This invention relates in general to subsea well production, and in particular to a connection system for connecting flow interface equipment, such as a pump to a subsea Christmas tree assembly.
A subsea production facility typically comprises a subsea Christmas tree with associated equipment. The subsea Christmas tree typically comprises a choke located in a choke body in a production wing branch. There may also be a further choke located in an annulus wing branch. Typically, well fluids leave the tree via the production choke and the production wing branch into an outlet flowline of the well. However, in such typical trees, the fluids leave the well unboosted and unprocessed.
According to a first aspect of the present invention there is provided an apparatus for connecting to a subsea wellbore, the wellbore having a manifold and a choke body, the apparatus comprising:
The two-stage connection provides the advantage that damage to the mating surfaces between the conduit means and the flow line of the tree assembly can be avoided whilst the frame is being landed, since at least a part of the frame is landed before the connection between the conduit means and the interior of the choke body is made up. Hence, the two-stage connection acts to buffer and protect the mating surfaces. The two-stage connection also protects the choke itself from damage whilst the frame is being landed; in particular, the mating surface of the choke is protected.
In some embodiments, processing apparatus e.g. multi-phase flow meters and pumps can be mounted on the frame and can be landed on the tree with the frame. Alternatively, the processing apparatus may be located remote from the tree, e.g. on a further subsea installation such as a manifold or a pile, and the frame may comprise connections for jumper conduits which can lead fluids to and from the remote processing apparatus.
The processing apparatus allows well fluids to be processed (e.g. pressure boosted/injected with chemicals) at the wellhead before being delivered to the outlet flowline of the well. The invention may alternatively be used to inject fluids into the well using the outlet flowline as an inlet.
Often the processing apparatus, e.g. subsea pump, flow meter, etc. is quite heavy and bulky. In embodiments where heavy/bulky apparatus is carried by the frame, the risk of damage to the mating surfaces between the conduit means and the flow line of the tree assembly is particularly great.
Optionally, the apparatus further comprises an actuating means mounted on the frame, the actuating means being adapted to bring the conduit means into fluid communication with the interior of the choke body. Typically, the actuating means comprises at least one hydraulic cylinder. Alternatively, the actuating means may comprise a cable or a screw jack which connects the conduit means to the frame, to control the movement of the conduit means relative to the frame.
The conduit means is not necessarily brought into direct communication with the choke body. In some embodiments (the first embodiment and the third embodiment below), the conduit means is connected with the interior of the choke body via a further, secondary conduit.
In a first embodiment, a mounting apparatus is provided for landing a flow interface device, particularly a subsea pump or compressor (referred to collectively at times as “pressure intensifier”) on a subsea production assembly.
Optionally, the at least one frame member of the first connection stage comprises a lower frame member, and the apparatus further comprises an upper frame member, the upper frame member and the lower frame member having co-operating engagement means for landing the upper frame member on the lower frame member.
In the first embodiment, a secondary conduit in the form of a mandrel with a flow passage is mounted to the lower frame member. The operator lowers the lower frame member into the sea and onto the production assembly. The production assembly has an upward facing receptacle that is sealingly engaged by the mandrel.
In this embodiment, the conduit means comprises a manifold, which is mounted to the upper frame member. The manifold is connected to a flow interface device such as a pressure intensifier, which is also mounted to the upper frame member. The operator lowers the upper frame member along with the manifold and pressure intensifier into the sea and onto the lower frame member, landing the manifold on the mandrel. During operation, fluid flows from the pressure intensifier through the manifold, the mandrel, and into the flow line.
Preferably, the subsea production assembly comprises a Christmas tree with a frame having guide posts. The operator installs extensions to the guide posts, if necessary, and attaches guidelines that extend to a surface platform. The lower and upper frame members have sockets with passages for the guidelines. The engagement of the sockets with the guide posts provides gross alignment as the upper and lower frame members are lowered onto the tree frame.
Also, preferably the Christmas tree frame has upward facing guide members that mate with downward facing guide members on the lower frame member for providing finer alignment. Further, the lower frame member preferably has upward facing guide members that mate with downward facing guide members on the upper frame member for providing finer alignment. One or more locking members on the lower frame member lock the lower frame member to the tree frame. Additionally, one or more locking members on the upper frame member lock the upper frame member to the lower frame member.
Optionally, the apparatus further comprises buffering means provided on the frame, the buffering means providing a minimum distance between the frame and the tree.
The buffering means may comprise stops or adjustable mechanisms, which may be incorporated with the locking members, or which may be separate from the locking members.
The adjustable stops define minimum distances between the lower frame member and the upper plate of the tree frame and between the lower frame member and the upper frame member.
The buffering means typically comprise threaded bolts, which engage in corresponding apertures in the frame, and which can be rotated to increase the length they project from the frame. The ends of the threaded bolts typically contact the upper frame member of the tree, defining a minimum distance between the frame and the tree.
Optionally, a further buffering means is provided between the lower and upper frame members to define a minimum distance between the lower and upper frame members. The further buffering means also typically comprises threaded bolts which extend between the lower and upper frame members. The extent of projection of the threaded bolts can be adjusted to provide a required separation of the upper and lower frame members.
The buffering means (e.g. the adjustable stops) provides structural load paths from the upper frame member through the lower frame member and tree frame to the tree and the wellhead on which the tree is mounted. These load paths avoid structural loads passing through the mandrel to the upward facing receptacle (i.e. the choke body).
In a second embodiment, the frame is lowered as a unit, but typically has an upper portion (an upper frame member) that is vertically movable relative to the lower portion (a lower frame member). A processing apparatus (in the form of a pressure intensifier) and a conduit means (a mandrel) are mounted to the upper portion. An actuating means comprising one or more jack mechanisms is provided between the lower and upper portions of the frame. When the lower portion of the frame lands on the tree frame, the lower end of the mandrel will be spaced above the flow line receptacle. The jack mechanisms then lower the upper portion of the frame, causing the mandrel to stab sealingly into the receptacle (the choke body). Thus, in this embodiment, the conduit means comprises a single mandrel having a single flowpath therethrough.
In a third embodiment, the conduit means has a flexible portion. Preferably, the flexible portion is moveable relative to the frame. Typically, the flexible portion of the conduit means is fixed relative to the frame at a single point. Typically, the flexible portion of the conduit means is connected to the processing apparatus and supported at the processing apparatus connection, in embodiments where the processing apparatus is supported on the frame.
Optionally, the conduit means comprises two conduits, one of which is adapted to carry fluids going towards the processing apparatus, the other adapted to carry fluids returning from the processing apparatus. Typically, each of the two conduits of the conduit means is fixed relative to the frame at a respective point. Typically, the flexible portion of each of the two conduits of the conduit means is connected to the processing apparatus and is supported at the processing apparatus connection (where a processing apparatus is provided on the frame).
Typically, the flexible portion of the conduit means is resilient. Typically, the direction of movement of the flexible portion of the conduit means in the second stage of the connection defines an axis of connection and the flexible portion of the conduit means is curved in a plane perpendicular to the axis of connection to provide resilience in the connection direction. In such embodiments, the flexible portion of the conduit means is in the form of a coil, or part of a coil. This allows the lower end of the conduit means (the connection end) to be moved resiliently in the connection direction.
Typically, the flexible portion of the conduit means supports a connector adapted to attach to the choke body (either directly or via a further conduit extending from the choke body), the flexible portion of the conduit means allowing relative movement of the connector and the frame to buffer the connection.
Typically, an actuating means is provided which is adapted to move the flexible portion relative to the frame to bring an end of the flexible portion into fluid communication with the interior of the choke body. The actuating means typically comprises a swivel eye mounting hydraulic cylinder.
Considering now all embodiments of the invention, the conduit system may optionally provide a single flowpath between the choke body and the processing apparatus.
Alternatively, the conduit system provides a two-flowpath system: a first flowpath from the choice body to the processing apparatus and a second flowpath from the processing apparatus to the choke body. In such embodiments, the conduit system can comprise a housing and an inner hollow cylindrical member, the inner cylindrical member being adapted to seal within the interior of the choke body to define a first flow region through the bore of the cylindrical member and a second separate flow region in the annulus between the cylindrical member and the housing.
Typically, the first and second flow regions are adapted to connect to a respective inlet and an outlet of the processing apparatus.
Such embodiments can be used to recover fluids from the well via a first flowpath, process these using the processing apparatus (e.g. pressure boosting) and then to return the fluids to the choke body via a second flowpath for recovery through the production wing branch. The division of the inside of the choke body into first and second flow regions by the inner cylindrical member allows separation of the first and second flowpaths within the choke body.
