This application claims priority to and the benefit of Japanese Patent Application No. 2017-206596 filed on Oct. 25, 2017, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a connector and an electronic device.
As a technique for improving reliable connectivity to a connection object, connectors having, for example, a floating structure in which a deviation between substrates is accommodated by movement of a portion of the connector during and after fitting is known.
PTL 1 set forth below discloses an electric connector having a floating structure that contributes to miniaturization while inhibiting poor conduction caused by flux oozing.
A connector according to an embodiment of the present disclosure includes an insulator to be fitted to a connection object, and contacts attached to the insulator. Each of the contacts includes: a contact portion configured to electrically contact the connection object when the insulator and the connection object are fitted together; a first elastic portion that is elastically deformable and extends from a first base supported by the insulator; a first adjustment portion that is formed continuously with the first elastic portion and has an electric conductivity higher than that of the first elastic portion; and a second adjustment portion that is formed continuously with the first adjustment portion and has an electric conductivity lower than that of the first adjustment portion.
In the accompanying drawings:
In recent years, increases in an information amount and a speed of a signal transmission have progressed at a remarkable rate. Connectors having floating structures are desired to support such a large capacity and high speed transmission. However, the electric connector described in the PTL 1 does not sufficiently consider such a design that supports a large capacity and high speed transmission.
A connector according to one embodiment of the present disclosure has excellent transmission characteristics for signal transmission.
Hereinafter, an embodiment of the present disclosure will be described with reference to the accompanying drawings. Terms such as “front-rear direction”, “left-right direction”, and “up-down direction” used herein correspond to the directions indicated by arrows in the drawings. The directions indicated by the arrows in
In the following description, a connector 10 according to the present embodiment is described as a receptacle connector, and a connection object 60 is described as a plug connector. In particular, the connector 10 is the receptacle connector in which contact portions of contacts 50 elastically deform when the connector 10 and the connection object 60 are to be connected, and the connection object 60 is the plug connector in which contacts 90 do not elastically deform. Further variants of the connector 10 and the connection object 60 are not limited to this configuration. The connector 10 and the connection object 60 may function as the plug connector and the receptacle connector, respectively.
In the following description, it is assumed that the connector 10 and the connection object 60 are mounted on the circuit board CB 1 and the circuit board CB 2, respectively, and connected to the circuit boards in a direction perpendicular thereto. The connector 10 and the connection object 60 are connected to each other along the up-down direction, by way of example. The term “fitting direction” used in the following description refers to the up-down direction, by way of example. The manner by which the connector 10 and the connection object 60 are connected to each other is not limited thereto. The connector 10 and the connection object 60 may be connected parallel to the circuit board CB 1 and the circuit board CB 2, respectively. Alternatively, one of the connector 10 and the connection object 60 may be connected perpendicular to the corresponding circuit board while the other is connected in parallel to the corresponding circuit board. The circuit boards CB 1 and CB 2 may be rigid boards or any other circuit boards. For example, the circuit board CB 1 or the circuit board CB 2 may be a flexible printed circuit board (FPC).
The connector 10 according to the present embodiment has a floating structure. The connector 10 allows relative movement of the connection object 60 connected thereto with respect to the circuit board CB 1. The connection object 60 connected to the connector 10 may move within a predetermined range with respect to the circuit board CB 1.
As illustrated in
A configuration of the connector 10 in a state in which the contacts 50 do not elastically deform will be described with reference mainly to
As illustrated in
The first insulator 20 includes a plurality of contact attachment grooves 24 formed in the lower edge portions of the front and rear surfaces of the outer peripheral wall 22 across the bottom surface and the inner surface. The plurality of contacts 50 are attached to the respective one of the plurality of contact attachment grooves 24. The number of the contact attachment grooves 24 corresponds to the number of the contacts 50. The plurality of contact attachment grooves 24 are formed as recesses arranged side by side in the left-right direction. The contact attachment grooves 24 extend in the up-down direction on the inner surface of the first insulator 20.
The second insulator 30 is a member obtained by performing injection molding of a synthetic resin having insulating and heat-resistant properties. The second insulator 30 is formed in a substantially convex shape in an elevation view from the front direction. The second insulator 30 includes a bottom portion 31 that constitutes a lower portion, and a fitting projection 32 that is protruding upward from the bottom portion 31 and fitted into the connection object 60. The bottom portion 31 is longer than the fitting projection 32 in the left-right direction. That is, the left and right end portions of the bottom portion 31 protrude outward from the left and right end portions of the fitting projection 32. The second insulator 30 also includes a fitting recess 33 formed in a recessed manner on the top surface of the fitting projection 32. The second insulator 30 further includes a guiding portion 34 that extends on an upper edge portion of the fitting projection 32 and surrounds the fitting recess 33. The guiding portion 34 is formed as an inclined surface that is inclined obliquely inward in the upward direction.
