extending from the tips of C, U or V. Alternatively, the arms of the working end may be offset either inwardly or outwardly of the user end in directions along the rotation axis. Thus, each arm may further have a bearing portion with a bearing surface, and the user end may have bearing portions which are respectively joined to the bearing portions of the working end at the rotation axis, the bearing portions of the user end having bearing surfaces which face in an opposite direction to the bearing surfaces of the working end. This allows contact forces between the lever and the handle connecting structure to be distributed over a plurality of surfaces or over a greater surface area.
The body of the handle connecting structure may comprise a housing and a cover, which may be snap fit together around the lever to form a closed package. The bearing portions of the user end and the bearing portions of the working end may be sandwiched between the housing and the cover of the body, with the bearing surfaces of the user end configured to bear against an inner surface of the housing, and with the bearing surfaces of the working end configured to bear against an inner surface of the cover. Since all parts are sandwiched between other parts or snapped together, the handle connecting structure can be easily stored and transported prior to assembly with the handle.
The working end of the lever may be configured to contact the cartridge connecting structure when the cartridge connecting structure is brought into engagement with the handle connecting structure, to rotate the lever into a position ready for actuation by the user. Thus, when a new cartridge is attached to the handle the lever will return to its ‘ready’ position. In this position the user end of the lever may be inclined away from the handle.
The handle connecting structure may include a biasing spring to maintain the position of the lever and prevent ‘rattling’ of the lever when the cartridge connecting structure is not attached to the handle connector structure. Alternatively, or in addition, the lever may have one or more protrusions configured to generate friction against the body of the handle connecting structure. A relatively small amount of friction between the lever and the body may be sufficient to prevent rattling of the lever, and is easy to overcome when the user actuates the user end of the lever. The biasing spring may therefore be eliminated to keep the design simple and the number of components to a minimum.
The cartridge connecting structure may comprises a pair of legs extending outwardly from a body and forming a pivoting connection to a blade unit of the replaceable blade cartridge, the body of the cartridge connecting structure having a pair of holes adjacent to the pair of legs and configured to receive a pair of protrusions extending from the body of the handle connecting structure.
The user end of the lever may have a chamfered surface so that the side of the user end facing the handle extends further than the side of the user end facing away from the handle. This configuration helps to direct the user towards the intended use of the lever, i.e., to pull the lever towards the handle.
The handle connecting structure and the handle body may be permanently attached to one another so that they are not detachable during normal use. However, they may be individually manufactured and then assembled together. Similarly, the cartridge connecting structure may be permanently attached to the cartridge so that they are not detachable during normal use, but may be individually manufactured and then assembled together.
Another embodiment provides a handle connecting structure for a safety razor handle, comprising: a body configured to be attached to the safety razor handle; and a lever mounted to the body, the lever having a user end to be actuated by a user, a working end, and a rotation axis about which the lever is rotatable with respect to the body, the rotation axis being situated between the user end and the working end, wherein when the handle connecting structure is engaged with a cartridge connecting structure of a replaceable blade cartridge and the lever is rotated by actuation of the user end, the working end of the lever is configured to exert a pushing force on the cartridge connecting structure to eject the cartridge connecting structure from the handle connecting structure.
Another embodiment provides a safety razor handle, comprising: a handle body; and a handle connecting structure according to any of the definitions above.
The handle connecting structure may be attached to the handle body via an insert in the handle body.
The handle body may comprises an underneath surface portion facing the skin of the user in use and comprising an attachment means for attachment to a blade unit; a front surface portion facing in the opposite direction from the shaving direction in use; a rear surface portion facing in the shaving direction in use; a top surface portion and side surface portions, one directed to either side of the blade length in use; wherein the top surface portion, underneath surface portion and side surface portions together form a continuous smooth surface which is a substantially cylindrical or substantially ellipsoid or substantially partially spherical surface; and wherein: the distance between the front surface portion and rear surface portion is between one third and three times, preferably between a half and twice, the largest dimension of the largest cross section through the continuous smooth surface.