If used, the housing and the inner hollow cylindrical member typically are provided as the part of the conduit system that directly connects to the choke body, i.e. in the first embodiment, this is the secondary conduit; in the second embodiment, the conduit means, and in the third embodiment, the secondary conduit.
Optionally, the processing apparatus is provided on the frame. In this case, the processing apparatus is typically connected to the conduit means before the frame is landed on the tree.
Alternatively, the processing apparatus is provided on a further subsea manifold, such as a suction pile. Jumper cables can be connected between the frame on the manifold and the further subsea manifold to connect the processing apparatus to the conduit system. In this case, the processing apparatus is typically connected to the conduit means as a final step.
In all embodiments, the frame typically includes guide means that co-operate with guide means provided on the manifold, to align the frame with the manifold. The frame may also or instead comprise a guide pipe that surrounds at least a part of the conduit system, to protect it from impact damage.
All embodiments use the space inside the choke body after the choke bonnet has been removed and the choke withdrawn. However, it may still be desirable to be able to use a choke to control the fluid flow. Optionally, a replacement choke is provided on the frame, the replacement choke being connectable to the conduit system.
Embodiments of the invention can be used for both recovery of production fluids and injection of fluids.
According to a second aspect, of the present invention there is provided a method of connecting a processing apparatus to a subsea wellbore, the wellbore having a manifold and a choke body, the method comprising:
The method typically includes the initial steps of removing the choke bonnet and connecting the secondary conduit to interior of the choke body.
The choke bonnet is removed and the secondary conduit may be installed by choke bonnet changing equipment (e.g. the third embodiment). Alternatively, the secondary conduit may be supported on the lower frame member and may be installed when the lower frame member is landed on the manifold (e.g. the first embodiment).
According to a third aspect of the present invention there is provided an apparatus for connecting to a subsea wellbore, the wellbore having a manifold and a choke body, the apparatus comprising:
In the first embodiment, the buffering means may be provided by the adjustable stop means, which provide structural load paths from the upper frame member through the lower frame member and tree frame to the tree and the wellhead on which the tree is mounted which avoid structural loads passing through the mandrel to the choke body.
In the second embodiment, the buffering means is typically provided by the arrangement of the upper and lower frame members, the upper frame member being moveable to lower the mandrel (the conduit means) into connection with the choke body in a controlled manner, only after the frame has been landed.
In the third embodiment, the buffering means may be provided by the flexible portion of the conduit means, which allows movement of the conduit end that connects to the secondary conduit. Therefore, the connection end of the conduit means will not heavily impact into the secondary conduit as it is able to deflect as necessary, using the flexibility of the conduit means, and can optionally be maneuvered for even greater control (e.g. by an actuating mechanism).
According to a fourth aspect of the present invention there is provided an apparatus for connecting to a subsea wellbore, the wellbore having a manifold and a choke body, the apparatus comprising:
In such embodiments, the end of the flexible conduit can deflect if it impacts with the choke body (or any secondary conduit extending from the choke body). Thus in such embodiments, the flexible conduit ensures that the load carried by the frame is not transferred to the choke body.
Embodiments of the invention will now be described, by way of example only, and with reference to the following drawings, in which:—
Referring to
A production choke body or receptacle 23 mounts to production wing valve 21. Choke body 23 comprises a housing for a choke insert (not shown) that is adjustable to create a back pressure and a desired flow rate. Choke body 23 connects to a production flow line 25 that leads to sea floor processing equipment or directly to a production facility at sea level. After being installed with a pressure intensifier, as will be subsequently explained, a choke insert may not be required. One use for the connecting apparatus of this invention is to retrofit existing trees that have previously operated without a pressure intensifier.
Tree 13 may also have an annulus valve 27 that communicates with a tubing annulus passage (not shown) in the well. An annulus choke 29 connects to annulus valve 27 for controlling a flow rate either into or out of the tubing annulus. Annulus choke 29 is normally located on a side of production assembly 11 opposite production choke body 23. Annulus choke 29 has a body with a choke insert similar to production choke body 23.
A tree cap 31 releasably mounts to the upper end of tree 13. A tree frame 33 extends around tree 13 for mounting various associated equipment and providing protection to tree 13 if snagged by fishing nets. Tree frame 33 is structurally connected to the body of tree 13, such that weight imposed on tree frame 33 transfers to tree 13 and from there to the wellhead housing (not shown) on which tree 13 is mounted. Tree frame 33 has an upper frame member portion or plate 35 that in this instance is located above swab valve 19 and below tree cap 31. Upper plate 35 surrounds tree 13, as shown in
As shown in
Still referring to
A clamp 51 locks flange 49 to the flange of choke body 23. Clamp 51 is preferably the same apparatus that previously clamped the choke insert (not shown) into choke body 23 when production assembly 11 was being operated without a pressure intensifier. Clamp 51 is preferably actuated with an ROV (remote operated vehicle) to release and actuate clamp 51.
Referring to
Referring to
Lower frame member 45 also has guide post sockets 71, each preferably being a hollow tube with a downward facing funnel on its lower end. Guide post sockets 71 slide over guide lines 43 (
Referring still to
An adjustment mechanism or mechanisms (not shown) may extend between lower frame member 45 and tree frame upper plate 37 to assure that the weight on lower frame member 45 transfers to tree frame upper plate 37 and not through mandrel 47 to choke body 23. While the lower end of mandrel 47 does abut the upper end of choke body 23, preferably, very little if any downward load due to any weight on lower frame member 45 passes down mandrel 47 to choke body 23. Applying a heavy load to choke body 23 could create excessive bending moments on the connection of production wing valve 21 to the body of tree 13. The adjustment mechanisms may comprise adjustable stops on the lower side of lower frame member 45 that contact the upper side of tree frame upper plate 37 to provide a desired minimum distance between lower frame member 45 and upper plate 37. The minimum distance would assure that the weight on lower frame member 45 transfers to tree upper plate 35, and from there through tree frame 33 to tree 13 and the wellhead housing on which tree 13 is supported. The adjustment mechanisms could be separate from locking devices 69 or incorporated with them.
Referring to
As shown by the dotted lines, a motor 95, preferably electrical, is mounted on upper frame member 81. A filter 97 is located within an intake line 98 of a subsea pump 99. Motor 95 drives pump 99, and the intake in this example is in communication with sea water. Pump 99 has an outlet line 101 that leads to passage 93 of manifold 91.
As shown in
Adjustable mechanisms or stops (not shown) may also extend between lower frame member 45 and upper frame member 81 to provide a minimum distance between them when landed. The minimum distance is selected to prevent the weight of pump 99 and motor 95 from transmitting through mandrel connector 83 to mandrel 47 and choke body 23. Rather, the load path for the weight is from upper frame member 81 through lower frame member 45 and tree frame upper plate 35 to tree 13 and the wellhead housing on which it is supported. The load path for the weight on upper frame member 81 does not pass to choke body 23 or through guide posts 41. The adjustable stops could be separate from locking devices 107 or incorporated with them.
In the operation of this example, production assembly 11 may have been operating for some time either as a producing well, or an injection well with fluid delivered from a pump at a sea level platform. Also, production assembly 11 could be a new installation. Lower frame member 45, upper frame member 81 and the associated equipment would originally not be located on production assembly 11. If production assembly 11 were formerly a producing well, a choke insert (not shown) would have been installed within choke body 23.
To install pressure intensifier 99, the operator would attach guide post extensions 42, if necessary, and extend guidelines 43 to the surface vessel or platform. The operator removes the choke insert in a conventional manner by a choke retrieval tool (not shown) that interfaces with the two sets of guide members 37 adjacent cutout 36 (
The operator then lowers lower frame member 45 along guidelines 43 and over guide posts 41. While landing, guide members 67 and lock members 69 (
The operator then lowers upper frame member 81, including pump 99, which has been installed at the surface on upper frame member 81. Upper frame member 81 slides down guidelines 43 and over guide posts 41 or their extensions 42. After manifold 91 engages mandrel 47, connector 83 is actuated to lock manifold 91 to mandrel 47. Electrical power for pump motor 95 may be provided by an electrical wet-mate connector (not shown) that engages a portion of the control pod (not shown), or in some other manner. If the control pod did not have such a wet mate connector, it could be retrieved to the surface and provided with one.
