The invention relates to modular buildings, in particular to a system for connecting modular units together vertically and horizontally to construct multi-unit modular building structures.
It is increasingly clear that as constraints around cost, health and safety, sustainability and speed of construction continue to get more and more stringent, traditional methods of construction need to be reconsidered. The idea of shifting majority of the construction activities to an off-site location is very favorable to meet the above-mentioned criteria. Pre-fabricating parts of a building and then transporting them to the construction site has been done for a long time but in recent times, fully factory-built modules connected to each other on site is gaining popularity due to the advantages it provides. Innovatively connecting the modules together with limited access to the location of the connection is where the challenge lies. This application intends to obtain a provisional patent for one such connection system.
The problem we are attempting to solve with this embodiment is the means of making structural connection between each prefabricated volumetric module. In a conventionally built building, the structural elements (beams, columns, braces etc.) are all accessible from all directions and may be bolted or welded together by conventional means. Those connections are designed to meet the building code requirements for robustness and for the forces applied. In modular construction, structural elements for any one module are also fully accessible in the module factory. However, once on site, the structural elements of the building are almost completely hidden by the furnishings of the modules. The structural connection requirements as per the building code remain the same, i.e., all beams and columns must be positively and robustly connected between the different modules, but there is no easy access to be able to apply bolts or welds to the structural elements. Therefore, a non-conventional connection system must be employed if modular construction is to be efficient. The embodiment and means of this connection system directly affect the speed of construction, cost of construction and the strength limitations of the building as a whole. Specific challenges are listed as follows:
Currently utilized solutions to these challenges do not address all the issues that this embodiment does. Many require access holes or panels through the fabric of the module finishes, which is not ideal. Many are quite limited in their strength capabilities, meaning the height of building they can be utilized in is limited. Some are complex in their execution, requiring increased time on site to make the connections. Some have limited tolerance adjustability, requiring increased fabrication costs to achieve tighter tolerances in the fabrication shop.
Our embodiments intend to improve holistically on all these solutions by using a different approach. Our solution is an improvement in the following ways:
Various systems are known in the art. However, their function and means of operation are substantially different from the present embodiments.
Modular building units are constructed in a factory. This embodiment applies to the columns within the units, which are usually at the corners of the box shape module and also occasionally along the sides. The building plan is such that when modular units are placed together to form a building, columns are aligned between units stacked vertically, and columns are adjacent to each other where units are side by side. The embodiments allow for units to be fabricated and placed imperfectly, as is required in real-world construction and is one of the benefits of this embodiments.
Engineering principals and building codes require that that the modules are positively connected together with structural components meeting the strength requirements of the building code. This embodiment is the means of making those connections in the vertical direction between columns above and below and also in the horizontal direction between columns side to side. The embodiments enable these connections in one integrated system.
The columns are hollow steel sections. On the underside of the columns a special hollow prong which projects downward. This is an anchorage device that enters the top of the column in the module below. When the modules are stacked, the prong passes through a horizontal connecting plate. The horizontal connector plate extends horizontally to cover the tops of all adjacent columns from adjacent modules. The plate is the means of connecting the modules together in the horizontal direction. The plate become sandwiched between the columns of the modules below and the columns of the modules above. The plate has a hole for each column prong that projects through it from above into the columns below. The horizontal plate also has guidance attachments that can be adjusted with screws to resolve construction tolerances. The guidance system physically guides the prong and thus the whole module into the correct designed position as the next module is lowered on a crane from above.
Once the module above is placed, the whole column including the voids within the column and around and within the hollow guidance prong is filled with a high strength flowable structural grout. A grout tube delivers the grout from a pump placed on the roof of the module, down the column, through the hollow prong. From this position, the grout passes back up the inside of the column in the annulus between the prong or grout tube and outside wall of the column. The operator stops the filling process when they witness the grout appear at the desired level inside the column, viewed form their vantage point on top of the module. Once the grout has cured, the connection has achieved the required structural strength in the vertical and horizontal directions, locking the modules together.
A modular building column connection having a concrete or grout infill inside a composite hollow steel section column; where the composite hollow steel section column comprises an internal steel protrusion from an upper column to a lower column; and which creates a structural load path for tension and shear between building modules.
Another embodiment of the embodiments includes, a modular building column connection comprising: a concrete or grout infill inside a composite hollow steel section column; where the composite hollow steel section column comprises an internal steel protrusion from an upper column to a lower column; a prong; and which creates a structural load path for tension and shear between building modules.
