The embodiments discussed herein are related to a connector electrically interconnects two opposed electrodes and an interposer using the connector.
When a semiconductor integrated circuit (IC) is mounted onto a circuit board, conventionally leads provided on the sides of the IC package are inserted into through-holes provided in lands of a circuit pattern on the circuit board and soldered to electrically connect to the lands. The numbers of input and output terminals of ICs have increased with the increase of the integration densities of ICs in these years. In addition, the operating frequencies of ICs have also increased. Along with the demand for high frequency characteristics has come growing demand for high-density mounting on circuit boards, short-distance interconnections, and finer pitches.
In these circumstances, a technique has been proposed in which input and output terminals are arranged in a grid array on the bottom surface of an IC package and an interposer is used to mount the IC package onto a circuit board in order to efficiently arrange the input and output terminals. An interposer is a thin high-terminal-density connector in which holes corresponding to input and output terminals arranged in a grid array of an IC package are provided in a sheet of insulating material and conductors (connectors) that conduct electricity between both surfaces of the sheet of insulating material are inserted in the holes. Terminals are also provided on the circuit board in the similar grid array pattern.
Japanese Laid-open Patent Publication No. 2006-66407 discloses elastic connectors employing silicon spring electrodes. Japanese Laid-open Patent Publication No. 2001-176580 discloses an elastic connector in which wires formed in zig-zags, pleats or coils are incorporated in buttons made of an elastic material. JP-A-2001-176580 also discloses metal springs may be used instead of the wires.
However, the structure that uses silicon spring electrodes to make connecters elastic has a problem that the silicon spring electrodes have high electrical resistance. The configurations in which zig-zag, pleat or coiled wires or metal springs are incorporated in elastic main bodies have a problem that they are physically difficult to miniaturize.
According to one aspect of the embodiments, there is provided a connector conducts electricity between electrode terminals located above and below the connector while the connector is being compressed. The connector includes a main body, a first contact terminal, a second contact terminal and a conductor. The main body is made of an elastic dielectric and is cylindrical in shape. The first contact terminal is an inelastic conductor including first and second electrode sections provided on the top and side surfaces, respectively, of the cylindrical main body and a coupling section interconnecting the first and second electrode sections. The second contact terminal includes third and fourth electrode sections provided on the bottom and side surfaces, respectively, of the cylindrical main body and a coupling section interconnecting the third and fourth electrode sections. The fourth electrode section is an inelastic conductor disposed in a position where the fourth electrode section does not contact the second electrode section. The conductor is provided outside the main body and conducts electricity between the second and fourth electrodes.
According to another aspect of the embodiments, there is provided a connector conducts electricity between electrode terminals located above and below the connector while the connector is being compressed and includes a main body, a first contact terminal and a second contact terminal. The main body is made of an elastic dielectric and is cylindrical in shape. The first contact terminal is an inelastic conductor including a first electrode section provided on the top surface of the cylindrical main body and a second electrode section connected to the first electrode section at the rim of the main body or inside the main body. The second contact terminal is an inelastic conductor including a third electrode section provided on the bottom surface of the cylindrical main body and a contact section connected to the third electrode section and always electrically in contact with the second electrode section at the rim of the main body or inside the main body.
The object and advantages of the embodiments will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description and are exemplary and explanatory and are not restrictive of the embodiments, as claimed.
Embodiments of a connector according to the present invention and an interposer using the connector will be described below with reference to the attached drawings with respect to specific practical examples.
The interposer 2 is designed to be attached between the IC package 1 and the circuit board 3 to interconnect the input and output terminals 4 on the back side of the IC package 1 to the corresponding terminal traces 6 on the circuit board 3. The interposer 2 is a thin high-terminal-density connector in which through-holes 9 corresponding to the input and output terminals 4 arranged in a grid array of an IC package 1 are provided in a sheet 8 of insulating material (hereinafter referred to as the interposer substrate) and connectors 5 are inserted in the through-holes 9. The connectors 5 may have the same length and serve as an electric conductor that conducts electricity between both surfaces of the interposer substrate 8.
When such an interposer 2 is used, the interposer 2 is typically attached inside a socket 7 as illustrated in
Since the connectors 5 are sandwiched and compressed between the input and output terminals 4 on the back surface of the IC package 1 and the terminal traces 6 on the circuit board 3, the connectors 5 are designed to be elastic to contract under the pressures from above and below while conducting electricity between the terminals above and below the connectors 5.
