Information
-
Patent Grant
-
6733314
-
Patent Number
6,733,314
-
Date Filed
Wednesday, May 21, 200321 years ago
-
Date Issued
Tuesday, May 11, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Luebke; Renee
- McCamey; Ann
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 157
- 439 310
- 439 347
-
International Classifications
-
Abstract
In fitting a movable-side housing on a stationary-side housing, a front leading end portion of the movable-side housing is brought into contact with a front base portion of the stationary-side housing. At this time, it is unnecessary to accurately place the movable-side housing in position. When the movable-side housing is moved toward a matching position, guides guide the movable-side housing to the matching position reliably. Consequently, the cam followers fit into entrances of cam grooves. Thereafter, a slide lever is moved to bring electrodes of one housing into connection with electrodes of the other housing. It is not difficult to properly position the movable-side housing with respect to the stationary-side housing. Therefore, even in a situation in which it is difficult to visually check the position of the movable-side housing, an operation of fitting the movable-side housing on the stationary-side housing can be performed easily and reliably.
Description
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates to a connector apparatus, such as a breaker apparatus.
2. Description of Related Art
In a known breaker apparatus, a stationary-side housing is provided with a pair of stationary electrodes, a movable-side housing is provided with a movable electrode for short-circuiting a pair of the stationary electrodes, and the movable-side housing is provided with a slide lever having a cam groove. In fitting the movable-side housing on the stationary-side housing, a cam follower of the stationary-side housing is fitted in an entrance of the cam groove by fitting the movable-side housing on the stationary-side housing shallowly, with the slide lever disposed at an initial position. When the slide lever is subsequently moved to a lock position, the movable-side housing is moved toward the stationary-side housing owing to a cam operation caused by engagement between the cam groove and the cam follower. Consequently the movable-side housing fits on the stationary-side housing, and the movable electrode contacts the stationary electrodes. Thereby the stationary electrodes are short-circuited.
Japanese Patent Laid-Open Application No. 6-52929 disclose an example of such a breaker apparatus in which both housings are fitted on each other owing to a cam operation that is performed by the use of a slide lever.
SUMMARY OF THE INVENTION
In the above-described conventional breaker apparatus, in fitting the entrance of the cam groove on the cam follower, it is necessary to position the movable-side housing with respect to the stationary-side housing. However, the cam groove is comparatively narrow, and the cam follower has a small diameter. Thus, it is difficult to perform the operation of positioning the movable-side housing with respect to the stationary-side housing.
In a situation in which the position of the housing cannot be checked visually and thus it is necessary to perform a positioning operation gropingly, i.e., “by feel,” it is very difficult to do so.
The present invention has been made in view of the above-described situation. Accordingly, it is an object of the present invention to fit a movable-side housing on a stationary-side housing easily.
In the present invention, there is provided a connector apparatus, such as a breaker apparatus, including a stationary-side housing having at least one cam follower on an outer side surface; at least one stationary electrode provided on the stationary-side housing; a movable-side housing including a fit-on portion and fitted on the stationary-side housing in such a way that the stationary-side housing is covered with the fit-on portion of the movable-side housing in a direction from a front side of the stationary-side housing; at least one moveable electrode provided on the movable-side housing; and a slide lever capable of moving linearly between an initial position and a fit-on position along an inner surface of a side wall of the fit-on portion in a direction substantially orthogonal to a direction in which the movable-side housing fits on the stationary-side housing.
In this construction, the at least one stationary electrode and the at least one movable electrode are connected to each other, with the fit-on portion being fitted on the stationary-side housing in association with a cam operation performed by cooperation of a cam groove of the slide lever and the cam follower of the stationary-side housing, by moving the cam follower into an entrance of the cam groove when the slide lever is disposed at the initial position and then moving the slide lever to the fit-on position.
The connector apparatus further includes a plurality of guides provided on an outer side surface of the stationary-side housing and the inner surface of the side wall of the fit-on portion. The guides do not engage each other at an unmatching position where a front leading end portion of the movable-side housing contacts a front base portion of the stationary-side housing and at a matching position where the front leading end portion of the movable-side housing matches a front leading end portion of the stationary-side housing to match the entrance of the cam groove with the cam follower. The guides engage each other during movement of the movable-side housing from the unmatching position to the matching position to thereby guide the movable-side housing.