The “chunky” bulbous shapes of such a handle allow a particularly flexible ergonomic handling, giving many varied gripping positions for the human hand and easy twisting of the handle within the grip to reach different angles. The combination of this chunky shape with the easy release lever allows for a comfortable and safe ejection (and replacement) of cartridges. The lever can be simply actioned with the forefinger alone to eject the razor, with the remaining fingers and thumb comfortably positioned on the handle, away from the blades.
Moreover this shape allows the handle to stand on a surface with the blade and any lubrapad of an attached cartridge suspended above the surface. This can help prevent blade corrosion and adhesion of the shaving aid (lubrapad) to the surface.
The front surface portion may be flat or concave. This front surface may extend to the guard side of the attachment to the blade unit, and may conveniently be provided with a logo and/or instructions. It may extend substantially parallel to the rear surface portion and preferably substantially parallel to a main direction (in terms of longest extent) of the handle connecting structure. The front and/or rear surface portions may extend at a slant to the continuous smooth surface (i.e. at a non-perpendicular angle).
The top surface portion (and underneath surface portion) of the handle may be approximately parallel to the shaving plane in use. In this case, the front and/or rear surface portions extend at a slant to the user's skin. The slant may be back away from the cap, giving improved visibility.
A recess may be provided in the underneath surface portion to receive the handle connecting structure. For example, the handle connecting structure may fit, either permanently or detachably, into an insert housed in the recess. The recess may be of rectangular section, with a direction up into the handle, and may be at the same slant as the front and/or rear surfaces.
The body may have any suitable construction. For example, the body may be solid or contain a hard core or hard hollow core. This may allow the use of a softer material for the body.
In a further definition, the handle may comprise a moulded translucent or transparent body of elastomeric material such as TPE, silicone or rubber having a Shore A hardness of 5 to 65 or preferably 10 to 50; wherein the body has a shape which is rounded and chunky (or bulbous), extending with perpendicular length I, width w and height h, wherein none of the maximum length, width and height of the body is more than 2, 3 or 4 times the size of the maximum in the other two dimensions. For example, the height may be the largest vertical cross section through the continuous smooth surface previously defined, the width may be the largest vertical cross section through the continuous smooth surface and the length may be the horizontal distance (parallel with the shaving plane) between the front surface portion and the rear surface portion.
In a further definition, the handle body may be bulbous in two orthogonal directions, widening away from an end surface towards the centre of the body. Thus an outline/silhouette of the handle body in both these directions may be generally fat and round. As noted earlier, such a “chunky” bulbous shapes are ergonomic.
The handle body may comprise a further end surface opposite to the end surface. The two opposite surfaces may be connected by a side surface which widens towards the centre (or approximate centre) of the body. The opposite further end surface gives an even better handling feel, particularly if there are opposite flat surfaces. Of course, the handle body may widen away from the end surface not just in two orthogonal directions but in many or all of the directions in between these two orthogonal directions, so that the increase in size is general and thus of most of or the entire cross section. The side surface may be a single continuous curved side surface. This curved side surface, or a plurality of curved side surface portions, may provide the handle body with a cross section that increases continuously (without decreasing) away from the flat end surfaces towards the centre of the body, forming the bulbous shape mentioned above. The further end surface may be a front end surface. This surface thus forms the front of the razor in use, facing in the opposite direction to the shaving direction. Correspondingly, the end surface may be a rear end surface facing in the shaving direction in use. The cartridge attachment means may be on the side surface, for example closer to the front end surface than to the rear end surface.
In use, the safety razor is pulled backwards across the skin in the shaving direction. The end surface may therefore be in front of the blades in the shaving direction (to the rear of the razor if the cartridge is seen as the front), and the further end surface behind the blades in the shaving direction (to the front of the razor).
As mentioned above, one or both end surfaces may be flat. The flat end surfaces may be parallel, providing a symmetrical feel which gives the user a better tactile impression of the overall handle, for improved shaving experience. One or both of the flat end surface(s) may be circular or elliptical, for example.