The first contact terminal 12 is attached across the edge between the top surface 11T and the side surface 11S of the main body 11 and has a protruding first electrode 12A at the top surface 11T and a protruding second electrode 12B at the side surface 11S. A strip-shaped coupling section is provided between the first and second electrodes 12A and 12B. The second contact terminal 17 is attached across the edge between the bottom surface 11B and the side surface 11S of the main body 11 and has a protruding third electrode 17A at the bottom surface 11B and a protruding fourth electrode 17B at the side surface. A strip-shaped coupling section is provided between the third and fourth electrodes 17A and 17B.
The first and second contact terminals 12 and 17 are provided on the main body 11 along the plane passing through the central axis of the main body 11. The second electrode 12B and the fourth electrode 17B are not in contact with each other but at a distance from each other. The first and second contact terminals 12 and 17 may be fixed to the main body 11 by using an adhesive or by providing protruding needles on the bottom surfaces of the first and second contact terminals 12 and 17 and inserting the needles into the main body 11. While the first and second contact terminals 12 and 17 are thin strips in the first exemplary embodiment, the shape of the first and second contact terminals 12 and 17 is not limited to this. Each of the first and second contact terminals 12 and 17 may be of any shape having electrodes, one at an end surface and the other at the side surface of the main body 11. Also, the first and second contact terminals 12 and 17 do not necessarily need to be in the same plane.
A conductor that electrically interconnects the second electrode 12B and the fourth electrode 17B needs to be provided outside the main body 11. Therefore, to incorporate the connector 10 into an interposer substrate 8 as illustrated in
However, when the interposer 2 is inserted between an IC package 1 and a circuit board 3 and the connector 10 is compressed to interconnect an input and output terminal 4 and a terminal trace 6 as illustrated in
As has been described above, in the connector 10 of the first exemplary embodiment and the interposer 2 incorporating the connector 10, the main body 11 made of an elastomer receives a compression force applied to the connector 10 and the first and second metal terminals 12 and 17 provide electrical pathways during conduction. Accordingly, a low constant resistance may be ensured during conduction in the connector 10 of the first exemplary embodiment and the interposer 2 incorporating the connector 10. As variations of the connector 10, a configuration illustrated in
In the configuration illustrated in
In the configuration illustrated in
In the second exemplary embodiment, the main body 11 has the shape of a quadrangular prism with a square horizontal cross section. Accordingly, the holes 9 provided in an interposer substrate 8 are square in shape. Since the hole 9 is square, the connector 10 does not rotate about its axis line in the hole 9. Therefore, the conducting wall 13 needs only to be provided on the side of the hole 9 that faces the first and second contact terminals 12 and 17.
The length of the hole 9 in the X direction is greater than the sum of the corresponding length of the main body 11 in the X direction and the height of the protruding second electrode 12B or fourth electrode 17B. The length of the hole 9 in the Y direction is greater than the corresponding length of the main body 11 in the Y direction. Accordingly, when the connector 10 is not connected to external electrodes above and below the connector 10, it is possible that the second electrode 12B and the fourth electrode 17B do not contact the conducting wall 13. The length of the hole 9 in the X and Y directions is chosen so as to allow the second electrode 12B and the fourth electrode 17B to be pressed against and come into contact with the conducting wall 13 when the main body 11 is inserted and compressed between an IC package 1 and a circuit board 3 and deformed.
As variations of the connector 10, a configuration illustrated in
In the configuration illustrated in
In the configuration illustrated in
The main body 11 of the second exemplary embodiment has the shape of a quadrangular prism having a square horizontal cross-section. Accordingly, the holes 9 provided in the interposer substrate 8 are also square in shape. On the other hand, the main body 11 in the third exemplary embodiment has the shape of a quadrangular prism having a rectangular horizontal cross-section. Accordingly, the holes 9 provided in an interposer substrate 8 are rectangular in shape. In this case, the length of a hole 9 in the W direction is equal to the sum of the corresponding length of the main body 11 in the W direction and the height of the protruding second electrode 12B or fourth electrode 17B. The length of the hole 9 in the Z direction is well greater than the corresponding length of the main body 11 in the Z direction so that spaces are provided between the main body 11 and the wall of the hole 9.
Accordingly, the second electrode 12B and the fourth electrode 17B come into contact with the conducting wall 13 while the connector 10 is not connected to external electrodes located above and below the connector 10. In this configuration, when the main body 11 is inserted and compressed between an IC package 1 and a circuit board 3, deformation of the main body 11 is allowed in the spaces in the Z direction.