The second insulator 30 includes a plurality of contact attachment grooves 35 formed side by side in the left-right direction. The plurality of contact attachment grooves 35 allow the respective plurality of contacts 50 to be fitted thereto. The number of the contact attachment grooves 35 corresponds to the number of contacts 50. The plurality of contact attachment grooves 35 extend in the up-down direction. The lower portions of the contact attachment grooves 35 are constituted of the lower portions of the front and rear surfaces of the second insulator 30 formed in a recessed manner. The central portions of the contact attachment grooves 35 are formed within the second insulator 30. The upper portions of the contact attachment grooves are constituted of the front and rear inner surfaces of the fitting recess 33 formed in the recessed manner.
The second insulator 30 includes a wall 36 that extends downward within the second insulator 30 from the bottom surface of the fitting recess 33. The wall 36 is located between a pair of contacts 50 which is arranged in the front-rear direction and attached to the second insulator 30. The wall 36 opposes each of the pair of contacts 50. The wall 36 has the largest width in its top portion. The middle portion of the wall 36 is formed to be narrower than the top portion. The lower portion of the wall 36 is formed to be narrower than the middle portion. The front and rear surfaces of the wall 36 constitute portions of the contact attachment grooves 35. The central portions of the contact attachment grooves 35 formed within the second insulator 30 are tapered with respect to the front-rear direction toward their tops, following the change in the widths of the central portion and the upper portion of the wall 36.
The fitting brackets 40 are obtained by molding thin plates made of any metallic material into a shape as illustrated in
Each of the contacts 50 is obtained by molding a thin plate made of, for example, a copper alloy having spring elasticity such as phosphor bronze, beryllium copper, or titanium copper, or a Corson type copper alloy into the shape as illustrated in
As illustrated in
The contacts 50 include respective first bases 51 that are extending in the up-down direction and supported by the first insulator 20. The top end portions of the first bases 51 latch to the first insulator 20. The contacts 50 include respective latches 52 that are formed continuously with the lower end portion of the first base 51 and latch to the first insulator. The first bases 51 and the latches 52 are accommodated in the contact attachment grooves 24 of the first insulator 20. The contacts 50 include respective mounting portions 53 that extend outward in a substantially L-shape from the lower end portions of the outer surfaces of the latches 52.
As illustrated in
The contacts 50 include respective adjustment portions 54B that are formed continuously with the first elastic portions 54A. The adjustment portions 54B in their entirety are formed to be wider than the first elastic portions 54A, that is, to have larger cross-sections and thus have electric conductivities higher than those of the first elastic portions 54A. In a state in which the contacts 50 are not elastically deformed, the adjustment portions 54B extend in the up-down direction, that is, in the fitting direction to be fitted to the connection object 60.
The adjustment portions 54B include respective first adjustment portions 54B1, second adjustment portions 54B2, and third adjustment portions 54B3 that constitute upper portions, middle portions, and lower portions of the adjustment portions 54B, respectively. The upper end portions of the first adjustment portions 54B1 are connected to the first elastic portions 54A. The first adjustment portions 54B1 have cross-sectional areas larger than those of the first elastic portions 54A. The first adjustment portions 54B1 protrude from the second adjustment portions 54B2 by one step along the front-rear direction. The second adjustment portions 54B2 have cross-sectional areas smaller than those of the first adjustment portions 54B1 and larger than those of the first elastic portions 54A. For example, the second adjustment portions 54B2 are formed to be narrower than the first adjustment portions 54B1 and wider than the first elastic portions 54A, with respect to the front-rear direction. The third adjustment portions 54B3 have cross-sectional areas larger than those of the second adjustment portions 54B2. The third adjustment portions 54B3 protrude from the second adjustment portions 54B2 by one step along the front-rear direction. In the adjustment portions 54B, thus, each of the first adjustment portions 54B1 and the third adjustment portions 54B3 have high electric conductivities, and the second adjustment portions 54B2 have electric conductivities lower than those of the first adjustment portions 54B1 and the third adjustment portions 54B3. The first adjustment portions 54B1 and the third adjustment portions 54B3 are symmetrically formed. The first adjustment portions 54B1 and the third adjustment portions 54B3 may be formed to be substantially point-symmetrical with respect to the centers of the adjustment portions 54B.
The contacts 50 include respective second elastic portions 54C that are elastically deformable and extend from the bottom portions of the third adjustment portions 54B3 to the second insulator 30. The second elastic portions 54C bend obliquely upward from the bottom portions of the third adjustment portions 54B3 and then linearly extend. Then, the second elastic portions 54C bend again obliquely downward and connected to outer end portions of second bases 55, which will be described later. The second elastic portions 54C are formed to be narrower than the adjustment portions 51B, in a manner similar to the first elastic portions 54A. Thus, the second elastic portions 54C can adjust elastically displaced portions.