The handle body may be in the form of a slanted barrel shape, with a skewed barrel surface between two end surfaces. The barrel shape may be terminated at either end with a slanted end surface, which is not orthogonal to the barrel axis. Neither is the barrel shape itself necessarily formed from a circle of varying diameter extruded along a central straight axis. Rather, the handle body as a whole may be viewed as having a skewed barrel shape (potentially with a curved barrel axis).
When the two parallel end surfaces are in a vertical orientation, with the handle connecting structure extending downwards, the barrel surface may be skewed/slanted upwards from the front end surface towards the rear end surface.
If the handle connecting structure projects from the side surface and parallel to the end surface, then a slanted/overhang design of the handle (with the end surface(s) extending at a slant (non-perpendicular angle) to the average direction of the side surface between the centres of the two end surfaces) allows the handle body to sit with the rear end surface at the back of the user's hand grip on or towards the palm of the hand, with the user's fingers positioned on the front end surface and side surface. In this position the end surfaces slope up and back towards the user's hand, allowing a better view of the cartridge.
The barrel shape may have a substantially circular or substantially elliptical cross section perpendicular to its longitudinal axis (which may be straight or curved). The barrel shape may widen continuously from the two end surfaces towards the centre. For example, the largest diameter of the barrel shape (which may be central along its axis) may be between a third and three times the length of the longitudinal axis of the barrel, preferably between a half and twice. The largest diameter of the barrel shape may be larger than the length of its longitudinal axis.
The end surface may be provided with a recess or other interface allowing attachment to another part, such as packaging or a travelling case, or suspension from a hook (which could be provided separately) on a wall or other vertical surface.
The handle body may be made of a single part and material (excluding any minor additions of logos etc). In one example it is made of two or more parts, such as a core and an external layer, or two opposite halves, which are fabricated individually, and then connected. The insert may also be connected to form the full body at the same stage.
The handle body may have any suitable construction. The handle body may comprise a single material or may comprise a core material and an outer material. Inserts may be made in the same material or one or more different materials. In one example the handle body is solid or contains a hard core or hard hollow core. This may allow the use of a softer material for the rest of the body.
Another embodiment provides a replaceable blade cartridge, comprising: a blade unit housing a plurality of shaving blades; a frame secured to the blade unit, the frame having a guard in front of the blades and a cap to the rear of the blades; and a cartridge connecting structure comprising a pair of legs extending outwardly from a body and forming a pivoting connection to the blade unit. The ends of the legs may be located within a cavity of the blade unit. As such, the cartridge connecting structure can have a small profile.
Another embodiment provides a safety razor system, comprising: a safety razor handle; a replaceable razor cartridge; and a connection system for connecting the safety razor handle to the replaceable blade cartridge according to any of the definitions above.
The handle body may have a substantially flat end surface and a side surface, the handle connecting structure is attached to the side surface, and when the flat end surface is in contact with a horizontal plane, the safety razor is in a stable position of rest, the flat end surface forming the safety razor's only region of contact with the plane and elevating the cartridge above the plane.
The flat end surface allows the handle to stand on a horizontal plane, such as a basin edge or shelf with the blades and any shaving aid (e.g., lubrapad) of an attached cartridge suspended above the surface and no other point of contact between the safety razor and the horizontal plane. This can help prevent blade corrosion and adhesion of the shaving aid to the surface.
The term “flat” is used herein to describe a surface which is completely or substantially flat and which thus may include some portions which are not flat (and thus some portions which are not in contact with the horizontal plane). For example, the surface may include patterns, a logo, an opening or writing recessed into the flat surface, some surface texturing or curvature or the like. However, the surface may be substantially unbroken. Preferably over 80%, or more preferably over 90% of the surface is in contact with the horizontal plane.
The term “stable position of rest” indicates that the safety razor will stay in the upright position on its flat end surface with the cartridge elevated without any external assistance/force.
The overall handle body shape may be bulbous in two orthogonal directions. Thus an outline/silhouette of the handle body in both directions may be generally fat and round (over the whole extent of the handle body).