The guides may have a leading portion that guides the cam follower into the entrance of said the cam groove and guides the movable-side housing in an oblique direction with respect to the direction of movement of the slide lever during movement of the second housing from a position before the matching position to the matching position.
The connector apparatus may further include a leading surface formed on a front edge of a lower end of the stationary-side housing, and the leading surface may assist the leading portion in guiding the movable-side housing in an oblique direction with respect to the direction of movement of said slide lever during the movement of said second housing from a position before the matching position to the matching position. The leading surface may be provided at a position spaced from the leading portion in a direction in which the movable-side housing moves between the unmatching position and the matching position.
The direction of movement of the movable-side housing as it moves from the unmatching position to the matching position may be the same as the direction of movement of the slide lever as it moves from the initial position to the fit-on position.
In fitting the movable-side housing on the stationary-side housing, with the slide lever disposed at the initial position, the front leading end portion of the movable-side housing is brought into contact with the front base portion of the stationary-side housing to place the movable-side housing at the unmatching position. When the movable-side housing is brought into contact with the stationary-side housing, the guides do not engage each other. Thus, there is no interference in the operation of bringing the movable-side housing into contact with the stationary-side housing. Further, because it is unnecessary to match the entrance of the cam groove with the cam follower, it is not difficult to place the housings in their proper relative position.
As the movable-side housing is moved from the unmatching position toward the matching position, the guides engage each other and perform their guiding function. Owing to the function of the guides, the movable-side housing moves to the matching position reliably and allows the entrance of the cam groove to match the cam follower. Thereafter, the slide lever is moved from the initial position to the fit-on position, with the cam follower and the entrance of the cam groove engaging with each other.
As is apparent from the foregoing description, it is not difficult to place the housings in the proper relative position. Therefore, even in a situation in which it is difficult to visually check the position of the movable-side housing and hence it is necessary to perform a positioning operation gropingly, the movable-side housing can be fitted to the stationary-side housing easily and reliably.
In the stage in which the movable-side housing moves from the position before the matching position to the matching position, the moving direction of the movable-side housing is altered to an oblique direction by the guidance of the leading portion and/or the leading surface. As this movement progresses, the cam follower fits into the entrance of the cam groove. Thus, it is possible to accomplish the operation of moving the movable-side housing to the matching position and the operation of fitting the cam follower into the entrance of the cam groove by one action.
Therefore, the operation to be performed according to the construction of the present invention has higher workability than an operation of moving the movable-side housing to the matching position and then fitting the cam groove onto the cam follower by shifting the movable-side housing from an operator's one hand to the other.
In changing the moving direction of the movable-side housing by the guiding of the leading portion and the leading surface, the movable-side housing is guided at upper and lower positions. Thus, the movable-side housing is kept in a predetermined posture. Thereby, it is possible to reliably fit the entrance of the cam groove onto the cam follower.
The direction of the movable-side housing in fitting the movable-side housing on the stationary-side housing may be the same as the direction of the slide lever that moves after the movement of the movable-side housing terminates. This enhances workability.
BRIEF DESCRIPTION OF THE DRAWINGS
Exemplary embodiments of this invention will be described in detail, with reference to the following drawings, wherein:
FIG. 1
is a partly cut away side view of an embodiment showing a state in which a front leading end portion of a movable-side housing is in contact with a front base portion of a stationary-side housing;
FIG. 2
is a partly cut away side view showing a state in which the movable-side housing has moved from an unmatching position to a position before a matching position;
FIG. 3
is a partly cut away side view showing a state in which the movable-side housing has reached the matching position, and an entrance of a cam groove has fitted onto a cam follower;
FIG. 4
is a partly cut away side view showing a state in which both housings have fitted on each other by moving a slide lever from an initial position to a fit-on position;
FIG. 5
is a bottom view showing a state in which the movable-side housing is at the unmatching position; and
FIG. 6
is a bottom view showing a state in which both housings have fitted on each other.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
An exemplary embodiment of the present invention will be described below with reference to
FIGS. 1 through 6
. In the following embodiment, a breaker apparatus is described as an example of a connector apparatus. However, it will be appreciated that the connector apparatus according to the invention are not limited to breaker apparatus.