The first elastic portion 54A, the adjustment portion 54B, and the second elastic portion 54C are integrally formed in a substantially crank shape. The first elastic portions 54A, the adjustment portions 54B, and the second elastic portions 54C are located from a fitting side along the fitting direction in the stated order. The first elastic portions 54A and the second elastic portions 54C are symmetrically formed with respect to the adjustment portions 54B. The first elastic portions 54A and the second elastic portions 54C are substantially symmetrically formed with respect to the centers of the adjustment portions 54B.
The first elastic portions 54A and the second elastic portions 54C extend from the opposite end portions of the adjustment portion 54B. In particular, the first elastic portions 54A extend from the upper end portions of the first adjustment portion 54B1 on the inner side. On the other hand, the second elastic portions 54C extend from the lower end portions of the third adjustment portions 54B3 on the outer side. Thus, contact points between the first elastic portions MA and the adjustment portions 54B and contact points between the second elastic portions 54C and the adjustment portions 54B are in symmetrical positions with respect to the centers of the adjustment portions 54B.
The contacts 50 include respective second bases 55 that are continuous with the second elastic portions 54C, as illustrated in
As illustrated in
As illustrated in
The elastic contact portions 59 are substantially accommodated in the upper portions of the contact attachment grooves 35 configured as recesses formed on the inner surfaces of the fitting recess 33 of the second insulator 30. The distal ends of the elastic contact portions 59 are out of the contact attachment grooves 35 and exposed in the fitting recess 33.
The impedance in the first elastic portion MA, the adjustment portion 54B, and the second elastic portion 54C in their entirety is adjusted by the adjustment portion 54B. Theoretically, the impedance in each of the portions discretely changes according to widths, i.e., cross-sectional areas, of the portions. However, it is considered that the impedance changes continuously in fact. In each of the contacts 50, the first elastic portion 54A is formed to be narrow (has a narrow cross-sectional area) in order to obtain a large elastic deformation amount. Thus, the impedance adjusted to the ideal value increases in the first elastic portion 54A. Because the adjusting portion 54B formed continuously with the first elastic portion 54A is formed to be wide (has a large cross-sectional area), it is intended to cause fall of the impedance increased in the first elastic portion 54A below the ideal value in the adjusting portions 54B. Because the second elastic portion 54C formed to be continuous with the adjustment portion 54B is formed to be narrow (has a narrow cross-sectional area) in a manner similar to the first elastic portion 54A, the impedance being lower than the ideal value exceeds the ideal value again in the second elastic portion 54C. Thus, the adjustment portion 54B plays a role of canceling the impedance increase in the first elastic portion 54A and the second elastic portion 54C and bringing the impedance in its entirety close to the ideal value.
Next, the impedance change in the case where the adjustment portion 54B includes three portions in a manner similar to the contacts 50 according to the present embodiment will be described with reference to the thick line, as compared with the thin line. In each of the contacts 50 according to the present embodiment, as compared with each of the contacts 50 in the case where the adjustment portion 54B has a substantially uniform width, the impedance is further reduced in the upper portion of the first adjustment portion 54B by the first adjustment portion 54B1, which is formed to be wider than the second adjustment portion 54B2. Thus, it is intended that the impedance having been increased to be higher than the ideal value in the first elastic portion 54A quickly falls below the ideal value. In other words, an increase width of the impedance in the first elastic portion 54A is intentionally reduced. In each of the contacts 50, the impedance is increased in the central portion of the adjustment portion 54B, i.e., in the second adjustment portion 54B2, and the theoretical value of the impedance is approximately the same as the theoretical value represented by the thin line, by way of example. A minimum measured value of the impedance in the adjustment portion 54B is substantially the same as a minimum measured value of the impedance when the adjustment portion 54B has a substantially uniform width. This configuration inhibits an excessive reduction of the impedance in the second adjustment portion 54B2, i.e., an extreme deviation between the ideal value and the actual measured value. In each of the contacts 50, the impedance further decreases in the lower portion of the adjustment portion 54B due to the third adjustment portion 54B3 that is formed to be wide in a manner similar to the first adjustment portion 54B1. Thus, it is intended that the impedance being lower than the ideal value in the adjusting portion 54B exceeds the ideal value at a late timing in the second elastic portion 54C. In other words, the increase width of the impedance in the second elastic portion 54C is intentionally reduced. As described above, because the adjustment portion 54B includes the three portions, the adjustment portion 54B can cancel the impedance increase in the first elastic portion 54A and the second elastic portion 54C and bring the impedance close to the ideal value.