The flat end surface and the “chunky” bulbous shapes of the handle allow not just a particularly stable position with the flat end surface on a level counter, but as noted earlier also are ergonomic.
The side surface may be a curved surface (made up of a single surface on several curved surface portions) adjacent to the flat end surface. This can give a good handling feel, with a flat face and possibly also an edge between the flat face and a curved face providing a tangible spatial reference to the user in combination with an easy-grip curved surface.
The handle body may comprise an opposite further end surface, giving even better handling feel. The further end surface may be rounded (concave or convex) and is preferably an opposite flat surface (opposite to the end surface). The side surface may be a single continuous curved side surface (or in fact the rest of the handle body including the opposite end may form a single continuous curved surface). This curved side surface, or a plurality of curved side surface portions, may provide the handle body with a cross section that increases away from the flat end surfaces towards the centre of the body, forming the bulbous shape mentioned above.
The flat end surfaces may be parallel, providing a symmetry which gives the user a better tactile impression of the overall handle, for improved shaving experience. One or both of the flat end surface(s) may be circular or elliptical, for example.
In use, the safety razor is pulled backwards across the skin in the shaving direction. The flat end surface may be in front of the blades in the shaving direction (to the rear of the razor if the cartridge is seen as the front), and the further flat end surface may be behind the blades in the shaving direction (to the front of the razor).
The flat end surface may be of a size which gives good stability to the safety razor when resting on a plane. Thus it may have an area which is larger than the footprint of the cartridge on the skin surface, or preferably an area which is twice or more this size.
In some cases, the handle body is not elongate. For example, the largest extent of the handle body (measured in any direction) may be up to twice the smallest dimension of the flat end surface. In one example, the distance between two parallel flat end surfaces is equal to or smaller than the diameter (or smallest dimension) of one or both flat end surfaces.
In one exemplary construction, the centre of mass of the handle and cartridge is above and vertically within the footprint of the flat end surface on the horizontal plane, and the handle body overhangs the flat end surface to one side when the razor is stably positioned on the flat end surface. This overhang side is preferably the side on which the cartridge is mounted. The cartridge may be mounted closer to the further flat end surface than to the flat end surface (i.e. closer to the front of the razor than to the rear in use, and closer to the top of the razor when stably positioned on the plane). Various different angles of overhang are possible.
The stability of the safety razor on the horizontal plane can be assured in any suitable way. The material of the handle body on the same side of the centre of mass as the overhang may be less dense than the material of the handle body to the other side of the centre of mass from the overhang. For example, there may be a hollowed portion extending in the overhang side, or a lower density material.
Equally, the flat end surface may be provided with an anti-tilting lip on the same side as the overhang. The anti-tilting lip may extend from the end surface on the overhang side.
Any suitable means may be provided to aid stability of the safety razor. For example, the flat end surface may be provided with a suction feature, such as an air opening into a hollow part in a flexible handle body to help retention of contact between the flat end surface and the horizontal plane.
Equally, the flat end surface may be provided with a recess or other interface allowing attachment to another part, such as packaging or a travelling case, or suspension from a hook (which could be provided separately) on a wall or other vertical surface (or the same air opening could be usable for both purposes).
The handle body may be made of a single part and material (excluding any minor additions of logos etc). In one example it is made of two or more parts, such as a core and an external layer, or two opposite halves, which are fabricated individually, and then connected. The insert may also be connected to form the full body at the same stage.
The handle body may have any suitable construction. The handle body may comprises a single material or may comprise a core material and an outer material. Inserts may be made in the same material or one or more different materials. In one example the handle body is solid or contains a hard core or hard hollow core. This may allow the use of a softer material for the rest of the body.
A further definition of a safety razor handle comprises: a handle body with a substantially flat end surface and a side surface; and a cartridge attachment on the side surface, wherein: when the flat end surface is in contact with a horizontal plane, the safety razor is in a stable position of rest, the flat end surface forming the safety razor's only region of contact with the plane and elevating the handle connecting structure above the plane.
