Connection terminal
The invention relates to a connection terminal having:
DE 299 15 515 U1 discloses a spring terminal for connecting electrical conductors having an insulating-material housing which has a connection clip with a clamping spring which interacts with a busbar piece. The insulating-material housing has an integrated operating element in the form of an eccentric lever which is rotatably mounted in the insulating-material housing. The rotation axis of the eccentric lever is situated substantially vertically over the clamping point.
DE 87 04 494 U1 discloses a connection terminal having a spring-force clamping connection and an operating lever. The operating lever is pivotably mounted beneath the clamping spring behind the clamping point, as seen in the conductor insertion direction, by way of its rotation axis. An operating tab is bent at the free clamping limb end and interacts with an operating finger of the operating lever in order to open the spring-force clamping connection.
Proceeding from the above, the object of the present invention is to create an improved connection terminal which is as small as possible and has a spring-force terminal connection and operating lever which is also improved in respect of the force effect of the operating lever on the connection terminal.
The object is achieved by the connection terminal having the features of claim 1.
In a connection terminal of the generic type cited in the introductory part, the rotation axis of the operating lever is arranged transverse to the conductor insertion direction in an associated conductor insertion opening or the extension of the conductor insertion opening continuing in the conductor insertion direction to the clamping point.
On account of the operating lever being arranged with its rotation axis in the conductor insertion opening or in the path of the conductor insertion opening in the direction of the clamping point, the operating lever rotates in the region of the clamping point or in the space in front of it. This has the advantage that the operating lever can be accommodated in the insulating-material housing in an extremely space-saving manner and, in the process, at the same time serves as a wall of the conductor insertion channel for guiding an electrical conductor. Therefore, the operating lever replaces a portion of the guide wall for an electrical conductor of the conductor insertion opening.
Positioning the rotation axis in the region of the clamping point or in the path of the conductor insertion opening situated in front of it additionally has the kinematic advantage that the clamping spring is operated relatively close to the rotation axis, this reducing the lever forces on the insulating-material housing.
It is therefore advantageous when the operating lever has at least one lateral boundary wall for guiding an electrical conductor, which is inserted into a conductor insertion opening in the conductor insertion direction, to an associated clamping point.
It is particularly advantageous when the at least one operating lever is arranged so as to be adjacent to an associated busbar portion, which forms the clamping point, such that the rotation axis of the operating lever is arranged in the space between the plane which is spanned by the busbar piece portion and the plane which is parallel thereto and which is defined by the clamping edge of the clamping spring, which is fully open when the operating lever is pivoted. In this case, the operating lever is preferably positioned beneath the busbar piece portion in the conductor insertion direction somewhat in front of or directly beneath the clamping point by way of its rotation axis. The busbar in the portion which forms the clamping point defines, irrespective of any raised portions for a contact edge, a first plane in relation to which a second imaginary plane is spanned. This second plane is spaced apart from the plane of the busbar piece in such a way that the clamping edge of an open clamping spring touches this plane. The intermediate space between the planes forms the preferred space in which the rotation axis of the operating lever should be located, in order to provide a mechanically stable connection terminal which is of extremely compact construction.
It is particularly advantageous when at least one operating lever enters a cutout in the busbar piece, which cutout is made so as to adjoin a clamping portion of the associated busbar piece. The operating lever then acts, by way of an operating portion, on an operating tab which is arranged next to the clamping portion of the clamping spring as seen over the width of an associated clamping spring, in order to open the clamping spring. It is possible to accommodate the operating lever in a space-saving manner with the aid of the cutout on a side edge of the busbar piece. An operating tab is then produced on the clamping portion of the clamping spring beneath said cutout as seen in the width of the busbar piece and the associated clamping spring, said operating tab then being acted on by the operating portion of the operating lever when the operating lever is pivoted, in order to open the clamping spring. Electrical contact is then made with an electrical conductor adjacent to this portion of the busbar piece or, as seen over the width, adjacent to the operating tab by the clamping portion of the clamping spring and a contact edge of the busbar piece which is preferably situated in front.
The operating tab is preferably released by the clamping spring, for example by being stamped free or cut free, and projects obliquely from the clamping portion of the clamping spring.
The at least one clamping spring is preferably in the form of a clamping spring which is bent in the shape of a U and of which the free clamping portion points obliquely in the direction of an associated busbar piece. With the aid of a clamping spring of this kind which is bent in the shape of a U, it is possible to directly clamp in an electrical conductor without first opening the clamping spring by way of the associated operating lever. This is also known as a direct plug-connection technique.
In a preferred embodiment, the at least one operating lever has a projecting pivot pin only on one side. This pivot pin is then accommodated in a corresponding opening in the insulating-material housing of the connection terminal and the rotation axis which is defined by the rotation speed. Therefore, the operating lever is mounted in the insulating-material housing of the connection terminal in a rotatable manner on one side with the aid of the pivot pin. In contrast, on the side opposite the one pivot pin, the operating lever is guided only by a wall of the insulating-material housing without a defined pivot pin.