In the connector 10 structured as described above, the mounting portion 53 of the contact 50 is soldered to the circuit pattern formed on the mounting surface of the circuit board CB 1. The mounting portions 41 of the fitting brackets 40 are soldered to the ground pattern or the like formed on the mounting surface. In this way, the connector 10 is mounted on the circuit board CB 1. On the mounting surface of the circuit board CB 1, electronic components other than the connector 10 such as, for example, a CPU, a controller, a memory, and the like are mounted.
A configuration of the connection object 60 will be described with reference mainly to
As illustrated in
The insulator 70 is a rectangular tubular member obtained by performing injection molding of a synthetic resin material having insulating and heat-resistant properties. The insulator 70 includes a fitting recess 71 formed on the top surface of the insulator 70. The insulator 70 includes a fitting projection 72 formed within the fitting recess 71. The insulator 70 includes a guiding portion 73 surrounding the fitting recess 71 across the entire upper edge of the fitting recess 71. The guiding portion 73 is formed as an inclined surface inclined obliquely outwardly in the upward direction at the upper edge portion of the fitting recess 71. The insulator 70 includes fitting bracket attachment grooves 74 recessed in the insulator 70 along the up-down direction in both left and right end portions of the bottom surface (see
The insulator 70 has a plurality of contact attachment grooves 75 formed on the front and rear sides of the bottom portion and the front and rear surfaces of the fitting projection 72. A plurality of contacts 90 are attached to the respective one of the plurality of contact attachment grooves 75. The number of the contact attachment grooves 75 corresponds to the number of contacts 90. The plurality of contact attachment grooves 75 are formed in a recessed manner and arranged side by side in the left-right direction.
Each of the fitting brackets 80 is obtained by molding a thin plate made of any metallic material into a shape as illustrated in
The contacts 90 are obtained by molding a thin plate made of, for example, a copper alloy having spring elasticity such as phosphor bronze, beryllium copper, or titanium copper, or a Corson type copper alloy into the shape as illustrated in
A plurality of contacts 90 are arranged along the left-right direction. Each of the contacts 90 includes a mounting portion 91 that is formed in a substantially L-shape and extends outward. Each of the contacts 90 includes a contact portion 92 that is formed in the upper end portion thereof and comes into contact with the elastic contact portion 59 of the contact 50 of the connector 10 when the connector 10 and the connection object 60 are fitted together.
In the connection object 60 having the above structure, the mounting portion 91 of each of the contacts 90 is soldered to the circuit pattern formed on the mounting surface of the circuit board CB 2. The mounting portion 81 of each of the fitting brackets 80 is soldered to the ground pattern or the like formed on the mounting surface. In this way, the connection object 60 is mounted on the circuit board CB 2. On the mounting surface of the circuit board CB 2, electronic components other than the connection object 60 including, for example, a camera module, a sensor, and the like are mounted.
An operation of the connector 10 having a floating structure when the connection object 60 is fitted to the connector 10 will be described.
Each of the contacts 50 of the connector 10 supports the second insulator 30 in a state in which the second insulator 30 is spaced apart from the first insulator 20 and floating within the second insulator 30. At this time, the lower portion of the second insulator 30 is surrounded by the outer peripheral wall 22 of the first insulator 20. The upper portion of the second insulator 30 including the fitting recess 33 protrudes upward from the opening 21A of the first insulator 20.
When the mounting portions 53 of the contacts 50 are soldered to the circuit board CB 1, the first insulator 20 is fixed to the circuit board CB 1. The second insulator 30 is movable relative to the first insulator 20 fixed to the circuit board CB 1 when the first elastic portion 54A, the second elastic portion 54C, and the third elastic portion 56 of each of the contacts 50 are elastically deformed.
At this time, the peripheral edge portion of the opening 21A regulates excessive movement of the second insulator 30 with respect to the first insulator 20. When the second insulator 30 largely moves beyond the design value due to the elastic deformation of the contacts 50, the fitting projection 32 of the second insulator 30 comes into contact with the peripheral edge portion of the opening 21A. Thus, the second insulator 30 does not move further outward.
In a state in which the connection object 60 is flipped over relative to the connector 10 having such a floating structure, the connector 10 and the connection object 60 are brought to oppose each other in such a manner that the front-rear positions and the left-right positions of the connector 10 and the connection object 60 substantially meet one another. Then, the connection object 60 is moved downward. At this time, even when the connector 10 and the connection object 60 are displaced from each other in the front-rear direction and the right-left direction, the guiding portion 34 of the connector 10 and the guiding portion 73 of the connection object 60 come into contact with each other. Thus, the second insulator 30 moves relative to the first insulator 20 due to the floating structure of the connector 10. In particular, the fitting projection 32 of the connector 10 is guided into the fitting recess 71 of the connection object 60.