Thus not only is the handle connecting structure elevated, so that it allows the handle to be resting in a stable position and the user to easily exchange a cartridge, but any attached cartridge is also elevated. As mentioned previously, the cartridge (and handle connecting structure) may be on the side surface positioned towards the further end surface and thus towards the top of the razor when the razor rests on its end surface.
In any of the handle definitions, the handle body may comprise a single moulded translucent or transparent body (forming a core or hollow core, an outer layer or the full body) of elastomeric material such as silicone, TPU (thermoplastic polyurethane), TPE (thermoplastic elastomer) PETG (Polyethylene Terephthalate Glycol), TPS or rubber (such as liquid silicone rubber or compression silicone rubber) for example having a Shore A hardness of around 5 to 80, preferably a squeezable 20 Shore A under the ASTM D2240-00 testing standard. As used herein, TPEs are thermoplastic elastomers, for example thermoplastic elastomers selected from the group of styrenic block copolymers (TPE-s including TPE SBS and the hydrogenated version of TPE-SEBS; e.g. Thermoplast K, Thermolast M, Sofprene, or Laprene), thermoplastic olefins (TPE-o; e.g. For-Tec E), elastomeric alloys (TPE-v or TPV; e.g. Thermolast A, Thermolast V, Hipex, Forprene, Termoton-V, or Vegaprene), thermoplastic polyurethanes (TPU; e.g. Copec), thermoplastic copolyesters (TPE-E), thermoplastic polyamides and mixtures thereof. As used herein, silicones (or polysiloxanes) are polymers that include any inert, synthetic compound made up of repeating units of siloxane. These materials give a superior tactile feeling with a material that is soft and yet strong due to the shape of the handle. Moreover, the body being translucent or transparent allows the user to gain a better feel of the positioning of the handle (and thus of the attached blade unit) with respect to the hand and to the skin to be shaved.
In any of the handle definitions, the insert between the handle connecting structure and the handle body may be fabricated separately, for example from PPA Polyphthalamide)(/PPS (Polyphenylene sulphide)/LCP (Liquid Crystal Polymer) or ABS (Acrylonitrile Butadiene Styrene). The material may have a glass filling of 0% up to 40%, or 10% to 30%, preferably around 20%. The materials and/or fabrication process may be chosen in such a way that the insert and core material will chemically bond with the handle material. For example, the handle body may be made entirely from a soft transparent silicon and the insert may be made from PPA (Polyphthalamide) with 20% glass filling. In another example, the handle body may made entirely from a soft transparent TPE (thermoplastic elastomer) and the insert may be made from PP (polypropylene) with 20% glass filling. In another example, the handle body external portion is made from a soft transparent TPE (thermoplastic elastomer) and a handle body core and the insert are formed together from a thermoplastic.
The above indicated embodiments may be combined with each other to achieve the advantageous effects as described above. Further embodiments, features, and advantages of the invention, as well as the structure and operation of the various embodiments of the invention are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
Reference will now be made to
The following detailed description refers to the accompanying drawings that illustrate examples and embodiments consistent with this invention. Other embodiments are possible, and modifications can be made to the embodiments within the spirit and scope of the invention. Therefore, the detailed description is not meant to limit the invention.
The term “underneath” is used to describe features of the handle, cartridge or a lubrapad that are positioned on the skin-contacting side of the cartridge or lubrapad (i.e., on a shaving-side or underneath of the handle, cartridge or lubrapad) in use, and the term “top” is used to describe features of the handle, cartridge or lubrapad that are positioned on a side opposite the skin-contacting side of the cartridge or lubrapad in use (i.e., on a user side or on top of the cartridge or lubrapad). The terms “front”, “rear”, and “side(s)” are used herein with reference to the shaving direction, i.e., the direction in which the cartridge and lubrapad are intended to be moved during shaving. In particular, the term “front” means facing in the shaving direction, “rear” means facing in the opposite direction to the shaving direction, and “side(s)” mean to either side in the shaving direction. In general, the cartridge is positioned at the front of the razor in use and the razor is pulled backwards across the skin (with the cartridge last).