Once installed, with valves 17 and 21 open, sea water is pumped by pump 99 through outlet line 101, and flow passages 93, 52 (
An alternate embodiment is shown in
Mandrel 117 is rigidly mounted to upper frame member 113 in this embodiment and has a manifold portion on its upper end that connects to outlet line 101, which in turn leads from pressure intensifier or pump 99. Mandrel 117 is positioned over or within a hole 118 in lower frame member 111. When upper frame member 113 moves to the lower position, shown in
In the operation of the second embodiment, pressure intensifier 99 is mounted to upper frame member 113, and upper and lower frame members 113, 111 are lowered as a unit. Hydraulic cylinders 115 will support upper frame member 113 in the upper position. Guidelines 43 and guide posts 41 guide the assembly onto tree frame upper plate 35, as shown in
Located at approximately the four corners of the frame 220 are guide funnels 230 attached to the base of the frame 220 on arms 228. The guide funnels 230 are adapted to receive the guide legs 210 to provide a first (relatively course) alignment means. The frame 220 is also provided with four “John Brown” legs 232, which extend vertically downwards from the base of the frame 220 so that they engage the John Brown feet 208 of the tree 200.
A processing apparatus in the form of a pump 234 is mounted on the frame 200. The pump 234 has an outlet and inlet, to which respective flexible conduits 236, 238 are attached. The flexible conduits 236, 238 curve in a plane parallel to the base of the frame 220, forming a partial loop that curves around the pump 234 (best shown in
A secondary conduit 250 is connected to the choke body 204, as best shown in
The upper portion of the secondary conduit 250 is solid (not shown in the cross-sectional view of
The inner member 254 is longer than the housing 252, and extends into the choke body 204 to a point below the production wing branch 202. The end of the inner member 254 is provided with a seal 259, which seals in the choke body 204 to prevent direct flow between the first and second flow regions. The secondary conduit 250 is clamped to the choke body 204 by a clamp 262 (see
Also shown in
The piping interface 240 is shown connected to the secondary conduit 250 in the views of
A method of connecting the pump 234 to the choke body 204 will now be described with reference to
The production wing valve is closed and the choke C is removed, as shown in
The landing stage of
In the second stage, the piping interface 240 is brought into engagement with the secondary conduit 250 and the clamp 260 is applied to fix the connection. The two-stage connection process provides protection of the mating surfaces of the secondary conduit 250 and the piping interface 240, and it also protects the choke 204; particularly the mating surface of the choke 204. Instead of landing the frame and connecting the piping interface 240 and secondary conduit in a single movement, which could damage the connection between the piping interface 240 and the secondary conduit 250 and which could also damage the choke 204, the two-stage connection facilitates a controlled, buffered connection.
The piping interface 240 being suspended on the curved flexible conduits 236, 238 allows the piping interface 240 to move in all three spatial dimensions; hence the flexible conduits 236, 238 provide a resilient suspension for the piping interface on the pump 234. If the piping interface 240 is not initially accurately aligned with the secondary conduit 250, the resilience of the flexible conduits 236, 238 allows the piping interface 240 to deflect laterally, instead of damaging the mating surfaces of the piping interface 240 and the secondary conduit 250. Hence, the flexible conduits 236, 238 provide a buffering means to protect the mating surfaces.
A slightly modified version of the third embodiment is shown in
However, in contrast with the
The replacement choke 324 is connected to one of the hubs 322 and to one of the flexible conduits 236, 238. The other of the flexible conduits 236, 238 is connected to the other hub 322.
The
In use, the well fluids flow through the choke body 240, through the annuli 258, 248, through flexible conduit 238 into one of the hubs 322, through a first jumper conduit, through the processing apparatus (e.g. a pump) through a second jumper conduit, through the other of the hubs 322, through the replacement choke 324, through the flexible conduit 236 through the bores 246, 256 and to the production wing outlet 206. Alternatively, the flow direction could be reversed to inject fluids into the well.
A further alternative embodiment is shown in
The principal difference between the embodiments of
To make up the connection between the piping interface 240 and the secondary conduit 250, the hydraulic cylinder is extended; the extended position is shown in
This invention has significant advantages. In the first embodiment, the lower frame member and mandrel are much lighter in weight and less bulky than the upper frame member and pump assembly. Consequently, it is easier to guide the mandrel into engagement with the choke body than it would be if the entire assembly were joined together and lowered as one unit. Once the lower frame member is installed, the upper frame member and pump assembly can be lowered with a lesser chance of damage to the subsea equipment. The upper end of the mandrel is rugged and strong enough to withstand accidental impact by the upper frame member. The two-step process thus makes installation much easier. The optional guide members further provide fine alignment to avoid damage to seating surfaces.
The movable upper and lower frame members of the mounting system of the second embodiment avoid damage to the seating surfaces of the mandrel and the receptacle.
While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention. For example, although shown in connection with a subsea tree assembly, the mounting apparatus could be installed on other subsea structures, such as a manifold or gathering assembly. Also, the flow interface device mounted to the upper frame member could be a compressor for compressing gas, a flow meter for measuring the flow rate of the subsea well, or some other device.
In the third embodiment, protection of the connection between the piping interface 240 and the secondary conduit 250 is achieved by the two-step connection process. Additional buffering is provided by the flexible conduits 236, 238, which allow resilient support of the piping interface 240 relative to the pump/the frame, allowing the piping interface 240 to move in all three dimensions. In some embodiments, even greater control and buffering are achieved using an actuation means to more precisely control the location of the piping interface 240 and its connection with the secondary conduit 250.
Improvements and modifications can be incorporated without departing from the scope of the invention. For example, it should be noted that the arrangement of the flowpaths in
Furthermore, in all embodiments, the flowpaths may be reversed, to allow both recovery and injection of fluids. In the third embodiment, the flow directions in the flexible conduits 236, 238 (and in the rest of the apparatus) would be reversed.
A replacement choke 324 could also be used in the other embodiments, as described for the
All embodiments of the invention could be provided with a guide pipe, such as that shown in
In alternative embodiments, the actuating means of
Although the above disclosures principally refer to the production wing branch and the production choke, the invention could equally be applied to a choke body of the annulus wing branch.
In the
Many different types of processing apparatus could be used. Typically, the processing apparatus comprises at least one of: a pump; a process fluid turbine; injection apparatus; chemical injection apparatus; a fluid riser; measurement apparatus; temperature measurement apparatus; flow rate measurement apparatus; constitution measurement apparatus; consistency measurement apparatus; gas separation apparatus; water separation apparatus; solids separation apparatus; and hydrocarbon separation apparatus.
The processing apparatus could comprise a pump or process fluid turbine, for boosting the pressure of the fluid. Alternatively, or additionally, the processing apparatus could inject gas, steam, sea water, drill cuttings or waste material into the fluids. The injection of gas could be advantageous, as it would give the fluids “lift”, making them easier to pump. The addition of steam has the effect of adding energy to the fluids.
Injecting sea water into a well could be useful to boost the formation pressure for recovery of hydrocarbons from the well, and to maintain the pressure in the underground formation against collapse. Also, injecting waste gases or drill cuttings etc into a well obviates the need to dispose of these at the surface, which can prove expensive and environmentally damaging.
The processing apparatus could also enable chemicals to be added to the fluids, e.g. viscosity moderators, which thin out the fluids, making them easier to pump, or pipe skin friction moderators, which minimise the friction between the fluids and the pipes. Further examples of chemicals which could be injected are surfactants, refrigerants, and well fracturing chemicals. The processing apparatus could also comprise injection water electrolysis equipment.
The processing apparatus could also comprise a fluid riser, which could provide an alternative route between the well bore and the surface. This could be very useful if, for example, the flowline 206 becomes blocked.
Alternatively, processing apparatus could comprise separation equipment e.g. for separating gas, water, sand/debris and/or hydrocarbons. The separated component(s) could be siphoned off via one or more additional process conduits.
The processing apparatus could alternatively or additionally include measurement apparatus, e.g. for measuring the temperature/flow rate/constitution/consistency, etc. The temperature could then be compared to temperature readings taken from the bottom of the well to calculate the temperature change in produced fluids. Furthermore, the processing apparatus could include injection water electrolysis equipment.