When the connection object 60 is further moved downward, the fitting projection 32 of the connector 10 and the fitting recess 71 of the connection object 60 are fitted together. At this time, the fitting recess 33 of the connector 10 and the fitting projection 72 of the connection object 60 are fitted together. The contacts 50 of the connector 10 and the contacts 90 of the connection object 60 come into contact with one another in a state in which the second insulator 30 of the connector 10 and the insulator 70 of the connection object 60 are fitted together. In particular, the elastic contact portions 59 of the contacts 50 and the contact portions 92 of the contacts 90 come into contact with one another. At this time, the distal end of the elastic contact portions 59 of the contacts 50 are slightly elastically deformed toward the outside and elastically displaced toward the inside of the contact attachment grooves 35.
In this way, the connector 10 and the connection object 60 are fully connected to each other. At this time, the circuit board CB 1 and the circuit board CB 2 are electrically connected to each other via the contacts 50 and the contacts 90.
In this state, the pair of elastic contact portions 59 of the contacts 50 clamps the pair of contacts 90 of the connection object 60 from both front and rear sides by applying inward elastic force along the front-rear direction. In response to the reaction of the pressing force to the contact 90 applied by the connection object 60 thus generated, the second insulator 30 receives a force acting in a removal direction, i.e., the upward direction, via the contacts 50 when the connection object 60 is removed from the connector 10. Accordingly, when the second insulator 30 is moved upward, the retainer portions 43 of the fitting brackets 40 press-fitted into the first insulator 20 illustrated in
An operation performed by each constituent element when the pair of contacts 50 is elastically deformed will be described in detail with reference to
In
When the second insulator 30 is moved to the right, the latch 58 of the contact 50A is pushed to the right by the wall 36 of the second insulator 30. At this time, the third elastic portion 56 of the contact 50A is bent inward from the vicinity of the cutout 57. The third elastic portion 56 of the contact 50A is elastically deformed more inward in the lower portion from the vicinity of the cutout 57 than the upper portion. The relative position of the latch 58 of the contact 50A in contact with the wall 36 of the second insulator 30 with respect to the second insulator 30 is hardly changed. On the other hand, a relative position of the second base 55 of the contact 50A with respect to the second insulator 30 is changed inward.
When the third elastic portion 56 of the contact 50A is moved to the right, the second elastic portion 54C is elastically deformed, and a connection point between the second elastic portion 54C and the adjustment portion 54B is also moved to the right. On the other hand, a connection point between the first elastic portion 54A and the adjustment portion 54B is slightly moved in left-right direction. Thus, the first elastic portion 54A is elastically deformed in such a manner that a bent portion at the inner end portion is bent outward, and the adjustment portion 54B is inclined obliquely rightward from the upper portion to the lower portion.
When the second insulator 30 is moved to the right, the latch 58 of the contact 50B is pushed to the right by the inner wall of the second insulator 30. At this time, the third elastic portion 56 of the contact 50B is bent outward from the vicinity of the cutout 57. The third elastic portion 56 of the contact 50B is elastically deformed more outward in the lower portion from the vicinity of the cutout 57 than the upper portion. A relative position of the latch 58 of the contact 50B in contact with the inner wall of the contact attachment groove 35 with respect to the second insulator 30 is hardly changed. On the other hand, a relative position of the second base 55 of the contact 50B with respect to the second insulator 30 is changed outward.
When the third elastic portion 56 of the contact 50B is moved to the right, the second elastic portion 54C is elastically deformed, and the connection point between the second elastic portion 54C and the adjustment portion 54B is also moved to the right. On the other hand, the connection point between the first elastic portion 54A and the adjustment portion 54B is slightly moved in the left-right direction. Thus, the first elastic portion 54A is elastically deformed such that the bent portion at the inner end portion is bent inward, and the adjustment portion 54B is inclined obliquely rightward from the upper portion to the lower portion.
In
When the second insulator 30 is moved to the left, the latch 58 of the contact 50A is pushed to the left by the inner wall of the second insulator 30. At this time, the third elastic portion 56 of the contact 50A is bent outward from the vicinity of the cutout 57. The third elastic portion 56 of the contact 50A is elastically deformed more outward in the lower portion from the vicinity of the cutout 57 than the upper portion. A relative position of the latch 58 of the contact 50A in contact with the inner wall of the contact attachment groove 35 with respect to the second insulator 30 is hardly changed. On the other hand, a relative position of the second base 55 of the contact 50A with respect to the second insulator 30 is changed outward.
When the third elastic portion 56 of the contact 50A is moved to the left, the second elastic portion 54C is elastically deformed, and the connection point between the second elastic portion 54C and the adjustment portion 54B is also moved to the left. On the other hand, the connection point between the first elastic portion 54A and the adjustment portion 54B is slightly moved in the left-right direction. Thus, the first elastic portion 54A is elastically deformed such that the bent portion at the inner end portion is bent inward, and the adjustment portion 54B is inclined obliquely leftward from the upper portion to the lower portion.
