Connector apparatus

Information

  • Patent Grant
  • 6733314
  • Patent Number
    6,733,314
  • Date Filed
    Wednesday, May 21, 2003
    21 years ago
  • Date Issued
    Tuesday, May 11, 2004
    20 years ago
Abstract
In fitting a movable-side housing on a stationary-side housing, a front leading end portion of the movable-side housing is brought into contact with a front base portion of the stationary-side housing. At this time, it is unnecessary to accurately place the movable-side housing in position. When the movable-side housing is moved toward a matching position, guides guide the movable-side housing to the matching position reliably. Consequently, the cam followers fit into entrances of cam grooves. Thereafter, a slide lever is moved to bring electrodes of one housing into connection with electrodes of the other housing. It is not difficult to properly position the movable-side housing with respect to the stationary-side housing. Therefore, even in a situation in which it is difficult to visually check the position of the movable-side housing, an operation of fitting the movable-side housing on the stationary-side housing can be performed easily and reliably.
Description




BACKGROUND OF THE INVENTION




1. Field of Invention




The present invention relates to a connector apparatus, such as a breaker apparatus.




2. Description of Related Art




In a known breaker apparatus, a stationary-side housing is provided with a pair of stationary electrodes, a movable-side housing is provided with a movable electrode for short-circuiting a pair of the stationary electrodes, and the movable-side housing is provided with a slide lever having a cam groove. In fitting the movable-side housing on the stationary-side housing, a cam follower of the stationary-side housing is fitted in an entrance of the cam groove by fitting the movable-side housing on the stationary-side housing shallowly, with the slide lever disposed at an initial position. When the slide lever is subsequently moved to a lock position, the movable-side housing is moved toward the stationary-side housing owing to a cam operation caused by engagement between the cam groove and the cam follower. Consequently the movable-side housing fits on the stationary-side housing, and the movable electrode contacts the stationary electrodes. Thereby the stationary electrodes are short-circuited.




Japanese Patent Laid-Open Application No. 6-52929 disclose an example of such a breaker apparatus in which both housings are fitted on each other owing to a cam operation that is performed by the use of a slide lever.




SUMMARY OF THE INVENTION




In the above-described conventional breaker apparatus, in fitting the entrance of the cam groove on the cam follower, it is necessary to position the movable-side housing with respect to the stationary-side housing. However, the cam groove is comparatively narrow, and the cam follower has a small diameter. Thus, it is difficult to perform the operation of positioning the movable-side housing with respect to the stationary-side housing.




In a situation in which the position of the housing cannot be checked visually and thus it is necessary to perform a positioning operation gropingly, i.e., “by feel,” it is very difficult to do so.




The present invention has been made in view of the above-described situation. Accordingly, it is an object of the present invention to fit a movable-side housing on a stationary-side housing easily.




In the present invention, there is provided a connector apparatus, such as a breaker apparatus, including a stationary-side housing having at least one cam follower on an outer side surface; at least one stationary electrode provided on the stationary-side housing; a movable-side housing including a fit-on portion and fitted on the stationary-side housing in such a way that the stationary-side housing is covered with the fit-on portion of the movable-side housing in a direction from a front side of the stationary-side housing; at least one moveable electrode provided on the movable-side housing; and a slide lever capable of moving linearly between an initial position and a fit-on position along an inner surface of a side wall of the fit-on portion in a direction substantially orthogonal to a direction in which the movable-side housing fits on the stationary-side housing.




In this construction, the at least one stationary electrode and the at least one movable electrode are connected to each other, with the fit-on portion being fitted on the stationary-side housing in association with a cam operation performed by cooperation of a cam groove of the slide lever and the cam follower of the stationary-side housing, by moving the cam follower into an entrance of the cam groove when the slide lever is disposed at the initial position and then moving the slide lever to the fit-on position.