This application is a divisional of U.S. application Ser. No. 10/590,563 now U.S. Pat. No. 8,066,076 filed Dec. 13, 2007, which is a U.S. National Phase Application of PCT/GB2005/000725 filed Feb. 25, 2005, which claims the benefit of U.S. Provisional Application No. 60/548,727 filed Feb. 26, 2004, all of which are incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1758376 | Sawyer | May 1930 | A |
1944573 | Williams et al. | Jan 1934 | A |
1944840 | Humason | Jan 1934 | A |
1994840 | Thoen | Mar 1935 | A |
2132199 | Yancey | Oct 1938 | A |
2233077 | Gillespie et al. | Feb 1941 | A |
2276883 | Schon et al. | Mar 1942 | A |
2412765 | Buddrus et al. | Dec 1946 | A |
2790500 | Jones | Apr 1957 | A |
2893435 | Eichenberg | Jul 1959 | A |
2962356 | Johns | Nov 1960 | A |
3101118 | Culver et al. | Aug 1963 | A |
3163224 | Haeber et al. | Dec 1964 | A |
3358753 | Haeber | Dec 1967 | A |
3378066 | Otteman et al. | Apr 1968 | A |
3593808 | Nelson | Jul 1971 | A |
3595311 | Harbonn et al. | Jul 1971 | A |
3603409 | Watkins | Sep 1971 | A |
3608631 | Sizer et al. | Sep 1971 | A |
3688840 | Curington et al. | Sep 1972 | A |
3705626 | Glenn, Jr. et al. | Dec 1972 | A |
3710859 | Hanes et al. | Jan 1973 | A |
3753257 | Arnold | Aug 1973 | A |
3777812 | Burkhardt et al. | Dec 1973 | A |
3820558 | Mueller | Jun 1974 | A |
3834460 | Brun et al. | Sep 1974 | A |
3953982 | Pennock | May 1976 | A |
3957079 | Whiteman | May 1976 | A |
4042033 | Holland et al. | Aug 1977 | A |
4046191 | Neath | Sep 1977 | A |
4046192 | Darnborough | Sep 1977 | A |
4095649 | Chateau et al. | Jun 1978 | A |
4099583 | Maus | Jul 1978 | A |
4102401 | Erbstoesser | Jul 1978 | A |
4105068 | Tam | Aug 1978 | A |
4120362 | Chateau et al. | Oct 1978 | A |
4134456 | Ball | Jan 1979 | A |
4190120 | Regan | Feb 1980 | A |
4210208 | Shanks | Jul 1980 | A |
4223728 | Pegg | Sep 1980 | A |
4260022 | Van Bilderbeek | Apr 1981 | A |
4274664 | Thominet | Jun 1981 | A |
4291772 | Beynet | Sep 1981 | A |
4294471 | Van Bilderbeek | Oct 1981 | A |
4347899 | Weeter | Sep 1982 | A |
4401164 | Baugh | Aug 1983 | A |
4403658 | Watkins | Sep 1983 | A |
4405016 | Best | Sep 1983 | A |
4444275 | Beynet et al. | Apr 1984 | A |
4457489 | Gilmore | Jul 1984 | A |
4478287 | Hynes et al. | Oct 1984 | A |
4502534 | Roche et al. | Mar 1985 | A |
4503878 | Taylor | Mar 1985 | A |
4509599 | Chenoweth et al. | Apr 1985 | A |
4572298 | Weston | Feb 1986 | A |
4589493 | Kelly et al. | May 1986 | A |
4607701 | Gunderson | Aug 1986 | A |
4610570 | Brockway | Sep 1986 | A |
4626135 | Roche | Dec 1986 | A |
4629003 | Baugh | Dec 1986 | A |
4630681 | Iwamoto | Dec 1986 | A |
4646844 | Roche et al. | Mar 1987 | A |
4648629 | Baugh | Mar 1987 | A |
4695190 | Best et al. | Sep 1987 | A |
4702320 | Gano et al. | Oct 1987 | A |
4721163 | Davis | Jan 1988 | A |
4749046 | Gano | Jun 1988 | A |
4756368 | Ikuta et al. | Jul 1988 | A |
4813495 | Leach | Mar 1989 | A |
4820083 | Hall | Apr 1989 | A |
4830111 | Jenkins et al. | May 1989 | A |
4832124 | Rayson | May 1989 | A |
4848471 | Bencze et al. | Jul 1989 | A |
4848473 | Lochte | Jul 1989 | A |
4848475 | Dean et al. | Jul 1989 | A |
4874008 | Lawson | Oct 1989 | A |
4896725 | Parker et al. | Jan 1990 | A |
4899822 | Daeschler et al. | Feb 1990 | A |
4911240 | Haney et al. | Mar 1990 | A |
4919207 | Ikuta et al. | Apr 1990 | A |
4926898 | Sampey | May 1990 | A |
4972904 | Godare | Nov 1990 | A |
5010956 | Bednar | Apr 1991 | A |
5025865 | Caldwell | Jun 1991 | A |
5044672 | Skeels | Sep 1991 | A |
5069286 | Roensch | Dec 1991 | A |
5074519 | Pettus | Dec 1991 | A |
5085277 | Hopper | Feb 1992 | A |
5143158 | Watkins | Sep 1992 | A |
5163782 | Paulo | Nov 1992 | A |
5201491 | Domangue | Apr 1993 | A |
5213162 | Iato | May 1993 | A |
5248166 | Wilkins | Sep 1993 | A |
5255745 | Czyrek | Oct 1993 | A |
5280766 | Mohn | Jan 1994 | A |
5295534 | Porter | Mar 1994 | A |
5299641 | Paulo et al. | Apr 1994 | A |
5310006 | Freitas et al. | May 1994 | A |
5398761 | Reynolds | Mar 1995 | A |
5456313 | Hopper | Oct 1995 | A |
5462361 | Sato | Oct 1995 | A |
5492436 | Suksumake | Feb 1996 | A |
5526882 | Parks | Jun 1996 | A |
5535826 | Brown | Jul 1996 | A |
5544707 | Hopper | Aug 1996 | A |
5649594 | Flak et al. | Jul 1997 | A |
5678460 | Walkowc | Oct 1997 | A |
5719481 | Mo | Feb 1998 | A |
5730551 | Skeels | Mar 1998 | A |
5807027 | Oestergaar | Sep 1998 | A |
5868204 | Pritchett et al. | Feb 1999 | A |
5884706 | Edwards | Mar 1999 | A |
5927405 | Monjure | Jul 1999 | A |
5944152 | Lindsay | Aug 1999 | A |
5971077 | Lilley | Oct 1999 | A |
5988282 | Jennings et al. | Nov 1999 | A |
5992526 | Cunningham et al. | Nov 1999 | A |
5992527 | Garnham et al. | Nov 1999 | A |
6039119 | Hopper et al. | Mar 2000 | A |
6050339 | Milberger | Apr 2000 | A |
6053252 | Edwards | Apr 2000 | A |
6076605 | Lilley et al. | Jun 2000 | A |
6098715 | Seixas | Aug 2000 | A |
6109352 | Edwards | Aug 2000 | A |
6116784 | Brotz | Sep 2000 | A |
6123312 | Dai | Sep 2000 | A |
6138774 | Bourgoyne, Jr. | Oct 2000 | A |
6145596 | Dallas | Nov 2000 | A |
6182761 | Bednar | Feb 2001 | B1 |
6186239 | Monjure | Feb 2001 | B1 |
6209650 | Ingebrigtsen et al. | Apr 2001 | B1 |
6227300 | Cunningham | May 2001 | B1 |
6289992 | Monjure | Sep 2001 | B1 |
6296453 | Layman | Oct 2001 | B1 |
6321843 | Baker | Nov 2001 | B2 |
6352114 | Toalson et al. | Mar 2002 | B1 |
6367551 | Fenton | Apr 2002 | B1 |
6388577 | Carstensen | May 2002 | B1 |
6457529 | Calder | Oct 2002 | B2 |
6457530 | Lam | Oct 2002 | B1 |
6457540 | Gardes | Oct 2002 | B2 |
6460621 | Fenton et al. | Oct 2002 | B2 |
6481504 | Gatherar | Nov 2002 | B1 |
6484807 | Allen | Nov 2002 | B2 |
6494267 | Allen | Dec 2002 | B2 |
6497286 | Hopper | Dec 2002 | B1 |
6516861 | Allen | Feb 2003 | B2 |
6554075 | Filkes | Apr 2003 | B2 |
6557629 | Wong | May 2003 | B2 |
6612368 | Kent | Sep 2003 | B2 |
6612369 | Rocha | Sep 2003 | B1 |
6637514 | Donald | Oct 2003 | B1 |
6648070 | Cove et al. | Nov 2003 | B2 |
6651745 | Lush | Nov 2003 | B1 |
6655455 | Bartlett et al. | Dec 2003 | B2 |
6675900 | Baskett et al. | Jan 2004 | B2 |
6698520 | Fenton et al. | Mar 2004 | B2 |
6719059 | Dezen et al. | Apr 2004 | B2 |
6755254 | DeBerry | Jun 2004 | B2 |
6760275 | Carstensen | Jul 2004 | B2 |
6763890 | Polsky et al. | Jul 2004 | B2 |
6763891 | Humphrey et al. | Jul 2004 | B2 |
6805200 | DeBerry | Oct 2004 | B2 |
6823941 | Donald | Nov 2004 | B2 |
6832874 | Appleford et al. | Dec 2004 | B2 |
6840323 | Fenton | Jan 2005 | B2 |
6902005 | Radi et al. | Jun 2005 | B2 |
6907932 | Reimert | Jun 2005 | B2 |
6966383 | Millberger | Nov 2005 | B2 |
6968902 | Fenton | Nov 2005 | B2 |