The at least one operating lever preferably has an operating arm which extends in the conductor insertion direction in the closed state of the associated spring-force terminal connection. Therefore, the free end of the operating arm ends opposite the conductor insertion opening in the region of the rear side of the connection terminal. Therefore, a very compact construction of the connection terminal is possible.
However, it is also feasible for the at least one operating lever to have an operating arm which extends in the conductor insertion direction or counter to said conductor insertion direction on the lower side or the upper side of the connection terminal. In order to achieve variants of the connection terminal which are of as compact construction as possible, combinations are feasible, in particular, in which the operating arms of the operating levers extend alternately in the conductor insertion direction and counter to said conductor insertion direction or alternately on the lower side and upper side in the same directions or alternately in opposite directions.
These embodiments are particularly dependent on the specific combination of spring-force connection terminals and the physical position thereof in relation to one another.
In an embodiment which is preferred in this respect, the connection terminal has at least one pair of opposing spring-force connection terminals with conductor insertion openings which run toward one another on the opposing front side and rear side of the connection terminal. In this embodiment, electrical conductors can therefore be inserted both from the front side and from the rear side of the connection terminal in opposing conductor insertion directions and associated spring-force connection terminals can make contact with them. Each spring-force connection terminal of a pair of conductor insertion openings of this kind which are situated opposite one another, possibly with an offset, in each case has an operating lever with an operating arm, the operating arms of said operating levers pointing away from one another in opposite directions.
In this case, the operating arms are preferably accommodated in the space between two conductor insertion openings above and beneath the conductor insertion openings on the upper side or lower side of the connection terminal in associated recesses in the insulating-material housing.
In this embodiment it is particularly preferred when the operating arms of a pair of operating levers are arranged on the same side or alternatively on opposite sides of the connection terminal.
The invention will be explained in greater detail below with reference to exemplary embodiments together with the appended drawings, in which:
Each spring-force terminal connection 3a, 3b provides a clamping point by means of a clamping portion 6 which is formed on the free, moving end of the clamping spring, and in particular by means of the clamping edge at the free end of the clamping spring 4 and also on that busbar piece portion 5a which is situated opposite the clamping portion 6. In order to insert an electrical conductor to the clamping point, an associated conductor insertion opening 7 is made in the insulating-material housing for each spring-force terminal connection 3a, 3b. The conductor insertion opening 7 has a diameter which is matched to the maximum possible permissible cross section together with the insulating-material casing of an electrical conductor.
In order to open the clamping springs 4, each spring-force terminal connection 3a, 3b has an operating lever 8 with an operating portion 9 and also an operating arm 10 which adjoins said operating portion and extends in a longitudinal direction.
In
Said figure also shows that, as seen in the direction of the width of the clamping spring 4, an operating tab 11 is released in addition to the clamping portion 6 and projects obliquely from the clamping portion 6. An eccentric-like, projecting contour of the operating portion 9 of the associated operating lever 8a, 8b acts at least partially on said operating tab 11 during the movement sequence when the operating lever 8a, 8b is pivoted from the closed position (operating lever 8a on the left-hand side) to the open position (operating lever 8b on the right-hand side). In this way, the clamping portion 6 of the clamping spring 4 is moved away from the adjacent busbar piece portion 5a which forms the clamping point, in order to open the clamping spring 4.
Said figure also shows that the operating levers 8a, 8b is accommodated in recesses in the insulating-material housing 2 for to accommodate part of the operating arm 10. In this case, the operating arm 10, in the closed position (operating arm 8a on the left-hand side in
An embodiment in which the operating arm 10 is rotated through 180° and points in the conductor insertion direction L in the closed position is optionally also feasible. This is feasible, in particular, for a connection terminal in which only one spring-force terminal connection is present over the illustrated length of the connection terminal in the conductor insertion direction L and a plurality of spring-force terminal connections are arranged in a manner distributed over the width as seen in the viewing direction of
In the connection terminal 1 illustrated in
It is also clear from
It is also clear that the insulating-material housing 2 is of two-part construction and has a lower part 2a onto which an upper part 2b is latched. To this end, latching lugs 16 of the lower part 2a enter associated latching openings 17 in the upper part 2b.
It is also clear that the busbar piece portion 5a which forms the clamping point has a cutout 19 in the form of a depression, which the operating portion 9 of the operating lever 8 enters, laterally adjacent to the clamping edge 18. As seen over the width of the clamping spring 4, that is to say approximately in the viewing direction of
It is clear that the side wall of the operating portion 9 of the operating lever 8 forms a lateral boundary wall for an electrical conductor which is inserted to the clamping point, said boundary wall being used to guide the electrical conductor to the clamping point.