When the second insulator 30 is moved to the left, the latch 58 of the contact 50B is pushed to the left by the wall 36 of the second insulator 30. At this time, the third elastic portion 56 of the contact 50B is bent inward from the vicinity of the cutout 57. The third elastic portion 56 of the contact 50B is elastically deformed more inward in the lower portion from the vicinity of the cutout 57 than the upper portion. A relative position of the latch 58 of the contact 50B in contact with the wall 36 of the second insulator 30 with respect to the second insulator 30 is hardly changed. On the other hand, a relative position of the second base 55 of the contact 50B with respect to the second insulator 30 is changed inward.
When the third elastic portion 56 of the contact 50B is moved to the left, the second elastic portion 54C is elastically deformed, and the connection point between the second elastic portion 54C and the adjustment portion 54B is also moved to the left. On the other hand, the connection point between the first elastic portion 54A and the adjustment portion 54B is slightly moved in the left-right direction. Thus, the first elastic portion 54A is elastically deformed such that the bent portion at the inner end portion is bent outward, and the adjustment portion 54B is inclined obliquely leftward from the upper portion to the lower portion.
The connector 10 according to the present embodiment configured as described above has good transmission characteristics for signal transmission. In the connector 10, because each of the contacts 50 includes the first adjusting portion 54B1 and the second adjusting portion 54B2, the impedance, i.e., the electric conductivity is adjusted according to the width, i.e., the cross-sectional area of each transmission path. For example, the electric conductivity of the first adjusting portion 54B1 is set to be higher than that of the first elastic portion 54A, and the electric conductivity of the second adjusting portion 54B2 is set to be lower than the first adjusting portion 54B1 and higher than the first elastic portion 54A. This brings the impedances of the first elastic portion 54A, the first adjustment portion 54B1, and the second adjustment portion 54B2 close to the ideal value. The connector 10 can contribute to impedance matching. In the connector 10, thus, a desired transmission characteristic can be obtained in large capacity and high-speed transmission, and have better transmission characteristic than that of the conventional electrical connectors those do not include the first adjustment portion 54B1 and the second adjustment portion 54B2.
In the connector 10, each of the contacts 50 further includes the third adjusting portion 54B3, such that the impedance, i.e., the electrical conductivity of the first elastic portion 54A, the adjusting portion 54B, and the second elastic portion 54C in their entirety is adjusted. For example, the electrical conductivity of the third adjusting portion 54133 is set to be higher than that of the second adjusting portion 54B2 and the second elastic portion 54C. This brings the impedances of the first elastic portion 54A, the adjustment portion 54B, and the second elastic portion 54C close to the ideal value. The connector 10 can contribute to impedance matching. Thus, the connector 10 exerts the aforementioned effect more remarkably.
As will be described below, the connector 10 can realize an excellent floating structure in addition to excellent transmission characteristics for signal transmission as described above.
In the connector 10, because each of the contacts 50 further includes the second elastic portion 54C, the movement of the second insulator 30 relative to the first insulator 20 is further increased. Because the second elastic portion 54C is elastically deformed in addition to the elastic deformation of the first elastic portion 54A, the moving amount of the second insulator 30 relative to the first insulator 20 is increased.
In the connector 10, because each of the contacts 50 further includes the respective third elastic portions 56, the moving amount of the second insulator 30 relative to the first insulator 20 can be increased. Because the third elastic portion 56 is elastically deformed in addition to the elastic deformation of the first elastic portion 54A and the second elastic portion 54C, the moving amount of the second insulator 30 relative to the first insulator 20 is increased. In other words, because the connector 10 can allocate a part of the elastic deformation amount of the contact 50 necessary to obtain a predetermined moving amount to the third elastic portion 56, the elastic deformation amounts of the first elastic portion 54A and the elastic portion 54C can be reduced. This enables a reduction in a total length of the first elastic portion 54A, the adjustment portion 54B, and the second elastic portion 54C, and a reduction in the front-rear direction width of the connector 10. Accordingly, the connector 10 can contribute to the miniaturization of the second insulator 30 while securing the necessary moving amount of the second insulator 30.
Because the total length of the first elastic portion 54A, the adjustment portion 54B, and the second elastic portion 54C are reduced, the transmission characteristics of the connector 10 is further improved. Because of the reduction in a signal transmission path, the connector 10 can transmit a high frequency signal with less transmission loss.