7040408 | Sundararajan | May 2006 | B2 |
7069995 | Chan et al. | Jul 2006 | B2 |
7073592 | Polsky et al. | Jul 2006 | B2 |
7111687 | Donald | Sep 2006 | B2 |
7201229 | White et al. | Apr 2007 | B2 |
7210530 | Lush | May 2007 | B2 |
7243729 | Tyrrell et al. | Jul 2007 | B2 |
7270185 | Fontana | Sep 2007 | B2 |
7363982 | Hopper | Apr 2008 | B2 |
7520989 | Ostergaard | Apr 2009 | B2 |
7569097 | Campen | Aug 2009 | B2 |
7596996 | Zollo et al. | Oct 2009 | B2 |
7658228 | Moksvold | Feb 2010 | B2 |
7699099 | Bolding | Apr 2010 | B2 |
7718676 | Moussey | May 2010 | B2 |
7740074 | White | Jun 2010 | B2 |
7757772 | Donohue | Jul 2010 | B2 |
7770653 | Hill | Aug 2010 | B2 |
7823648 | Bolding | Nov 2010 | B2 |
7909103 | Fenton | Mar 2011 | B2 |
8011436 | Christie et al. | Sep 2011 | B2 |
20010011593 | Wilkins | Aug 2001 | A1 |
20010050185 | Calder et al. | Dec 2001 | A1 |
20020000315 | Kent et al. | Jan 2002 | A1 |
20020070026 | Fenton et al. | Jun 2002 | A1 |
20020074123 | Regan | Jun 2002 | A1 |
20030010498 | Tolman et al. | Jan 2003 | A1 |
20030019632 | Humphrey et al. | Jan 2003 | A1 |
20030145997 | Langford et al. | Aug 2003 | A1 |
20030146000 | Dezen et al. | Aug 2003 | A1 |
20040026084 | Donald | Feb 2004 | A1 |
20040057299 | Kozakai et al. | Mar 2004 | A1 |
20040154790 | Cornelssen et al. | Aug 2004 | A1 |
20040154800 | Jack et al. | Aug 2004 | A1 |
20040200620 | Ostergaard | Oct 2004 | A1 |
20040206507 | Bunney | Oct 2004 | A1 |
20040251030 | Appleford et al. | Dec 2004 | A1 |
20050028984 | Donald et al. | Feb 2005 | A1 |
20050058535 | Meshenky et al. | Mar 2005 | A1 |
20050109514 | White et al. | May 2005 | A1 |
20050173322 | Ostergaard | Aug 2005 | A1 |
20050263194 | Tseng et al. | Dec 2005 | A1 |
20060237194 | Donald et al. | Oct 2006 | A1 |
20070144743 | White et al. | Jun 2007 | A1 |
20080047714 | McMiles | Feb 2008 | A1 |
20080128139 | White | Jun 2008 | A1 |
20080169097 | Bolding et al. | Jul 2008 | A1 |
20090025936 | Donald et al. | Jan 2009 | A1 |
20090126938 | White | May 2009 | A1 |
20090260831 | Moksvold | Oct 2009 | A1 |
20090266542 | Donald et al. | Oct 2009 | A1 |
20090266550 | Fenton | Oct 2009 | A1 |
20090294125 | Donald et al. | Dec 2009 | A1 |
20090294132 | Donald et al. | Dec 2009 | A1 |
20090301727 | Donald et al. | Dec 2009 | A1 |
20090301728 | Donald et al. | Dec 2009 | A1 |
20100025034 | Donald et al. | Feb 2010 | A1 |
20100044038 | Donald et al. | Feb 2010 | A1 |
20100206546 | Donald et al. | Aug 2010 | A1 |
20100206547 | Donald et al. | Aug 2010 | A1 |
20100206576 | Donald et al. | Aug 2010 | A1 |
20100300700 | Garbett et al. | Dec 2010 | A1 |
20110192609 | Tan et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
498216 | Apr 1999 | AU |
10415841 | Mar 2007 | BR |
638019 | Aug 1983 | CH |
2541715 | Apr 1976 | DE |
3738424 | May 1989 | DE |
0036213 | Sep 1981 | EP |
0568742 | Nov 1993 | EP |
0572732 | Dec 1993 | EP |
0719905 | Mar 1996 | EP |
0952300 | Mar 1998 | EP |
0841464 | May 1998 | EP |
1990505 | Sep 2002 | EP |
1639230 | Jan 2009 | EP |
1918509 | Oct 2009 | EP |
2710946 | Apr 1995 | FR |
242913 | Nov 1925 | GB |
1022352 | Mar 1966 | GB |
2197675 | May 1998 | GB |
2319795 | Jun 1998 | GB |
2346630 | Aug 2000 | GB |
2361726 | Oct 2001 | GB |
0312543.2 | May 2003 | GB |
0405454.0 | Mar 2004 | GB |
0405471.4 | Mar 2004 | GB |
2445493 | Jul 2008 | GB |
20061778 | May 2006 | NO |
9008897 | Aug 1990 | WO |
9630625 | Oct 1996 | WO |
9815712 | Apr 1998 | WO |
9906731 | Feb 1999 | WO |
9928593 | Jun 1999 | WO |
9949173 | Sep 1999 | WO |
0047864 | Aug 2000 | WO |
0053937 | Sep 2000 | WO |
0070185 | Nov 2000 | WO |
0238912 | May 2002 | WO |
02088519 | Nov 2002 | WO |
03033868 | Apr 2003 | WO |
03078793 | Sep 2003 | WO |
2005040545 | May 2005 | WO |
2005047646 | May 2005 | WO |
2005083228 | Sep 2005 | WO |
2006041811 | Apr 2006 | WO |
2007075860 | Jul 2007 | WO |
2007079137 | Jul 2007 | WO |
2008034024 | Mar 2008 | WO |
Entry |
---|
Examination Report dated Jun. 30, 2011; European Application No. 10161116.8 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10161117.6 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10161120.0 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10167181.6 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10167182.4 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10167183.2 (2p.). |
Examination Report dated Jun. 30, 2011; European Application No. 10167184.0 (2p.). |
Supplemental Notice of Allowance dated Jul. 7, 2011; U.S. Appl. No. 10/558,593 (7p.). |
Response to Office Action dated Apr. 14, 2011; U.S. Appl. No. 12/768,324; Response filed Jul. 14, 2011 (7p.). |
Response to Office Action dated Apr. 28, 2011; U.S. Appl. No. 12/768,332 (7 p.). |
Notice of Allowance dated Jul. 22, 2011; U.S. Appl. No. 12/441,119 (15 p.). |
European Search Report dated Dec. 2, 2010; European Application No. 10185612.8 (4 p.). |
Norwegian Response to Office Action dated Jun. 22, 2011; Application No. 20015431 (19p.). |
European Response to Search Opinion; Application No. 10185795.1; Response filed Aug. 3, 2011 (12 p.). |
U.S. Office Action dated Jul. 21, 2011; U.S. Appl. No. 12/515,729 (53 p.). |
Supplemental Notice of Allowance dated Aug. 8, 2011; U.S. Appl. No. 12/441,119 (9 p.). |
Summons to Oral Proceedings dated Aug. 3, 2011; European Application No. 01980737.9 (3 p.). |
European Response to Search Opinion; European Application No. 10013192.9; Response filed Aug. 10, 2011 (10 p.). |
Notice of Allowability dated Aug. 26, 2011; U.S. Appl. No. 10/590,563 (11 p.). |
European Office Action dated Aug. 22, 2011; Application No. 10185612.8 (2 p.). |
U.S. Final Office Action dated Sep. 7, 2011; U.S. Appl. No. 12/541,937 (13 p.). |
European Response to Oral Summons dated Sep. 22, 2011; EP Application No. 01980737.9 (42 p.). |
Supplemental Notice of Allowance dated Oct. 11, 2011; U.S. Appl. No. 12/441,119 (8 p.). |
Office Action dated Oct. 17, 2011; U.S. Appl. No. 12/768,337 (64 p.). |
Notice of Allowance dated Oct. 17, 2011; U.S. Appl. No. 12/768,332 (56 p.). |
Office Action dated Oct. 17, 2011; U.S. Appl. No. 12/768,324 (18 p.). |
Canadian Office Action dated Oct. 14, 2011; Canadian Application No. 2,526,714 (3 p.). |
Notice of Allowance dated Oct. 24, 2011; U.S. Appl. No. 12/515,534 (7 p.). |
Corrected Notice of Allowance dated Oct. 26, 2011; U.S. Appl. No. 12/541,938 (8 p.). |
European Exam Report dated Nov. 14, 2011; European Application No. 05781685.2 (3 p.). |
European Decision to Grant dated Nov. 4, 2011; European Application No. 01980737.9 (4 p.). |
Supplemental Notice of Allowability dated Dec. 6, 2011; U.S. Appl. No. 12/768,332 (10 p.). |
Notice of Allowance dated Dec. 16, 2011; U.S. Appl. No. 13/116,889 (7 p.). |