In a breaker apparatus of the embodiment, stationary electrodes
11
(see
FIG. 4
) provided in series with a main circuit (not shown) are mounted on a stationary-side housing
10
. Movable electrodes
21
installed on the movable-side housing
20
are matable with the stationary electrodes
11
. In a mated state of the movable electrodes
21
and the stationary electrodes
11
, electricity is allowed to flow between predetermined ones of the stationary electrodes
11
. In an unmated state of the movable electrodes
21
and the stationary electrodes
11
, electricity is restricted from flowing between the predetermined ones of the stationary electrodes
11
.
The stationary-side housing
10
may be rectangular as a whole. The stationary-side housing
10
may be fixedly installed in a comparatively small space, such as an engine compartment of a vehicle. Two pairs of stationary electrodes
11
are vertically arranged at the front side of the stationary-side housing
10
(left-hand side of the stationary-side housing
10
in
FIGS. 1-4
, namely, the side of the stationary-side housing
10
facing the movable-side housing
20
).
The movable-side housing
20
can be selectively fitted on or separated from the stationary-side housing
10
. The movable-side housing
20
may be rectangular as a whole. Two pairs of movable electrodes
21
may be arranged at the front side of the movable-side housing
20
(right-hand side of the movable-side housing
20
in
FIGS. 1-4
, namely, the side of the movable-side housing
20
facing the stationary-side housing
10
). Each movable electrode
21
has two open cylindrical (or other-shaped) portions
21
a
arranged at the front side thereof. The cylindrical portions
21
a
project from the front surface of the movable-side housing
20
. When stationary and movable-side housings
10
and
20
fit together, the two cylindrical portions
21
a of each movable electrode
21
fit on a pair of the stationary electrodes
11
to allow the stationary electrodes
11
to be in an electrically short-circuit state (electric conductivity-permitted state). Electrical conductivity among the stationary electrodes
11
is terminated by separating the movable electrodes
21
from the stationary electrodes
11
.
A hood part
12
open at its upper side (top side in
FIGS. 1-4
) and front side (left-hand side in
FIGS. 1-4
) and approximately U-shaped in a front view projects toward the front side. In correspondence to the hood part
12
, a fit-on portion
22
to be fitted on the periphery of the hood part
12
is formed on the movable-side housing
20
. When the movable-side housing
20
moves in a longitudinal direction (a direction parallel to the direction in which the movable electrodes
21
engage the stationary electrodes
11
) and fits on the stationary-side housing
10
, with the front side of the movable-side housing
20
matching that of the stationary-side housing
10
(positional relationship in which the movable electrodes
21
match the stationary electrodes
11
), free movement of the stationary and movable-side housings
10
and
20
in lateral directions (directions orthogonal to the direction in which the movable electrodes
21
engage the stationary electrodes
11
) is restricted, because the hood part
12
fits on an inner peripheral edge of the fit-on portion
22
. A pair of cam followers
13
a
and
13
b
projects from an outer side surface of the hood part
12
of the stationary-side housing
10
respectively (see also FIG.
5
), and a corresponding pair of cam followers
13
a
and
13
b
projects from an opposite outer side surface of the hood part
12
. Each of the cam followers
13
a
and
13
b
is preferably cylindrical. Metal rings
14
a
and
14
b
may be included on the cam followers
13
a
and
13
b
, and are preferably each rotatably mounted on the peripheral surface of a respective one of the cam followers
13
a
and
13
b.
Right and left guide portions
23
are formed on an inner surface of right and left side walls of the fit-on portion
22
. As shown in
FIG. 5
, slits are provided in upper and lower walls of the fit-on portion
22
, in alignment with the guide portions
23
, to allow cam plates
31
of a slide lever
30
to pass into the guide portions
23
.