Behind the busbar piece portion 5a which forms the clamping point, the busbar 5 is laterally folded over in such a way that a bearing area 20 for supporting an abutment limb 21 of the clamping spring 4 is created at a distance from and parallel to the busbar piece portion 5a which forms the clamping point.
As illustrated, the open operating lever 8 can hold itself in an over-dead-center position by a suitable contour of the operating portion in concert with the position of the rotation axis D.
It is also clear from
Further variants are feasible. This applies, in particular, to variants of connection terminals in which only one spring-force terminal connection and not, as in the exemplary embodiments according to
In this case, a variant is also feasible in which the operating arms 10 project alternately firstly in the conductor insertion direction and, in the spring-force terminal connection 3 next to it, counter to the conductor insertion direction L from the rear side or front side.
In this case, a variant is also feasible in that not only does the direction of the operating arms 10 alternately change, but also the orientation of the operating levers are alternately such that they project out of the upper side and in an adjacent manner out of the lower side of the insulating-material housing 2 or are accommodated in recesses in the upper side and alternately the lower side.
In this embodiment, the clamping spring 4 has operating tabs 11 on both sides of the clamping portion 6.
The busbar pieces 5 of the spring-force terminal connections 3 which are arranged next one another obliquely toward the back-right can be electrically conductively connected to one another. However, an embodiment of the connection terminal 1 is also feasible in which in each case two spring-force terminal connections 3 which are situated next to one another are electrically conductively connected to one another and two or three pairs of such spring-force terminal connections 3 which are electrically conductively connected to one another are provided. Therefore, in each case two conductors for a single-phase voltage supply connection to the connections L (phase), N (neutral conductor) and PE (ground) are each connected to one another, so that a power supply system connection terminal is formed.
It is clear that the operating levers 8 are each arranged next to the clamping points, that is to say next to the busbar piece portion 5a and the clamping portion 6 immediately behind the end of the conductor insertion opening 7 formed in the insulating-material housing 2. The operating portions 9 of the operating levers 8 form a continuation of the wall of the respective conductor insertion opening 7, in order to guide an electrical conductor to the clamping point. Each operating portion 9 interacts with an associated operating tab 11 of the clamping spring 4. The rotation axis of the operating lever 8 is situated, as in the above-described exemplary embodiment, beneath the busbar piece portion 5 in the region of the clamping point. The rotation axis extends transverse to the conductor insertion direction which is predefined by the direction of extent of the conductor insertion opening 7.
It is also clear that the operating arms 10 extend counter to the conductor insertion direction L and are arranged on the upper side of the insulating-material housing 2. The free ends of the operating arms 10 are situated in the region of the front face. The free ends of the operating arms 10 are spaced apart from the boundary walls of the conductor insertion opening 7 or the insulating-material housing 2 in such a way that they can be grasped and pivoted.
It is clear from
It is also clear that the operating lever has a pivot pin 22, which serves as a bearing, at its two lateral outer ends. The pivot pins 22 are accommodated in corresponding openings in the insulating-material housing 2.
Said
The mutually opposite operating portions 9 therefore serve as a continuation of the conductor insertion opening 7.
The operating levers 8 can have latching grooves 26 or projecting latching pins on the mutually opposite side edges of the operating arms 10, in order to latch the operating lever to the insulating-material housing 2 in the closed state and to prevent unintentional opening of the operating lever 8 with a reduced force.
Said
Said
It is clear that the operating lever 8, by way of its operating portion 9, is arranged immediately behind the conductor insertion opening 7, once again laterally next to the busbar piece 5 or the busbar piece portion 5a which forms the clamping point. The rotation axis D is again situated in the conductor insertion opening 7 or directly behind it and, as seen in the conductor insertion direction L, just in front of the clamping point and beneath the busbar piece portion 5a which forms the clamping point. The operating arms 10 of the operating levers 8 are directed in the direction of the rear side of the connection terminal 1 away from the conductor insertion opening 7 in the conductor insertion direction L. Therefore, a very compact construction of the connection terminal 1 together with a simple and reliable operation of the spring-force terminal connection 3 is made possible.
Said
The operating portion 9 has a lug 30 which is matched to the position of the rotation axis such that the open operating lever 8 remains in an above-dead-center position in a self-retaining manner.
Said
Said figure also shows that the mutually opposite inner sides of the operating portions 9 are inclined in the direction of the free end and have insertion slopes 29 for guiding an electrical conductor without interfering edges.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 056 410 | Dec 2011 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
6146187 | Pallai | Nov 2000 | A |
8113858 | Chiang | Feb 2012 | B1 |
20100081316 | Eppe et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1898970 | Aug 1964 | DE |
1975279 | Dec 1967 | DE |
42334466 | Oct 1993 | DE |
202009010003 | Dec 2009 | DE |
29915515 | Feb 2011 | DE |
1622224 | Jun 2009 | EP |
2003249283 | May 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20130157520 A1 | Jun 2013 | US |