Response to Office Action dated Aug. 22, 2011; Response dated Dec. 22, 2011; European Application No. 10185612.8 (2 p.). |
Office Action dated Dec. 22, 2011; U.S. Appl. No. 12/515,729 (31 p.). |
Notice of Allowance dated Dec. 23, 2011; U.S. Appl. No. 12/768,337 (5 p.). |
Examination Report dated Dec. 20, 2011; GB Application No. 0821072.6 (2 p.). |
Observations dated May 10, 2011; GB Application No. 0821072.6 (19 p.). |
European International Search Report dated Mar. 4, 2002; PCT/GB01/04940 (3 p.). |
European Official Communication dated Mar. 5, 2003; Application No. 00929690.6 (2 p.). |
European Response to Official Communication; Application No. 00929690.6; Response filed Jun. 27, 2003 (5 p.). |
European Official Communication dated Aug. 29, 2003; Application No. 00929690.6 (3 p.). |
European Examination Report dated Apr. 28, 2004; Application No. 00929690.6 (3 p.). |
European Response to Examination Report; Application No. 00929690.6; Response filed Aug. 30, 2004. |
European Communication dated Sep. 19, 2006; Application No. 01980737.9 (1 p.). |
European Response to EPO Communication; Application No. 01980737.9; Response filed Oct. 6, 2006 (5 p.). |
European Article 96(2) Communication dated Feb. 5, 2007; Application No. 04735596.1 (6 p.). |
European Response to Examination Report; Application No. 047355961; Response filed Aug. 14, 2007 (15 p.). |
European Search Report dated Apr. 16, 2007; Application No. 06024001.7 (2 p.). |
European Article 96(2) Communication dated Jun. 12, 2007; Application No. 05717806.3 (3 p.). |
European Response to Article 96(2) Communication dated Jun. 12, 2007; Application No. 05717806.3; Response filed Sep. 19, 2007 (17 p.). |
European Examination Report dated Jun. 15, 2007; Application No. 01980737.9 (5 p.). |
Response to European Examination Report dated Jun. 15, 2007; Application No. 01980737.9; Response filed Oct. 9, 2007 (12 p.). |
European Examination Report dated Nov. 22, 2007; Application No. 04735596.1 (3 p.). |
European Response to Examination Report dated Nov. 22, 2007; Application No. 04735596.1; Response filed Feb. 19, 2008 (101 p.). |
European Examination Report dated Dec. 13, 2007; Application No. 06024001.7 (1 p.). |
Response to European Examination Report dated Dec. 13, 2007; Application No. 06024001.7; Response filed Mar. 10, 2008 (6 p.). |
European Search Report dated Mar. 28, 2008; Application No. 08000994.7 (4 p.). |
European Response to Written Opinion dated Aug. 8, 2008; Application No. 08000994.7 (10 p.). |
European Examination Report dated Oct. 30, 2008; Application No. 08000994.7 (2 p.). |
European Response to Examination Report dated Oct. 30, 2008 w/amended specification; Application No. 08000994.7; Response filed Dec. 11, 2008 (94 p.). |
European Examination Report dated May 18, 2009; Application No. 08162149.2 (8 p.). |
European Response to Examination Report dated May 18, 2009; Application No. 08162149.2; Response filed Nov. 18, 2009 (132 p.). |
Response to Article 94(3) and Rule 71(1) dated May 18, 2009; Application No. 08162149.2 (3 p.). |
European Examination Report dated May 4, 2010; Application No. 07864486.1 (3 p.). |
European Response to Examination Report dated May 4, 2010; Application No. 07864486.1; Response filed Nov. 12, 2010 (10 p.). |
European Examination Report dated May 4, 2010; Application No. 07864482.0 (3 p.). |
European Search Report dated Jun. 25, 2010; Application No. 10161116 (2 p.). |
European Search Report dated Jun. 25, 2010; Application No. 10161117 (2 p.). |
European Search Report dated Jun. 25, 2010; Application No. 10161120 (2 p.). |
European Search Report dated Aug. 2, 2010; Application No. 10161117.6 (1 p.). |
European Response to Examination Report dated Aug. 2, 2010; Application No. 10161117.6; Response filed Dec. 2, 2010 (6 p.). |
European Examination Report dated Aug. 2, 2010; Application No. 10161116.8 (1 p.). |
European Response to Examination Report dated Aug. 2, 2010; Application No. 10161116..8; Response filed Dec. 2, 2010 (13 p.). |
European Examination Report dated Aug. 4, 2010; Application No. 10161120.0 (1 p.). |
European Response to Examination Report dated Aug. 4, 2010; Application No. 10161120.0; Response filed Dec. 2, 2010 (6 p.). |
European Examination Report dated Oct. 14, 2010; Application No. 10167181.6 (3 p.). |
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167181.6; Response filed Feb. 9, 2011 (6 p.). |
European Examination Report dated Oct. 14, 2010; Application No. 10167183.2 (3 p.). |
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167183.2; Response filed Feb. 14, 2011 (4 p.). |
European Examination Report dated Oct. 14, 2010; Application No. 10167182.4 (3 p.). |
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167182.4; Response filed Feb. 10, 2011 (6 p.). |
European Examination Report dated Oct. 14, 2010; Application No. 10167184.0 (3 p.). |
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167184.0; Response filed Feb. 10, 2011 (8 p.). |
European Examination Report dated Nov. 10, 2010; Application No. 07842464.5 (3 p.). |
Response to European Examination Report dated Nov. 10, 2010; Application No. 07842464.5; Response filed Mar. 18, 2011 (11 p.). |
European Search Report and Opinion dated Dec. 3, 2010; Application No. 10185795.1 (4 p.). |
European Search Report dated Dec. 9, 2010; Application No. 10013192 (3 p.). |
European Office Action Pursuant to Article 94(3) dated Dec. 29, 2010; Application No. 06024001.7 (4 p.). |
Norwegian Examination Report dated Aug. 19, 2005; Application No. 20015431 (6 p.). |
Response to Norwegian Examination Report dated Aug. 19, 2005; Application No. 20015431 (19 p.). |
Norwegian Examination Report dated Mar. 22, 2010; Application No. 20032037 (8 p.). |
Norwegian Office Action dated Oct. 20, 2010; Application No. 20032037 (4 p.). |
International Search Report dated Mar. 4, 2002; PCT/GB01/04940 (3 p.). |
International Search Report and Written Opinion dated Sep. 22, 2004; PCT/GB2004/002329 (13 p.). |
International Search Report and Written Opinion dated Jun. 7, 2005; PCT/GB2005/000725 (8 p.). |
International Search Report and Written Opinion dated Jan. 27, 2006; PCT/GB2005/003422 (8 p.). |
International Search Report and Written Opinion dated Apr. 16, 2007; PCT/GB2004/002329 (10 p.). |
International Search Report and Written Opinion dated Jun. 13, 2008; PCT/US2007/084884 (8 p.). |
International Search Report and Written Opinion dated Jun. 13, 2008; PCT/US2007/084879 (9 p.). |
International Search Report and Written Opinion dated Aug. 12, 2008; PCT/US2007/078346 (9 p.). |
www.subsea7.com; “Multiple Application Re-Injection System” (undated) (2 p.). |