If the holes 9 are arranged diagonally as illustrated in
Therefore, while the first contact terminal 12 of the connector 20 of the fourth exemplary embodiment is identical in shape to the first contact terminal 12 of the first exemplary embodiment, the second contact terminal 22 is significantly different in shape from the second contact terminal 17 of the first exemplary embodiment. The same components in the fourth exemplary embodiment are labeled the same reference numerals in the fourth exemplary embodiment as those described with respect to the first exemplary embodiment and the description of those components will be omitted from the following description. Only differences from the first exemplary embodiment will be described.
The second contact terminal 22 in the fourth exemplary embodiment is attached across the edge between the bottom surface 11B and the side surface 11S of the main body 11. A protruding third electrode 22A is provided on the bottom surface 11B and a receiving section 22B extends from the side surface to the first contact terminal 12 with a predetermined distance away from the main body 11. The distance between the receiving section 22B and the main body 11 is equal to the distance from the side surface of the main body 11 to the tip of a protruding second electrode 12B. Accordingly, a portion of the receiving section 22B near the tip of the receiving section 22B is electrically connected to the protruding second electrode 12B of the first contact terminal 12. The receiving section 22B may be of a plate shape or of a curved shape having a concave on the main body 11 side that receives the protruding second electrode 12B of the first contact terminal 12 as illustrated in
Each of holes 9 provided in an interposer substrate 8 in the fourth exemplary embodiment may have any shape and size that may accommodate the main body 11 and the first and second contact terminals 12 and 22. This is because the first and second contact terminals 12 and 22 are always electrically interconnected and therefore a conducting wall does not need to be provided in the hole 9.
In the case of the connector 20 of the fourth exemplary embodiment, when the connector 20 is connected with external electrodes located above and below the connector 20, the main body 11 is compressed and the protruding second electrode 12B of the first contact terminal 12 slides on the receiving section 22B of the second contact terminal 22. In the sliding, the compression expands the main body 11 outward, which presses the protruding second electrode 12B of the first contact terminal 12 outward and enhances the contact between the second electrode 12B and the receiving section 22B of the second contact terminal 22.
The first contact terminal 23 in the fifth exemplary embodiment has a protruding first electrode 23A on the top surface 11T of the main body 11 and a rod section 23C extending from under the first electrode 23A into the conducting hole 19. A spherical section 23B, which is a second electrode section, is at the tip of the rod section 23C. The second electrode section may have a protruding shape instead of a spherical shape. The second contact terminal 24 has a protruding third electrode 24A on the bottom surface 11B of the main body 11 and a cylindrical section 24B, which is a fourth electrode section extending from the bottom surface of the third electrode 24A into the conducting hole 19. The spherical section 23B, which is the second electrode section, is placed in the internal space near the tip of the cylindrical section 24B and is in contact with the interior surface of the cylindrical section 24B. If the second electrode section has a protruding shape, the tip of the protrusion may be brought into contact with the interior surface of the cylindrical section 24B.
Holes 9 provided in an interposer substrate 8 in the fifth exemplary embodiment may have any shape and size that may accommodate the main bodies 11. This is because the first and second contact terminals 23 and 24 are always electrically interconnected and a conducting wall does not need to be provided in the holes 9 in the fifth exemplary embodiment, like the fourth exemplary embodiment.
In the case of the connector 20 of the fifth exemplary embodiment, when the connector 20 is connected with external electrodes located above and below the connector 20, the main body 11 is compressed and the spherical section 23B of the first contact terminal 23 slides on the internal surface of the cylindrical section 24B of the second contact terminal 24. In the sliding, the compression expands the main body 11 outward and therefore the cylindrical section 24B of the second contact terminal 24 is pressed inward, which enhances the contact between the cylindrical section 24B and the spherical section 23B of the first contact terminal 23.
When an interposer 2 incorporating the connectors 20 of any of the fourth and fifth exemplary embodiments is used, the interposer 2 may be attached in the socket illustrated in
The present invention has been described in detail specifically with reference to preferred embodiments thereof. To facilitate the understanding of the present invention, specific modes of the present invention will be given below.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a depicting of the superiority and inferiority of the invention. Although the embodiments of the present invention have been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2009-158159 | Jul 2009 | JP | national |
This application is a divisional of application Ser. No. 12/821,796 filed Jun. 23, 2010, which is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2009-158159 filed on Jul. 2, 2009, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12821796 | Jun 2010 | US |
Child | 13345904 | US |