The embodiments also include a method for a modular unit connection system, comprising jointing together pre-fabricated rectangular modular building units; wherein the pre-fabricated rectangular modular building units form a multistory building; and where the building units can be completely fitted out liquid grout filled columns. The method eliminates the need for bolting or welding and the requirement for access to connections from inside pre-finished building module interiors is also eliminated.
The modular building column connection comprises modules that are box shaped and contain 4 corner columns. The 4 corner columns are steel square hollow sections. There is structural framing of the modules side walls, floor, and ceiling. The system comprises a connector tube passing from the bottom of the columns above and through a horizontal connector plate containing a guidance system and into a top region of the hollow column. The method also comprises a system for grouting of the columns from the inside from an access position located on top of an upper most region of the module whereby forming a final positive structural connection.
The connection system can be employed in a variety of module designs, so long as those modules have columns along their sides or corners adjacent to a neighboring module's column. The size and shape of the in-fill beams can vary depending on the use of the module and the building's stability system. The connection system can perform as part of gravity only resisting modules, where the building has a separate lateral system, or the connection can perform as part of modules that provide the building's lateral system. The connection of beams to the column and any other in-fill framing is not discussed here since it is not part of the embodiments. For the purposes of this provisional application all diagrams shall only show the module's columns and shall omit all other beams and framing for clarity.
Referring to
Referring to
A plastic grout tube (202) is positioned inside of the column (2) creating a downward delivery path for grout inside the tube, and an upward exit path for the grout in the annulus between the tube and the column wall (203) The top of the grout tube is threaded so an operator can reach down and screw on a matching temporary extension pipe (501) from a grout pump. The tube stops at an elevation lower than the top of the column so that it does not clash with the anchor prong (205) from the column above.
The anchor prong (205) is a steel tube that is connected to the bottom of the grout pipe (202) to continue the delivery path for the grout. It is welded via the gusset plates (204) to the inside of the steel column (200). When the column is in tension, the steel prong transfers tension from the steel column (via the gusset plates) to the prong head (206). The tube also is the means of delivering the wet grout to the connection in a controlled way. (See grouting procedure,
The guidance nubs (301) are an integral part of the horizontal connector plate (300) and are used to guide the next module above into position as it is lowered on the crane. The tapered guidance fins of the module above (208) will contact these guidance nubs as the module is lowered on the crane and will force the module into the connect position relative to the horizontal connection plate.
The guidance fin plates (208) contact against the guidance nubs (301) to bring the module above into the correct position relative to the horizontal connector plate. The presence and location of fins on each of the 4 corner columns of a module will vary as per the pattern shown in
Referring to
Method of installation is discussed in the following paragraphs.
The foundation, or podium, of the building is typically of conventional construction. At the transition point to modular construction, short stub-columns which are a repeat of the top portion of a column assembly are fixed to the conventional structure in a way that is engineered for the specific forces transferred. Above the foundation the connection embodiment enables cyclical repetitive construction as follows. This description starts at a point where a level of modules has been placed and the connections at their base have been grouted (500), as per
Step 1—Survey and Shim. The tops of the columns are surveyed to understand their positional tolerance. Shims are placed on top of the columns as required.
Step 2. The horizontal connector plate (300) is placed on top of the columns and positioned (
Step 3. The module above is lowered down by crane (
Step 4. Once the crane is released, operators can stand on the roof of the module. They can visually inspect down each column via the annulus space (502) (
Step 5—Repeat Step 1.
Note that since the grout is only required for tension loads in the permanent building that are not present during construction, the grout does not have to have cured before the next module is stacked. The temporary compression forces can be carried via the steel columns alone. The following paragraphs contain a description of the structural load path through the connection. The grout is a key part of the structural load paths. It is the grout that is performing the role that it typically that of bolts and welds in conventional construction. It is the grout (being applied as a liquid) that can manage the tolerance requirements too.
Referring to
Referring to
In another embodiment, stiffener plates (601) may be added into the column. These provide additional attachment points to the flanges of beams (602) that can allow for moment continuity between beams and the columns. Without the stiffener plates, the beam webs may still be connected in a shear and axial connection arrangement with less moment resistance.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others or ordinary skill in the art to understand the embodiments disclosed herein.
When introducing elements of the present disclosure or the embodiments thereof, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the listed elements.
Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made only by way of illustration and that numerous changes in the details of construction and arrangement of parts may be resorted to without departing from the spirit and the scope of the invention.
This application is a U.S. Non-Provisional Patent Application that claims priority to U.S. Provisional Patent Application Ser. 63/187,487 filed on May 12, 2021, the entire contents of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
63187487 | May 2021 | US |