Baker Hughes; “Intelligent Well System;Complete Range of Intelligent Well Systems,” (undated) (4 p.). |
Notice of Litigation for U.S. Appl. No. 10/558,593 (77 p.). |
Patent Search Report INPADOC Patent Family (3 p.) (undated). |
Venture Training Manual Part 1 (undated) (48 p.). |
Venture Training Manual Part 2 (undated) (25 p.). |
ABB Retrievable Choke Insert pp. 3, 8 (undated) (2 p.). |
Kvaerner Pump Photo “G” (undated) (1 p.). |
Aker Kvaerner; Multibooster System “H” (undated) (4 p.). |
Progressing Cavity and Piston Pumps; National Oilwell “K” (undated) (2 p.). |
Weatherford Artificial Lift Systems “M” (2 p.). |
“Under Water Pump for Sea Bed Well” by A. Nordgren, “I” Dec. 14, 1987 (2 p.). |
Petroleum Abstracts Oct. 25, 2001 (48 p.). |
Petroleum Abstracts Oct. 30, 2001 (79 p.). |
Derwent Abstracts Nov. 2, 2001 (16 p.). |
www.subsea7.com “New Technology to Increase Oil Production Introduce to Subsea Market,” Jun. 13, 2002 (2 p.). |
ABB Brochure entitled “Subsea Chokes and Actuators” dated Oct. 2002 (12 p.). |
Kvaerner Oilfield Products A.S. Memo-Multiphase Pumping Technical Issues, dated May 19, 2004 “D” (10 p.). |
Offshore Article “Multiphase Pump,” Jul. 2004 “C” (1 p.). |
Jetech DA-4D & DA-8D Ultra-High Pressure Increases “L” (3 p.). |
Force Pump, Double-Acting, Internet, Glossary “J” dated Sep. 7, 2004 (2 p.). |
Online Publication: Weatherford Ram Pump dated Aug. 10, 2005 “B” (2 p.). |
Framo Multiphase Booster Pumps dated Aug. 10, 2005 “F” (1 p.). |
A750/09, in the Court of Session, Intellectual Property Action, Closed Record, in the Cause DES Operations et al. vs. Vetco Gray, Inc., et al., Updated record to include adjusted Answers to Minute of Amendment Oct. 21, 2010 (90p.). |
A750/09, in the Court of Session, Intellectual Property Action, Note of Arguments for the First to Fifth Defenders Dec. 30, 2010 (18 p.). |
A750/09, in the Court of Session, Intellectual Property Cause; Response to the Pursuers to the Note of Argument for the Defenders Mar. 3, 2011 (12 p.). |
A750/09, in the Court of Session, Intellectual Property Action, Open Record, D.E.S. Operations Limited, Cameron Systems Ireland Limited (Pursuers) against Vetco Gray, Inc., Paul White, Paul Milne, and Norma Brammer (Defenders) Adjusted for the Pursuers Feb. 9, 2010 as further adjusted for the Pursuers Apr. 6, 2010 (53pp). |
Initiation of Proceedings Before the Comptroller, Oct. 22, 2009; in the Matter of DES Operations Limited and Cameron Systems Ireland Limited and Vetco Gray Inc., and in the Matter of an Application Under Sections 133, 91A, 121A, and 371 of the Patent Act 1977, Statement of Grounds, Oct. 22, 2009 (21pp). |
Singapore Examination Report dated Jan. 10, 2007; Application No. 200507390-3 (5 p.). |
Singapore Written Opinion dated May 3, 2010; Application No. 200903220-2 (5 p.). |
Singapore Written Opinion dated Oct. 12, 2010; Application No. 200903221-0 (11 p.). |
Response to Singapore Written Opinion Dated Oct. 12, 2010; Application No. 200903221-0; Response filed Mar. 8, 2011 (11 p.). |
U.S. Office Action dated Feb. 26, 2003; U.S. Appl. No. 10/009,991 (5 p.). |
Response to Office Action dated Feb. 26, 2003; U.S. Appl. No. 10/009,991; Response filed May 12, 2003 (7 p.). |
Notice of Allowance dated May 28, 2003; U.S. Appl. No. 10/009,991 (5 p.). |
Provisional Application filed Oct. 22, 2003; U.S. Appl. No. 60/513,294 (15 p.). |
Provisional Application filed Feb. 26, 2004; U.S. Appl. No. 60/548,630 (23 p.). |
Provisional Application filed Feb. 26, 2004; U.S. Appl. No. 60/548,727 (36 p.). |
U.S. Office Action dated Mar. 25, 2004; U.S. Appl. No. 10/415,156 (6 p.). |
Response to Office Action dated Mar. 25, 2004; U.S. Appl. No. 10/415,156 (9 p.). |
Notice of Allowance dated Jul. 26, 2004; U.S. Appl. No. 10/415,156 (4 p.). |
U.S. Office Action dated Dec. 20, 2005; U.S. Appl. No. 10/651,703 (8 p.). |
Response to Office Action dated Dec. 20, 2005; U.S. Appl. No. 10/651,703 (13 p.). |
Notice of Allowance dated Apr. 26, 2006; U.S. Appl. No. 10/651,703 (7 p.). |
Response to Notice of Allowance dated Apr. 26, 2006; U.S. Appl. No. 10/51,703 (7 p.). |
Provisional Application filed Nov. 19, 2007; U.S. Appl. No. 61/190,048 (24 p.). |
U.S. Office Action (Restriction Requirement) dated Feb. 11, 2008; U.S. Appl. No. 10/558,593 (7 p.). |
Response to Office Action (Restriction Requirement) dated Feb. 11, 2008; U.S. Appl. No. 10/558,593 (12 p.). |
U.S. Office Action (Restriction Requirement) dated Jul. 10, 2008; U.S. Appl. No. 10/558,593 (6 p.). |
Response to Office Action (Restriction Requirement) dated Jul. 10, 2008; U.S. Appl. No. 10/558,593 (12 p.). |
U.S. Office Action dated Jan. 8, 2009; U.S. Appl. No. 10/558,593 (8 p.). |
Response to Office Action dated Jan. 8, 2009; U.S. Appl. No. 10/558,593 (31 p.). |
Final Office Action dated Jul. 7, 2009; U.S. Appl. No. 10/558,593 (6 p.). |
Response to Final Office Action dated Jul. 7, 2009; U.S. Appl. No. 10/558,593 (26 p.). |
Office Action (Restriction Requirement) dated Jan. 7, 2010; U.S. Appl. No. 12/541,934 (5 p.). |
Response to Office Action dated Jan. 7, 2010; U.S. Appl. No. 12/541,934 (6 p.). |
U.S. Office Action dated Jul. 21, 2010 ; U.S. Appl. No. 10/558,593 (10 p.). |
Response to Office Action dated Jul. 21, 2010; U.S. Appl. No. 10/558,593 (9 p.). |
Office Action dated Aug. 12, 2010; U.S. Appl. No. 12/441,119 (14 p.). |
Response to Office Action dated Aug. 12, 2010; U.S. Appl. No. 12/441,119; Response filed Nov. 8, 2010 (12 p.). |
U.S. Office Action dated Aug. 31, 2010; U.S. Appl. No. 10/590,563 (13 p.). |
Response to Office Action dated Aug. 31, 2010; U.S. Appl. No. 10/590,563; Response filed Nov. 29, 2010 (8 p.). |
U.S. Office Action dated Oct. 6, 2010; U.S. Appl. No. 12/541,938 (7 p.). |
Response to Office Action dated Oct. 6, 2010; U.S. Appl. No. 12/541,938; Response filed Jan. 11, 2011 (8 p.). |
Office Action dated Dec. 7, 2010; U.S. Appl. No. 12/541,936 (12 p.). |
Response to Office Action dated Dec. 7, 2010; U.S. Appl. No. 12/541,936; Response filed Jan. 20, 2011 (9 p.). |
Notice of Allowance dated Jan. 6, 2011; U.S. Appl. No. 10/558,593 (26 p.). |
Final Office Action dated Feb. 3, 2011; U.S. Appl. No. 12/441,119 (12 p.). |
Office Action dated Feb. 16, 2011; U.S. Appl. No. 12/541,937 (7 p.). |
Final Office Action dated Mar. 2, 2011; U.S. Appl. No. 10/590,563 (7 p.). |
Response to Final Office Action dated Mar. 2, 2011; U.S. Appl. No. 10/590,563; Response filed Apr. 26, 2011 (8 p.). |
Norwegian Office Action dated Mar. 28, 2011; Application No. 20015431 (3 p.) (1600-19226). |
Response to Final Office Action dated Feb. 3, 2011; U.S. Appl. No. 12/441,119; Response filed Mar. 30, 2011 (11 p.). |