The connector apparatus further includes a plurality of guides provided on an outer side surface of the stationary-side housing and the inner surface of the side wall of the fit-on portion. The guides do not engage each other at an unmatching position where a front leading end portion of the movable-side housing contacts a front base portion of the stationary-side housing and at a matching position where the front leading end portion of the movable-side housing matches a front leading end portion of the stationary-side housing to match the entrance of the cam groove with the cam follower. The guides engage each other during movement of the movable-side housing from the unmatching position to the matching position to thereby guide the movable-side housing.




The guides may have a leading portion that guides the cam follower into the entrance of said the cam groove and guides the movable-side housing in an oblique direction with respect to the direction of movement of the slide lever during movement of the second housing from a position before the matching position to the matching position.




The connector apparatus may further include a leading surface formed on a front edge of a lower end of the stationary-side housing, and the leading surface may assist the leading portion in guiding the movable-side housing in an oblique direction with respect to the direction of movement of said slide lever during the movement of said second housing from a position before the matching position to the matching position. The leading surface may be provided at a position spaced from the leading portion in a direction in which the movable-side housing moves between the unmatching position and the matching position.




The direction of movement of the movable-side housing as it moves from the unmatching position to the matching position may be the same as the direction of movement of the slide lever as it moves from the initial position to the fit-on position.




In fitting the movable-side housing on the stationary-side housing, with the slide lever disposed at the initial position, the front leading end portion of the movable-side housing is brought into contact with the front base portion of the stationary-side housing to place the movable-side housing at the unmatching position. When the movable-side housing is brought into contact with the stationary-side housing, the guides do not engage each other. Thus, there is no interference in the operation of bringing the movable-side housing into contact with the stationary-side housing. Further, because it is unnecessary to match the entrance of the cam groove with the cam follower, it is not difficult to place the housings in their proper relative position.




As the movable-side housing is moved from the unmatching position toward the matching position, the guides engage each other and perform their guiding function. Owing to the function of the guides, the movable-side housing moves to the matching position reliably and allows the entrance of the cam groove to match the cam follower. Thereafter, the slide lever is moved from the initial position to the fit-on position, with the cam follower and the entrance of the cam groove engaging with each other.




As is apparent from the foregoing description, it is not difficult to place the housings in the proper relative position. Therefore, even in a situation in which it is difficult to visually check the position of the movable-side housing and hence it is necessary to perform a positioning operation gropingly, the movable-side housing can be fitted to the stationary-side housing easily and reliably.




In the stage in which the movable-side housing moves from the position before the matching position to the matching position, the moving direction of the movable-side housing is altered to an oblique direction by the guidance of the leading portion and/or the leading surface. As this movement progresses, the cam follower fits into the entrance of the cam groove. Thus, it is possible to accomplish the operation of moving the movable-side housing to the matching position and the operation of fitting the cam follower into the entrance of the cam groove by one action.




Therefore, the operation to be performed according to the construction of the present invention has higher workability than an operation of moving the movable-side housing to the matching position and then fitting the cam groove onto the cam follower by shifting the movable-side housing from an operator's one hand to the other.




In changing the moving direction of the movable-side housing by the guiding of the leading portion and the leading surface, the movable-side housing is guided at upper and lower positions. Thus, the movable-side housing is kept in a predetermined posture. Thereby, it is possible to reliably fit the entrance of the cam groove onto the cam follower.




The direction of the movable-side housing in fitting the movable-side housing on the stationary-side housing may be the same as the direction of the slide lever that moves after the movement of the movable-side housing terminates. This enhances workability.