Because the connector 10 includes the wall 36 at a position where the second insulator 30 opposes the second bases 55, the pair of contacts 50 arranged symmetrically in the front-rear direction in
In the connector 10, the first adjusting portions 54B1 protrude outward beyond the second adjusting portions 54B2 in the front-rear direction, and the third adjusting portions 54B3 protrude inward from the second adjusting portions 54B2 in the front-rear direction. This configuration inhibits first adjusting portions 54B1 and the third adjusting portions 54B3 from coming into contact with another portion of the contact 50 and the second, insulator 30 when the contacts 50 are elastically deformed, as illustrated in
In the connector 10, because the first elastic portions 54A and the second elastic portions 54C extend from both fitting-direction ends of the adjustment portion 54B, necessary moving amounts of the adjustment portions 54B can be secured. Thus, the connector 10 can secure the necessary moving amount of the second insulator 30. In the connector 10, the integral formation of the first elastic portions 54A, the adjustment portions 54B, and the second elastic portions 54C in substantially crank shapes can contribute to a reduction in the front-rear length in
Because the first elastic portions 54A, the adjustment portions 54B, and the second elastic portions 54C are arranged in the stated order from the fitting side along the fitting direction, the second bases 55 connected to the second elastic portion 54 C are located in the lowest position. This enables extension of the third elastic portion 56 and larger elastic deformation. Consequently, the moving amount of the second insulator 30 relative to the first insulator 20 is increased.
In the connector 10, because the contacts 50 further include the respective cutouts 57, the force applied to the latches 58 in contact with the inner wall of the second insulator 30 when the second insulator 30 is moved can be reduced. Similarly, the connector 10 can reduce the force applied to the elastic contact portions 59 located in the upper portions of the contact attachment grooves 35. The connector 10 can bend the third elastic portions 56 below the vicinity of the cutouts 57. In particular, in the third elastic portions 56 of in the connector 10, the elastic deformation amounts in the lower half portions are larger than those of the upper half portions between the lower end portions of the latches 58 and the vicinities of the cutouts 57. Thus, in a state in which the locking of the latches 58 to the second insulator 30 and the contact of the elastic contact portions 59 with the contact portions 92 are stable, the third elastic portions 56 can contribute to the movement of the second insulator 30 relative to the first insulator 20.
Because the contacts 50 are made of a metallic material having a small elastic coefficient, the necessary moving amount of the connector 10 can be secured in response to a small force applied to the second insulator 30. The second insulator 30 can smoothly move with respect to the first insulator 20. Thus, the connector 10 can easily accommodate the positional deviation when being fitted to the connection object 60. In the connector 10, each of the elastic portions of the contacts 50 absorbs vibrations caused by some external factor. This inhibits application of a large force to the mounting portion 53 and damage to a connection portion between the connector 10 and the circuit board CB 1. In this way, when the connector 10 is connected to the connection object 60, the connector 10 can maintain reliable connection.
Because the connector 10 includes the second bases 55 configured as wide portions of the contacts 50, the connector 10 can improve a product assembling property. Because the second bases 55 are formed to be wide, the rigidity of the second bases 55 is increased. This enables the contacts 50 to be stably inserted from below into the first insulator 20 and the second insulator 30 by an assembling machine or the like, with the second bases 55 serving as fulcrums.
The fitting brackets 40 are press-fitted into the first insulator 20, and the mounting portions 41 are soldered to the circuit board CB 1, whereby the fitting brackets 40 can stably fix the first insulator 20 to the circuit board CB 1. The fitting brackets 40 improve the mounting strength of the first insulator 20 on the circuit board CB 1.
It will be apparent to those who are skilled in the art that the present disclosure may be realized in forms other than the embodiment described above, without departing from the spirit and the fundamental characteristics of the present disclosure. Accordingly, the foregoing description is merely illustrative and not limiting in any manner. The scope of the present disclosure is defined by the appended claims, not by the foregoing description. Among all modifications, those within a range of the equivalent to the present disclosure shall be considered as being included in the present disclosure.
For example, the shape, the arrangement, and the number of each of the constituent elements described above are not limited to those in the above description and illustrated in the drawings. The shape, arrangement, and the number of each of the constituent elements may be appropriately determined to be able to realize its function. The assembly method of the connector 10 and the connection object 60 is not limited to that in the above description. Any assembly method of the connector 10 and the connection object 60 that enables the connector 10 and the connection object 60 to realize the respective functions may be employed. For example, the fitting brackets 40 or the contacts 50 may be integrally molded with the first insulator 20 or the second insulator 30 by insert molding, instead of press-fitting.
Although the connector 10 is described as a connector having a floating structure, this is not restrictive. The connector 10 may be any connector that includes the contacts 50 having the above-described configuration attached thereto. In this case, one insulator constituting the connector 10 may be used. For example, this insulator supports the first bases 51 of the contacts 50 and is fitted to the connection object 60.