Reference will now be made to
The handle body has a flat end surface 52 on which it can rest stably upright on a (substantially) horizontal surface, as shown in
When the razor is in use, the flat end surface forms the rear surface of the razor, as shown in
Opposite to the flat end surface is a further flat end surface 51. This is a front surface portion when the razor is in use, as shown in
These two opposite surfaces are parallel, and are separated by a single continuous side surface 56. As can be seen clearly from
The side surface of the handle body 56 has a curved underneath portion 53, a curved top portion 54 and curved lateral portions 55 in use as shown in
As shown best in
The handle body is made entirely from a translucent silicone or TPE-SEBS in this example, as can be seen better in
The handle body may be formed by either LSR or injection or compression moulding. The full razor may weigh around 40 to 60 grams, preferably around 55 grams and the handle body may have a Shore A hardness of approximately 10 to 50, preferably 15 to 40 or around 20, to give a squeezable feel and pleasurable tactile sensation when gripped by the user. It may include a logo on the front surface (the further end surface which is on the top when the razor is in the upright position).
The stem may be fixedly connected to the handle body, such as by chemical connection.
In other examples, the handle body may have a hollow or solid insert (such as a core) of another material. If there is a hollow insert, it may store a fluid, such as a shaving preparation. In this case, the stem between the cartridge and handle body may include a fluid passage for a shaving preparation dispensed from within the body and the body may include a dispensing aperture.
The cartridge of these figures may include a lubricating strip or wider lubrapad 12 (not shown) as an additional or integral part of the cartridge, for example with a single frame both surrounding the blades and providing a back support for the lubrapad. The end surface has been shown and described as flat, but may alternatively be curved or uneven, if there is no requirement for the razor to be stable in an upright position.
Some advantageous dimensions of the safety razor which give good manoeuvrability in the human hand are shown in
The maximum length of the handle body parallel to the skin surface in use (with the end surface at 45° to the skin surface) is from 40 to 80 mm, preferably between 56 and 64 mm, for example 61 mm. This is measured from the foremost extent of the front (the lowest portion of the front or further end surface) to the rearmost extent of the rear (the highest portion of the rear or end surface which rests on the horizontal plane when the razor is upright). The maximum height of the handle body in use is between 25 and 55 mm, preferably between 36 and 41 mm, for example 39 mm.
The distance between the end surfaces is between 25 and 45 mm, preferably between 31 and 36 mm, for example 35 mm. The handle stem (or other interface between the handle and cartridge) starts at 3 to 10, preferably 5 to 6 mm along the underneath portion of the side surface in use from the front surface. The maximum width of the handle body measured parallel to the end surfaces is between 35 and 60 mm, preferably between 42 and 48 mm, for example 46 mm.
If the cartridge is flat on the skin in use, the end surfaces extend at between 35 to 55, preferably at 45 degrees to the skin surface.
The cartridge footprint may have a length of around 25-60 mm in the blade direction, preferably around 40-50 mm and a depth orthogonal to the blade direction from the front to the rear of the cartridge of around 10-30 mm, preferably 15-23 mm. Whilst the cartridge size may have a natural maximum linked to its function, the handle body and in particular the handle body extent in the blade direction is not similarly limited.
In an alternative definition which can be applied to these figures and the earlier and later figures, some examples of the invention provide a safety razor handle comprising: an underneath surface portion 53 facing the skin of the user in use and comprising an attachment means (such as a stem 61) for attachment to a blade unit; a front surface portion 51 facing in the opposite direction from the shaving direction in use; a rear surface portion 52 facing in the shaving direction in use; a top surface portion 54 and lateral surface portions 55, one directed to either side of the blade length in use; wherein the top surface portion, underneath surface portion and side surface portions together form a continuous smooth surface which is a substantially cylindrical or substantially ellipsoid or substantially partially spherical surface; and wherein: the distance between the front surface portion and rear surface portion is between one third and three times, preferably between a half and twice, the largest dimension of the largest cross section through the continuous smooth surface.