The slide lever
30
may be formed by press-working of a steel plate, or by any other desired process and/or material. The slide lever
30
includes the plate-shaped cam plates
31
, a connection plate
32
connecting the upper ends of the cam plates
31
to each other, and an operation portion
33
, approximately L-shaped in a side view, extended upward from the connection plate
32
. The slide lever
30
is installed on the movable-side housing
20
, with the connection plate
32
and the operation portion
33
of the slide lever
30
disposed above the movable-side housing
20
(such as above the fit-on portion
22
) and exposed to the outside and with the cam plates
31
fitted in the guide portions
23
respectively. By being guided by the guide portions
23
, the slide lever
30
is movable in a vertical direction (a direction orthogonal to the direction in which the movable electrodes
21
engage the stationary electrodes
11
and separate therefrom) between a fit-on position and an initial position disposed above the fit-on position.
Upper and lower cam grooves
34
a
and
34
b
are formed on the cam plates
31
respectively. The entrance of each cam groove
34
a
and
34
b
is open at a front edge of the cam plate
31
facing the stationary-side housing
10
. The cam grooves
34
a
and
34
b
extend obliquely to both the movement direction of the slide lever
30
and the direction in which the movable electrodes
21
engage the stationary electrodes
11
and separate therefrom. When both housings
11
and
21
are positioned in a corresponding position (i.e., the movable-side housing
20
and the stationary-side housing
10
are at the matching position) and when the slide lever
30
is at the initial position, the cam followers
13
a
and
13
b
are capable of penetrating into the entrance of the cam groove
34
a
and that of the cam groove
34
b
respectively. When the slide lever
30
moves downward in
FIGS. 1-4
in the state in which the cam followers
13
a
and
13
b
have entered the entrance of the cam groove
34
a
and that of the cam groove
34
b
respectively, the movable-side housing
20
is moved toward the stationary-side housing
10
owing to a cam operation caused by the engagement between the cam groove
34
a
and the cam follower
13
a
and between the cam groove
34
b
and the cam follower
13
b
. When the slide lever
30
has reached a fit-on position, the movable-side housing
20
fits on the stationary-side housing
10
completely. At the same time, the connection between the movable electrodes
21
and the stationary electrodes
11
is completed.
When the slide lever
30
is lifted upward while in the fit-on state, the movable-side housing
20
separates from the stationary-side housing
10
, and the movable electrodes
21
separate from the stationary electrodes
11
owing to the cam operation caused by the engagement between the cam groove
34
a
and the cam follower
13
a
and between the cam groove
34
b
and the cam follower
13
b.
Along the front edge of the right and left outer side surfaces of the hood part
12
, a pair of stationary-side guide ribs
15
extending vertically is formed on the hood part
12
of the stationary-side housing
10
. Each of the stationary-side guide ribs
15
extends from the upper end of the hood part
12
, past the cam follower
13
a
, to a position a little above the cam follower
13
b
. The cam followers
13
a
and
13
b
project outward, beyond the stationary-side guide ribs
15
, from the right and left outer side surfaces of the hood part
12
respectively (see FIG.
5
).
A movable-side guide rib
24
, having an upper portion
24
a
and a lower portion
24
b
and extending vertically, is formed on the fit-on portion
22
of the stationary-side housing
10
along the front edge of an inner surface of each of the right and left outer side walls of the fit-on portion
22
. When the movable-side guide ribs
24
are locked to the stationary-side guide ribs
15
respectively, separation of the movable-side housing
20
from the stationary-side housing
10
is restricted. The upper portion
24
a
of each movable-side guide rib
24
is formed in a region from the upper end of the fit-on portion
22
to the entrance of the upper cam groove
34
a
, as viewed when the slide lever
30
is at the initial position. The lower portion
24
b
of the movable-side guide rib
24
is formed in a region from the entrance of the upper cam groove
34
a
to the entrance of the lower cam groove
34
b
, as viewed when the slide lever
30
is at the initial position. Therefore, a cut-out portion
25
corresponding to the entrance of the upper cam groove
34
a
, as viewed when the slide lever
30
is at the initial position, is formed between the upper portion
24
a
and the lower portion
24
b
of the movable-side guide rib
24
.
The movable-side guide rib
24
is not formed in a region from the lower end of the lower portion
24
b
of the movable-side guide rib
24
to the lower end (leading end of the present invention) of the fit-on portion
22
. In the region in which the movable-side guide rib
24
is not formed, the entrance of the lower cam groove
34
b
is not closed by the upper portion
24
a
or the lower portion
24
b
when the slide lever
30
is at the initial position. Thus, the cam follower
13
b
is permitted to penetrate into the entrance of the lower cam groove
34
b
. When the region in which the movable-side guide rib is not formed, namely, the lower end of the fit-on portion
22
, approaches the upper front end of the stationary-side housing
10
from the front of the stationary-side housing
10
(e.g., as shown in FIG.