It has been described that, in the adjustment portions 54B, the electrical conductivity is improved by the increase in the widths of the transmission paths, i.e., the cross-sectional areas of the transmission paths. However, a configuration of the adjustment portions 54B that improves the electrical conductivity is not limited thereto. The adjustment portions 54B may have any configuration that improves the electrical conductivity. For example, the adjustment portions 54B may be formed to be thicker than the first elastic portions 54A while maintaining the same width. For example, the adjustment portions 54B may be made of a material having a higher electric conductivity than that of the first elastic portions 54A while maintaining the same cross-sectional areas. For example, the surfaces of the adjusting portions 54B may be subjected to plating for improving electrical conductivity while maintaining the cross-sectional areas the same as those of the first elastic portions 54A.
It has been described that, in the adjustment portions 54B, the cross-sectional areas of the first adjustment sections 54B1, the second adjustment portions 54B2, and the third adjustment portions 54B3 are sequentially changed from the fitting side to adjust the electrical conductivity. However, the configuration of the adjustment portions 54B is not limited thereto. The adjusting portions 54B may have any configuration including a configuration having high electric conductivity, low electric conductivity, and high electric conductivity, in the stated order from the fitting side. For example, as described above, at least one of the width, the thickness, the cross-sectional area, the material, and the type of plating of each of the adjustment portion 54B may be changed to adjust the electrical conductivity thereof.
The shapes of the adjustment portions 54B are not limited to those illustrated in
It has been described that the adjustment portions 54B extend in the fitting direction to be fitted to the connection object 60 when the first elastic portions 54A and the second elastic portions 54C are not elastically deformed, and the first elastic portions 54A and the second elastic portions 54C extend from the respective fitting-direction end portions of the adjustment portions 54B. However, this is not restrictive. The first elastic portions 54A, the adjustment portions 54B, and the second elastic portions 54C can be in any shape overall that can contribute to the miniaturization of the connector 10 while securing the necessary moving amount of the second insulator 30. For example, the adjustment portions 54B may extend being deviated from the fitting direction. For example, the first elastic portions 54A and the second elastic portions MC may extend from the respective end portions of the adjustment portions 54B in the front-rear direction of
It has been described as illustrated in
Although it has been described that the first elastic portions 54A and the second elastic portions 54C are formed to be narrower than the first bases 51, this is not restrictive. The first elastic portions 54A and the second elastic portions 54C may have any configuration capable of securing respective necessary elastic deformation amounts. For example, the first elastic portions 54A or the second, elastic portions 54C may be made of a metal material having a smaller elastic modulus than the other portions of the contacts 50.
When the connector 10 can contribute to the miniaturization of the connector 10 while securing a necessary moving amount of the second insulator 30, the connector 10 does not need to include the second elastic portions 54C and the third elastic portions 56.
Although it has been described that the second bases 55 are formed to be wider than the second elastic portions 54C, this is not restrictive. The second bases 55 do not need to have wide widths when capable of maintaining the assembly property of the connector 10. Although it has been described that the wall 36 extends downward from the bottom surface of the fitting recess 33 within the contacts 50, this is not restrictive. For example, when the wall 36 can inhibit the contact between a pair of contacts 50, the wall 36 may be formed at a position facing the second bases 55 alone.
In a case where the third elastic portions 56 can contribute to the movement of the second insulator 30 in a state in which the engagement of the latches 58 and the contact of the elastic contact portions 59 are stable, the connector 10 does not need to include the cutouts 57.
Although the contacts 50 have been described as being made of a metal material having a small elastic coefficient, this is not restrictive. The contacts 50 may be made of any metal material having any elastic modulus that can secure the necessary elastic deformation amount.
Although the connection object 60 has been described as a receptacle connector connected to the circuit board CB 2, this is not restrictive. The connection object 60 may be any object other than a connector. For example, the connection object 60 may be an FPC, a flexible flat cable, a rigid board, or a card edge of any circuit board.
The connector 10 described above is mounted in an electronic device. The electronic device includes, for example, any in-vehicle device such as a camera, a radar, a drive recorder, or an ECU (engine control unit). The electronic device includes any in-vehicle device used in an in-vehicle system such as a GPS navigation system, an advanced driving support system, or a security system. The electronic device includes, for example, any information device such as a personal computer, a copy machine, a printer, a facsimile, or a multifunction machine. The electronic equipment also includes any industrial equipment.
Electronic devices as described above have excellent transmission characteristics for signal transmission. Because the floating structure of the connector 10 accommodates the positional displacement between the substrates in an excellent manner, the workability at the time of assembling the electronic devices is improved. The electronic devices can be easily manufactured. Because the connector 10 inhibits damages to the connection portion between the connector 10 and the circuit board CB 1, the reliability of the electronic device as a product is improved.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/036740 | 10/1/2018 | WO | 00 |