The term substantially cylindrical or substantially ellipsoid or substantially partially spherical surface is used to describe a shape which is close to cylindrical or ellipsoid or partially spherical form, for example with a 10% deviation from one of those forms. In one measure, a section (or all sections) taken vertically through the continuous smooth surface (for example in a direction parallel to the blade length) overlaps with a circle or ellipse drawn to just cover the whole section with the areas of the circle or ellipse which are not covered by the section being up to one tenth of the area of the section.
The front and rear surface portions may be flat or concave. The front surface may extend to the guard side of the attachment to the blade unit, and may conveniently be provided with a logo and/or instructions. It may extend substantially parallel to the rear surface portion and preferably substantially parallel to a main direction (in terms of longest extent) of the stem.
In another embodiment the body is hollow and contains a shaving preparation, which, for example, can be squeezed out by the user via the attachment means to the blade unit. Thus the shaving preparation (which may contain lubricating and/or hair conditioner and/or moisturiser) may pass through the recess, for example within a part of the blade unit which is housed inside the recess.
In one razor embodiment, the attachment means for attachment to the blade unit and corresponding means on the blade unit allow relative movement, such as pivoting movement, between the handle and the blade unit. For example the connection between the corresponding means and attachment means may have some play, or one or both of the attachment means or corresponding means may be flexible.
In one embodiment the corresponding means is a stem extending from the blade unit to the handle. The stem may fit into the recess, permanently or detachably.
In a further embodiment, the razor comprises a hard shell extending from the stem and forming part of the handle. The hard shell may give additional support to the body and enable an enhanced connection to the blade unit.
In one embodiment either the stem or the shell is provided with a spigot (outlet for fluid connection from the body) which extends into the handle, to transport shaving preparation.
In one embodiment the shell forms the rear surface portion and part of the underneath and side surface portions of the handle. In this case, the shell may fit over the elastomeric material (such as TPE, rubber or silicone) body described previously. It may fit into receded surface portions of the body, so that the combination of the shell and the body provides a smooth external surface.
In one embodiment the safety razor further comprises a lubrapad. For example, a lubrapad body may be provided adjacent to the blade unit, and extend along a guard of the blade unit and in front of the guard in use. The lubrapad body may have a greatest width and/or depth in the blade direction at the guard, the body width and/or depth reducing in a smooth convex curve away from the guard to a curved front portion of the body.
In one embodiment the lubrapad body and cartridge are provided separately and comprise attachment means to attach them together whilst allowing relative movement, such as flexible projections from a front surface of the guard, which are to be housed in recesses in a surface portion of the lubrapad body which is directly facing the guard front surface.
In a further definition of the handle, invention embodiments provide a safety razor handle comprising a moulded translucent or transparent body of elastomeric material such as TPE, silicone or rubber having a Shore A hardness of 5 to 65 or preferably 10 to 50; wherein the body has a shape which is rounded and chunky (or bulbous), extending with perpendicular length l, width w and height h, wherein none of the maximum length, width and height of the body is more than 2, 3 or 4 times the size of the maximum in the other two dimensions.
For example, the height may be the largest vertical cross section through the side smooth surface previously defined, the width may be the largest horizontal cross section through the side surface and the length may be the horizontal distance (parallel with the shaving plane) between the end surfaces.
Any of the previous features of the handle and safety razor (and safety razor system) may be applied to these embodiments.
The composition of the lubrapads described herein can include a gliding agent. Materials which may be selected as the gliding agent are: PEG-400/1,4-Butanediol/SMDI Copolymer, PEG-115M, PEG 45M, and PEG-5M, or a combination thereof. The composition of the lubrapad can include an antioxidant agent, for example Tocopherol. The composition of the lubrapad can include an anti-inflammatory agent, for example aloe barbadensis leaf juice. The composition of the lubrapad can include a backbone structure. Materials which may be selected as the backbone structure are: styrenic block copolymers and polystyrene, or a combination thereof.