1
), the upper end of the stationary-side guide rib
15
is fitted into the fit-on portion
22
, and right and left ends of the fit-on portion
22
at the front end of a lower-surface wall
26
(front leading end portion of the movable-side housing
20
) thereof contacts the upper front end of the right and left side walls
16
of the hood part
12
(see FIGS.
1
and
5
). The state shown in
FIG. 1
is called an unmatching state, and in this state the position of the movable-side housing
20
is unmatching with respect to that of the stationary-side housing
10
. A guide structure is constituted of the front end of the lower-surface wall
26
of the fit-on portion
22
and the front end of the right and left side walls
16
of the hood part
12
. When the lower-surface wall
26
of the fit-on portion
22
is brought into contact with the side wall
16
of the hood part
12
, the upper portions
24
a
and the lower portions
24
b
of the movable-side guide ribs
24
are in a lockable positional relationship with the stationary-side guide ribs
15
in a longitudinal direction (a direction parallel to the direction in which the movable electrodes
21
engage the stationary electrodes
11
).
Leading ribs
17
, preferably having an arcuate shape, are formed on the right and left outer side surfaces of the hood part
12
. Each leading rib
17
extends approximately obliquely, downwardly, and away from the lower end of the corresponding stationary-side guide rib
15
. Each leading rib
17
is positioned along the upper rear side (upper right side in
FIG. 1
) of the corresponding lower cam follower
13
b
. A leading surface
18
, preferably also having an arcuate shape, is formed from the front edge of the lower end of the hood part
12
to the lower surface thereof. An interval is provided between the leading rib
17
and the leading surface
18
in the same direction as the direction in which the movable-side housing
20
moves between the matching position and the unmatching position.
The operation of the above-described exemplary embodiment will be described below.
In fitting the movable-side housing
20
on the stationary-side housing
10
, the movable-side housing
20
is caused to approach the stationary-side housing
10
, with the slide lever
30
disposed at the initial position and with the movable-side housing
20
disposed at a position shifted upward from the stationary-side housing
10
(see FIG.
1
). In this state, the front end of the lower-surface wall
26
of the fit-on portion
22
is brought into contact with the front base portion of the hood part
12
to place the movable-side housing
20
at an unmatching position. When the movable-side housing
20
is brought into initial contact with the stationary-side housing
10
, the upper portions
24
a
and the lower portions
24
b
of the guide ribs
24
do not interfere with the stationary-side guide ribs
15
. Thus, there is no interference in the operation of bringing the movable-side housing
20
into contact with the stationary-side housing
10
. Because it is unnecessary at this stage to match the entrances of the cam grooves
34
a
and
34
b
with the cam followers
13
a
and
13
b
respectively, the movable-side housing
20
is permitted to vertically shift a little from the matching position. Therefore, it is unnecessary to accurately position the movable-side housing
20
in bringing the movable-side housing
20
into contact with the stationary-side housing
10
. Because the upper end of the hood part
12
enters the fit-on portion
22
when the movable-side housing
20
is at the unmatching position, the movable-side housing
20
is restricted from freely shifting greatly from the stationary-side housing
10
in a lateral direction (a direction orthogonal to the plane of the paper in FIGS.
1
-
4
).
Immediately after the movable-side housing
20
at the unmatching position is moved toward the matching position, with the movable-side housing
20
being pressed against the hood part
12
, the lower end of the lower portion
24
b
starts to be locked to the upper end of the stationary-side guide rib
15
. As the movement of the movable-side housing
20
progresses, the locking area of the upper portion
24
a
and the lower portion
24
b
and that of the stationary-side guide rib
15
increase in the longitudinal direction. The guide structure performs its guiding function in conjunction with this locking. Thus, the movable-side housing
20
moves to the matching position reliably without freely moving in a longitudinal direction (a direction parallel to the direction in which the movable electrodes
21
engage the stationary electrodes
11
) with respect to the stationary-side housing
10
. During this period of time, the movable-side housing
20
is restricted from freely moving in the longitudinal direction with respect to the stationary-side housing
10
, and the posture of the movable-side housing
20
is prevented from inclining forward or rearward. This is because the upper portions
24
a
and the lower portions
24
b
of the guide ribs
24
are locked to the stationary-side guide ribs
15
, and the lower-surface wall
26
of the fit-on portion
22
contacts the side walls
16
of the hood part
12
.