Final Office Action dated Mar. 30, 2011; U.S. Appl. No. 12/541,938 (5 p.). |
Response to Final Office Action dated Mar. 30, 2011; U.S. Appl. No. 12/541,938; Response filed Apr. 18, 2011 (10 p.). |
Notice of Allowance dated Apr. 1, 2011; U.S. Appl. No. 12/541,936 (5 p.). |
Notice of Allowance dated Apr. 4, 2011; U.S. Appl. No. 10/558,593 (5 p.). |
U.S. Office Action dated Apr. 13, 2011; U.S. Appl. No. 12/441,119 (10 p.). |
Office Action Dated Apr. 14, 2011; U.S. Appl. No. 12/768,324 (7 p.). |
Office Action Dated Apr. 28, 2011; U.S. Appl. No. 12/768,332 (6 p.). |
Notice of Allowance Dated May 6, 2011; U.S. Appl. No. 12/541,938 (5 p.). |
U.S. Office Action/Advisory Action dated May 6, 2011; U.S. Appl. No. 10/590,563 (3p.). |
U.S. Office Action dated May 25, 2011; U.S. Appl. No. 12/515,534 (7p.). |
Supplemental Notice of Allowance dated Jun. 8, 2011; U.S. Appl. No. 12/541,936 (2p.). |
Notice of Allowance dated Jun. 28, 2011; U.S Appl. No. 10/590,563 (14p.). |
Response to Office Action dated Dec. 6, 2010; Canadian Application No. 2,526,714; Response filed Jun. 6, 2011 (16p.). |
Response to Search Opinion; European Application No. 10185612.8; Response filed Jun. 29, 2011 (13p.). |
European Response to Exam Report; European Application No. 10167184.0; Response filed Jan. 4, 2012 (142 p.). |
Supplemental Notice of Allowability dated Jan. 9, 2012; U.S. Appl. No. 13/116,889 (10 p.). |
European Response to Office Action; European Application No. 10185795.1; Response filed Jan. 23, 2012 (2 p.). |
European Response to Office Action; European Application No. 10013192.9; Response filed Jan. 23, 2012 (2 p.). |
Supplemental Notice of Allowance dated Jan. 26, 2012; U.S. Appl. No. 12/768,337 (10 p.). |
Notice of Allowance dated Feb. 22, 2012; NO Application No. 20015431 (2 p.). |
Response to Office Action dated Oct. 17, 2011; U.S. Appl. No. 12/768,324; Response filed Jan. 17, 2012 (7 p.). |
Canadian Notice of Allowance dated Feb. 23, 2012; Canadian Application No. 2,555,403 (1 p.). |
U.S. Notice of Allowance dated Mar. 29, 2012; U.S. Appl. No. 12/768,324; (18p.). |
U.S. Response to Office Action Dated Dec. 22, 2011; Response filed Mar. 22, 2012; U.S. Appl. No. 12/515,729 (14p.). |
U.S. Corrected Notice of Allowability dated Mar. 29, 2012; U.S. Appl. No. 13/116,889 (11p.). |
Canadian Response to Office Action dated Oct. 7, 2011; Response filed Mar. 22, 2012; Canadian Application No. 2,526,714 (18 p.). |
European Decision to Grant dated Mar. 15, 2012; European Application No. 01980737.9 (1 p.). |
European Response to Office Action Dated Nov. 14, 2011; European Application No. 05781685.2; Response filed May 22, 2012 (3 p.). |
U.S. Corrected Notice of Allowability dated Jun. 8, 2012; U.S. Appl. No. 12/768,324 (10 p.). |
Australian Response to Office Action; Australian Application No. 2011200165I Response Filed Jun. 20, 2012 (124 p.). |
European Office Action dated Feb. 7, 2012; European Application No. 07864482.0 (8 p.). |
U.S. Office Action dated Jul. 20, 2012; U.S. Appl. No. 13/164,291 (71 p.). |
Australian Examination Report dated Jul. 3, 2003; Application No. 47694/00 (2 p.). |
Australian Response to Examination Report; Application No. 47694/00; Response filed Jul. 5, 2004 (20 p.). |
Australian Examination Report dated Jul. 21, 2006; Application No. 2002212525 (2 p.). |
Australian Response to Examination Report; Application No. 2002212525; Response filed Jun. 22, 2007 (33 p.). |
Australian Examiner's Report dated Sep. 14, 2010; Application No. 2004289864 (2 p.). |
Australian Response to Examiners Report; Application No. 2004289864; Response filed Dec. 7, 2010 (23 p.). |
Australian Examiner's Report No. 3 dated Dec. 13, 2010; Application No. 2004289864 (1 p.). |
Brazilian Examination Report dated Apr. 3, 2008; Application No. PI0115157-6 (3 p.). |
Response to Brazilian Examination Report; Application No. PI0115157-6; Response filed Jul. 21, 2008 (7 p.). |
Canadian Office Action dated Jan. 10, 2007; Application No. 2,373,164 (2 p.). |
Response to Canadian Office Action; Application No. 2,373,164; Response filed Jul. 10, 2007 (16 p.). |
Canadian Office Action dated Oct. 12, 2007; Application No. 2,428,165 (2 p.). |
Response to Canadian Office Action; Application No. 2,428,165; Response filed Jan. 3, 2008 (16 p.). |
Canadian Office Action dated Dec. 6, 2010; Application No. 2,526,714 (3 p.). |
EP Preliminary Examination Report & Written Opinion dated Sep. 4, 2001; PCT/GB00/01785 (17 p.). |
European Response to Office Action Dated Feb. 7, 2012; Application No. 07864482.0; Response Filed Aug. 9, 2012 (10 p.). |
European Search Report and Opinion Dated Aug. 6, 2012; Application No. 12003132.3 (7 p.). |
Canadian Office Action Dated Aug. 8, 2012; Canadian Application No. 2,526,714 (2 p.). |
U.S. Office Action dated Sep. 4, 2012; U.S. Appl. No. 13/415,635 (5 p.). |
U.S. Office Action dated Oct. 3, 2012; U.S. Appl. No. 13/536,433 (9 p.). |
U.S. Office Action dated Oct. 12, 2012; U.S. Appl. No. 13/205,284 (9 p.). |
U.S. Office Action dated Nov. 6, 2012; U.S. Appl. No. 13/405,997 (12 p.). |
U.S. Response to Office Action Dated Jul. 20, 2012; U.S. Appl. No. 13/167,291; Response Filed Nov. 15, 2012 (13 p.). |
U.S. Response to Office Action Dated Sep. 4, 2012; Application No. 13/415,635; Response Filed Dec. 4, 2012 (7 p.). |
Lafitte, J.L., et al., “Dalia Subsea Production System: Presentation and Challenges,” (OTC 18541) 2007 Offshore Technology Conference, Houston, Texas Apr. 30-May 3, 2007 (10 p.). |
Dalia Brochure, Total S.A., Feb. 2007, France (98 p.). |
U.S. Final Office Action Dated Dec. 24, 2012; U.S. Appl. No. 13/164,291 (6 p.). |
Statement Accompanying Information Disclosure Statement; U.S. Appl. No. 13/536,433, filed Dec. 28, 2012; (3 p.). |
U.S. Response to Final Office Action Dated Sep. 12, 2013; U.S. Appl. No. 13/415,635; Response Filed Nov. 12, 2013 (14 p.). |
U.S. Response to Office Action Dated Jul. 19, 2013; U.S. Appl. No. 13/687,290; Response Filed Nov. 19, 2013 (17 p.). |
U.S. Response to Final Office Action Dated Sep. 12, 2013 and Advisory Action Dated Nov. 25, 2013; U.S. Appl. No. 13/415,635; Response Filed Dec. 13, 2013 (12 p.). |
U.S. Notice of Allowance Dated Jan. 14, 2014; U.S. Appl. No. 13/687,290 (8 p.). |
U.S. Response to Final Office Action Dated Sep. 27, 2013; U.S. Appl. No. 13/591,443; Response Dated Dec. 27, 2013 (12 p.). |
U.S. Advisory Action Dated Jan. 24, 2014; U.S. Appl. No. 13/591,443 (3 p.). |
Number | Date | Country | |
---|---|---|---|
20120273214 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
60548727 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10590563 | US | |
Child | 13267039 | US |