BRIEF DESCRIPTION OF THE DRAWINGS




Exemplary embodiments of this invention will be described in detail, with reference to the following drawings, wherein:





FIG. 1

is a partly cut away side view of an embodiment showing a state in which a front leading end portion of a movable-side housing is in contact with a front base portion of a stationary-side housing;





FIG. 2

is a partly cut away side view showing a state in which the movable-side housing has moved from an unmatching position to a position before a matching position;





FIG. 3

is a partly cut away side view showing a state in which the movable-side housing has reached the matching position, and an entrance of a cam groove has fitted onto a cam follower;





FIG. 4

is a partly cut away side view showing a state in which both housings have fitted on each other by moving a slide lever from an initial position to a fit-on position;





FIG. 5

is a bottom view showing a state in which the movable-side housing is at the unmatching position; and





FIG. 6

is a bottom view showing a state in which both housings have fitted on each other.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




An exemplary embodiment of the present invention will be described below with reference to

FIGS. 1 through 6

. In the following embodiment, a breaker apparatus is described as an example of a connector apparatus. However, it will be appreciated that the connector apparatus according to the invention are not limited to breaker apparatus.




In a breaker apparatus of the embodiment, stationary electrodes


11


(see

FIG. 4

) provided in series with a main circuit (not shown) are mounted on a stationary-side housing


10


. Movable electrodes


21


installed on the movable-side housing


20


are matable with the stationary electrodes


11


. In a mated state of the movable electrodes


21


and the stationary electrodes


11


, electricity is allowed to flow between predetermined ones of the stationary electrodes


11


. In an unmated state of the movable electrodes


21


and the stationary electrodes


11


, electricity is restricted from flowing between the predetermined ones of the stationary electrodes


11


.




The stationary-side housing


10


may be rectangular as a whole. The stationary-side housing


10


may be fixedly installed in a comparatively small space, such as an engine compartment of a vehicle. Two pairs of stationary electrodes


11


are vertically arranged at the front side of the stationary-side housing


10


(left-hand side of the stationary-side housing


10


in

FIGS. 1-4

, namely, the side of the stationary-side housing


10


facing the movable-side housing


20


).




The movable-side housing


20


can be selectively fitted on or separated from the stationary-side housing


10


. The movable-side housing


20


may be rectangular as a whole. Two pairs of movable electrodes


21


may be arranged at the front side of the movable-side housing


20


(right-hand side of the movable-side housing


20


in

FIGS. 1-4

, namely, the side of the movable-side housing


20


facing the stationary-side housing


10


). Each movable electrode


21


has two open cylindrical (or other-shaped) portions


21




a


arranged at the front side thereof. The cylindrical portions


21




a


project from the front surface of the movable-side housing


20


. When stationary and movable-side housings


10


and


20


fit together, the two cylindrical portions


21


a of each movable electrode


21


fit on a pair of the stationary electrodes


11


to allow the stationary electrodes


11


to be in an electrically short-circuit state (electric conductivity-permitted state). Electrical conductivity among the stationary electrodes


11


is terminated by separating the movable electrodes


21


from the stationary electrodes


11


.




A hood part


12


open at its upper side (top side in

FIGS. 1-4

) and front side (left-hand side in

FIGS. 1-4

) and approximately U-shaped in a front view projects toward the front side. In correspondence to the hood part


12


, a fit-on portion


22


to be fitted on the periphery of the hood part


12


is formed on the movable-side housing


20


. When the movable-side housing


20


moves in a longitudinal direction (a direction parallel to the direction in which the movable electrodes


21


engage the stationary electrodes


11


) and fits on the stationary-side housing


10


, with the front side of the movable-side housing


20


matching that of the stationary-side housing


10


(positional relationship in which the movable electrodes


21


match the stationary electrodes


11


), free movement of the stationary and movable-side housings


10


and


20


in lateral directions (directions orthogonal to the direction in which the movable electrodes


21


engage the stationary electrodes


11


) is restricted, because the hood part


12


fits on an inner peripheral edge of the fit-on portion


22


. A pair of cam followers


13




a


and


13




b


projects from an outer side surface of the hood part


12


of the stationary-side housing


10


respectively (see also FIG.