Reference will now be made to
a and 23b show examples of how the cartridge connecting structure 120 can be attached to the cartridge 10, while
As can be seen in
Referring now to
As shown in the upper part of
As shown in
The lead-in channel 106 is best seen in
With reference now to
The handle connecting structure 102 may also include a plunger 116 that, in use, is biased by a spring 118 against a surface of the cartridge 10. This is shown in
The lever 112 performs two main functions. First, it functions to release the securing elements 104, 126 that hold the cartridge connecting structure 120 to the handle connecting structure 102. Second, it functions to eject the cartridge connecting structure 102 from the handle connecting structure 120. These functions are related in that they each occur when the lever 112 is actuated (rotated) by the user, although the degree to which each function is performed may vary as the lever 112 is actuated. For example, initial rotation of the lever 112 may result in the release of the securing elements 104, 126 (also referred to below as the ‘release phase’), and further rotation of the lever 112 may result in ejection of the cartridge connecting structure 120 from the handle connecting structure 102 (referred to below as the ‘ejection phase’). The boundary between the end of the release phase and the start of the ejection phase may be defined in terms of the start of the movement of the cartridge connecting structure 102 away from the handle connecting structure 102 along the connection axis. However, it will be appreciated that the release and ejection phases are not necessarily discrete, due to the configuration in which the lever 112 interacts with the cartridge connecting structure 120 to perform both functions. Of course, configurations are possible in which the lever 112 may perform the function of ejecting the cartridge connecting structure 120 from the handle connecting structure 102 but not the function of releasing the securing elements 104, 126, for example if an independent release mechanism for the securing elements 104, 126 is provided.
The aforementioned release and ejection phases will now be described with reference to
In the ejection phase, due to the deformation of the back wall 132 of the cartridge connecting structure 120, the back wall 132 is angled relative to the release direction of the cartridge 10 as best seen in
In the configuration shown in
In an alternative configuration shown in
An alternative configuration for a lever 112 is shown in
Further configurations will now be described with reference to
This forces the lever 112 to rotate to an inclined position that corresponds to the ‘ready’ position of the lever 112 when the cartridge connecting structure 102 is connected to the handle connecting structure 120. Alternatively, as shown in
Turning now to
The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventor(s), and thus, are not intended to limit the present invention and the appended claims in any way.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
10 cartridge
12 lubrapad
14 blade housing
16 blades
18 guard
20 cap
22 lubrapad body
24 front portion (of the lubrapad body)
26 frame
34 projections
36 recesses
38 first surface portion (of the lubrapad body)
40 front surface (of the guard)
42 rounded side portions (of the cartridge)
44 second surface portion (of the lubrapad body)
46 third surface portion (of the lubrapad body)
50 handle body
51 front surface portion or opposite end surface
52 rear surface portion or flat end surface
53 underneath surface portion
54 top surface portion
55 lateral surface portion
56 continuous side surface
57 suction feature
58 handle body recess
59 handle stem/cartridge attachment means
61 cartridge stem
70 moulded body
80 hard shell
81 spigot
82 receded portions of body
83 dispensing aperture
100 safety razor or safety razor system
101 insert for handle connecting structure
102 handle connecting structure
103 handle connecting structure body
104 recess
106 lead-in channel
108 cover of handle connecting structure body
110 housing of handle connecting structure body
112 release lever
113 user portion
114 working portion
115 rotation axis
116 biasing plunger
117 bearing surface of lever
118 biasing spring
119 contact surface or edge
120 cartridge connecting structure
122 housing of cartridge connecting structure
124 legs of cartridge connecting structure
126 snap
128 front wall of housing
130 positioning feature
132 back wall of housing
134 push rib
136 push face
138 return element
140 return element
142 domes
144 ribs
146 ribs
148 hook-shaped elements
150 protrusions
154 ramp
156 bearing surface of user end
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/074354 | 9/10/2018 | WO | 00 |