When the movable-side housing
20
moves further toward the matching position, as shown in
FIG. 2
, the lower portions
24
b
slidably contact the leading ribs
17
, and the front end of the lower-surface wall
26
of the fit-on portion
22
slidably contacts the leading surface
18
of the hood part
12
. At this time, the contact direction (obliquely down to the left, in
FIG. 2
) in which the lower portions
24
b
contact the leading ribs
17
is opposite to the contact direction (obliquely up to the right) in which the lower-surface wall
26
contacts the leading surface
18
. Thus, the movable-side housing
20
is restricted from greatly loosening vertically or in the longitudinal direction with respect to the stationary-side housing
10
, and from inclining forward or rearward.
Owing to the sliding contact between the leading ribs
17
and the lower portions
24
b
and the sliding contact between the leading surface
18
and the lower-surface wall
26
, the moving direction of the movable-side housing
20
is altered from a straight-down direction to a direction that is obliquely downward to the right in FIG.
2
. Thus, as the movable-side housing
20
moves downward, it approaches the stationary-side housing
10
. Owing to the approaching operation, the entrances of the cam grooves
34
a
and
34
b
approach the cam followers
13
a
and
13
b
, respectively. Simultaneously with arrival of the movable-side housing
20
at the matching position, the cam followers
13
a
and
13
b
fit in the entrances of the cam groove
34
a
and that of the cam groove
34
b
, respectively (see FIG.
3
). The front end of the hood part
12
fits shallowly in the fit-on portion
22
in this state. Therefore, the movable-side housing
20
is restricted from moving in the vertical direction (up-down direction in
FIG. 3
) and in a lateral direction (a direction orthogonal to the plane of the paper in
FIG. 3
) with respect to the stationary-side housing
10
.
When the slide lever
30
at the initial position is pressed downward, the movable-side housing
20
is caused to approach the stationary-side housing
10
owing to the cam operation caused by the engagement between the cam grooves
34
a
and the cam followers
13
a
and between the cam grooves
34
b
and the cam followers
13
b
. When the pressing-down of the slide lever
30
is completed and when the cam followers
13
a
and
13
b
arrive at the inward end (upper end) of the cam grooves
34
a
and
34
b
, respectively, the movable-side housing
20
fits on the stationary-side housing
10
completely (see FIG.
4
). Thus, the movable electrodes
21
are connected to the stationary electrodes
11
.
As is apparent from the foregoing description, in the above-described embodiment, in the initial operation of fitting the movable-side housing
20
on the stationary-side housing
10
, the entrances of the cam grooves
34
a
and
34
b
are not placed in position for the cam followers
13
a
and
13
b
, but the front lower end of the fit-on portion
22
is merely brought into contact with the front upper end of the hood part
12
. Thereafter, the movable-side housing
20
is guided by the guide ribs
15
,
24
a
, and
24
b
until the entrances of the cam grooves
34
a
and
34
b
and the cam followers
13
a
and
13
b
are correspondent to each other. Therefore, even in a situation in which it is difficult to visually check the position of the housing and hence it is necessary to perform a positioning operation gropingly, the movable-side housing
20
can be fitted on the stationary-side housing
10
easily and reliably.
In the above-described embodiment, in the stage in which the movable-side housing
20
moves from a position slightly before the matching position to the matching position, the moving direction of the movable-side housing
20
is altered to the oblique direction by the guidance of the leading ribs
17
and the leading surface
18
. As this movement progresses, the cam followers
13
a
and
13
b
fit into the entrances of the cam groove
34
a
and the cam groove
34
b
respectively. That is, it is possible to accomplish the operation of moving the movable-side housing
20
to the matching position and the operation of fitting the cam followers
13
a
and
13
b
on the entrance of the cam groove
34
a
and that of the cam groove
34
b
, respectively, by a single action, e.g., the single action of pushing the movable-side housing
20
in one direction with respect to the stationary-side housing
10
.