5


), and a corresponding pair of cam followers


13




a


and


13




b


projects from an opposite outer side surface of the hood part


12


. Each of the cam followers


13




a


and


13




b


is preferably cylindrical. Metal rings


14




a


and


14




b


may be included on the cam followers


13




a


and


13




b


, and are preferably each rotatably mounted on the peripheral surface of a respective one of the cam followers


13




a


and


13




b.






Right and left guide portions


23


are formed on an inner surface of right and left side walls of the fit-on portion


22


. As shown in

FIG. 5

, slits are provided in upper and lower walls of the fit-on portion


22


, in alignment with the guide portions


23


, to allow cam plates


31


of a slide lever


30


to pass into the guide portions


23


.




The slide lever


30


may be formed by press-working of a steel plate, or by any other desired process and/or material. The slide lever


30


includes the plate-shaped cam plates


31


, a connection plate


32


connecting the upper ends of the cam plates


31


to each other, and an operation portion


33


, approximately L-shaped in a side view, extended upward from the connection plate


32


. The slide lever


30


is installed on the movable-side housing


20


, with the connection plate


32


and the operation portion


33


of the slide lever


30


disposed above the movable-side housing


20


(such as above the fit-on portion


22


) and exposed to the outside and with the cam plates


31


fitted in the guide portions


23


respectively. By being guided by the guide portions


23


, the slide lever


30


is movable in a vertical direction (a direction orthogonal to the direction in which the movable electrodes


21


engage the stationary electrodes


11


and separate therefrom) between a fit-on position and an initial position disposed above the fit-on position.




Upper and lower cam grooves


34




a


and


34




b


are formed on the cam plates


31


respectively. The entrance of each cam groove


34




a


and


34




b


is open at a front edge of the cam plate


31


facing the stationary-side housing


10


. The cam grooves


34




a


and


34




b


extend obliquely to both the movement direction of the slide lever


30


and the direction in which the movable electrodes


21


engage the stationary electrodes


11


and separate therefrom. When both housings


11


and


21


are positioned in a corresponding position (i.e., the movable-side housing


20


and the stationary-side housing


10


are at the matching position) and when the slide lever


30


is at the initial position, the cam followers


13




a


and


13




b


are capable of penetrating into the entrance of the cam groove


34




a


and that of the cam groove


34




b


respectively. When the slide lever


30


moves downward in

FIGS. 1-4

in the state in which the cam followers


13




a


and


13




b


have entered the entrance of the cam groove


34




a


and that of the cam groove


34




b


respectively, the movable-side housing


20


is moved toward the stationary-side housing


10


owing to a cam operation caused by the engagement between the cam groove


34




a


and the cam follower


13




a


and between the cam groove


34




b


and the cam follower


13




b


. When the slide lever


30


has reached a fit-on position, the movable-side housing


20


fits on the stationary-side housing


10


completely. At the same time, the connection between the movable electrodes


21


and the stationary electrodes


11


is completed.




When the slide lever


30


is lifted upward while in the fit-on state, the movable-side housing


20


separates from the stationary-side housing


10


, and the movable electrodes


21


separate from the stationary electrodes


11


owing to the cam operation caused by the engagement between the cam groove


34




a


and the cam follower


13




a


and between the cam groove


34




b


and the cam follower


13




b.






Along the front edge of the right and left outer side surfaces of the hood part


12


, a pair of stationary-side guide ribs


15


extending vertically is formed on the hood part


12


of the stationary-side housing


10


. Each of the stationary-side guide ribs


15


extends from the upper end of the hood part


12


, past the cam follower


13




a


, to a position a little above the cam follower


13




b


. The cam followers


13




a


and


13




b


project outward, beyond the stationary-side guide ribs


15


, from the right and left outer side surfaces of the hood part


12


respectively (see FIG.


5


).