In the above-described embodiment, in changing the moving direction of the movable-side housing
20
by the guidance of the leading ribs
17
and the leading surface
18
, the movable-side housing
20
is guided at upper and lower positions. Thus, the movable-side housing
20
is kept in a predetermined posture. Thereby, the cam followers
13
a
and
13
b
are capable of reliably fitting into the entrances of the cam grooves
34
a
and
34
b
respectively.
In the above-described embodiment, the direction of the movable-side housing as it moves from the unmatching position to the matching position is the same (downward) as the direction of the slide lever that moves thereafter from the initial position to the fit-on position. Hence, high operability can be obtained. There is little chance that the movable-side housing
20
at the matching position will return to the unmatching position when the slide lever
30
is operated.
The present invention is not limited to the embodiment described above with reference to the drawings. For example, the following embodiments are included in the scope of the present invention. Further, various other modifications can be made without departing from the spirit and scope of the present invention.
(1) In the above-described embodiment, as a structure for bringing the front leading end of the movable-side housing into the front base portion of the stationary-side housing, the guide of the fit-on portion is set to exist in a region excluding the leading end portion of the fit-on portion. However, according to the present invention, the range of the guide in the stationary-side housing may be set to exist in a region excluding the base portion of the fit-on portion.
(2) In the above-described embodiment, the direction of the movable-side housing as it moves from the unmatching position to the matching position is the same as the direction of the slide lever as it moves from the initial position to the fit-on position. However, the direction of the movable-side housing as it moves from the unmatching position to the matching position may be different from the direction of the slide lever as it moves from the initial position to the fit-on position.
Claims
- 1. A connector apparatus comprising:a first housing having at least one cam follower; at least one first electrode provided in said first housing; a second housing including a fit-on portion that covers a portion of said first housing when the second housing is mated with said first housing; at least one second electrode provided in said second housing; a slide lever capable of moving linearly between an initial position and a fit-on position in a direction substantially orthogonal to a direction in which said second housing fits on said first housing, the slide lever including at least one cam groove, wherein said at least one first electrode and said at least one second electrode are connected to each other, with said fit-on portion being fitted on said first housing owing to a cam operation performed by cooperation of said at least one cam groove and said at least one cam follower, by moving said slide lever to the fit-on position; at least one first guide provided on an outer side surface of said first housing; and at least one second guide provide on an inner side surface of said fit-on portion, wherein the at least one first guide and the at least one second guide do not engage each other at an unmatching position of said second housing in which a front leading end portion of said second housing contacts a front base portion of said first housing and at a matching position in which an entrance of said at least one cam groove matches with said at least one cam follower, and the at least one first guide and the at least one second guide engage each other during movement of said second housing from said unmatching position to said matching position to thereby guide said second housing.
- 2. A connector apparatus according to claim 1, wherein said at least one first guide includes a leading portion that guides said at least one cam follower into said entrance of said at least one cam groove and guides said second housing in an oblique direction with respect to the direction of movement of said slide lever during a movement of said second housing from a position before said matching position to said matching position.
- 3. A connector apparatus according to claim 2, further comprising a leading surface formed on a front edge of a lower end of the first housing, wherein the leading surface assists the leading portion in guiding said second housing in an oblique direction with respect to the direction of movement of said slide lever during the movement of said second housing from a position before said matching position to said matching position, the leading surface being provided at a position spaced from the leading portion in a direction in which said second housing moves between said unmatching position and said matching position.
- 4. A connector apparatus according to claim 1, wherein a direction of said second housing as said second housing moves from said unmatching position to said matching position is the same as a direction of said slide lever as said side lever moves from said initial position to said fit-on position.
- 5. A connector apparatus according to claim 1, wherein the connector apparatus is a breaker apparatus, and wherein:the at least one first electrode comprises at least two first electrodes; and the at least one second electrode electrically connects the at least two first electrodes to each other when the slide lever is moved to the fit-on position.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2002-190081 |
Jun 2002 |
JP |
|
US Referenced Citations (5)