A movable-side guide rib


24


, having an upper portion


24




a


and a lower portion


24




b


and extending vertically, is formed on the fit-on portion


22


of the stationary-side housing


10


along the front edge of an inner surface of each of the right and left outer side walls of the fit-on portion


22


. When the movable-side guide ribs


24


are locked to the stationary-side guide ribs


15


respectively, separation of the movable-side housing


20


from the stationary-side housing


10


is restricted. The upper portion


24




a


of each movable-side guide rib


24


is formed in a region from the upper end of the fit-on portion


22


to the entrance of the upper cam groove


34




a


, as viewed when the slide lever


30


is at the initial position. The lower portion


24




b


of the movable-side guide rib


24


is formed in a region from the entrance of the upper cam groove


34




a


to the entrance of the lower cam groove


34




b


, as viewed when the slide lever


30


is at the initial position. Therefore, a cut-out portion


25


corresponding to the entrance of the upper cam groove


34




a


, as viewed when the slide lever


30


is at the initial position, is formed between the upper portion


24




a


and the lower portion


24




b


of the movable-side guide rib


24


.




The movable-side guide rib


24


is not formed in a region from the lower end of the lower portion


24




b


of the movable-side guide rib


24


to the lower end (leading end of the present invention) of the fit-on portion


22


. In the region in which the movable-side guide rib


24


is not formed, the entrance of the lower cam groove


34




b


is not closed by the upper portion


24




a


or the lower portion


24




b


when the slide lever


30


is at the initial position. Thus, the cam follower


13




b


is permitted to penetrate into the entrance of the lower cam groove


34




b


. When the region in which the movable-side guide rib is not formed, namely, the lower end of the fit-on portion


22


, approaches the upper front end of the stationary-side housing


10


from the front of the stationary-side housing


10


(e.g., as shown in FIG.


1


), the upper end of the stationary-side guide rib


15


is fitted into the fit-on portion


22


, and right and left ends of the fit-on portion


22


at the front end of a lower-surface wall


26


(front leading end portion of the movable-side housing


20


) thereof contacts the upper front end of the right and left side walls


16


of the hood part


12


(see FIGS.


1


and


5


). The state shown in

FIG. 1

is called an unmatching state, and in this state the position of the movable-side housing


20


is unmatching with respect to that of the stationary-side housing


10


. A guide structure is constituted of the front end of the lower-surface wall


26


of the fit-on portion


22


and the front end of the right and left side walls


16


of the hood part


12


. When the lower-surface wall


26


of the fit-on portion


22


is brought into contact with the side wall


16


of the hood part


12


, the upper portions


24




a


and the lower portions


24




b


of the movable-side guide ribs


24


are in a lockable positional relationship with the stationary-side guide ribs


15


in a longitudinal direction (a direction parallel to the direction in which the movable electrodes


21


engage the stationary electrodes


11


).




Leading ribs


17


, preferably having an arcuate shape, are formed on the right and left outer side surfaces of the hood part


12


. Each leading rib


17


extends approximately obliquely, downwardly, and away from the lower end of the corresponding stationary-side guide rib


15


. Each leading rib


17


is positioned along the upper rear side (upper right side in

FIG. 1

) of the corresponding lower cam follower


13




b


. A leading surface


18


, preferably also having an arcuate shape, is formed from the front edge of the lower end of the hood part


12


to the lower surface thereof. An interval is provided between the leading rib


17


and the leading surface


18


in the same direction as the direction in which the movable-side housing


20


moves between the matching position and the unmatching position.




The operation of the above-described exemplary embodiment will be described below.




In fitting the movable-side housing


20


on the stationary-side housing


10


, the movable-side housing


20


is caused to approach the stationary-side housing


10


, with the slide lever


30


disposed at the initial position and with the movable-side housing


20


disposed at a position shifted upward from the stationary-side housing


10


(see FIG.


1


). In this state, the front end of the lower-surface wall


26


of the fit-on portion


22


is brought into contact with the front base portion of the hood part


12


to place the movable-side housing


20


at an unmatching position. When the movable-side housing


20


is brought into initial contact with the stationary-side housing


10


, the upper portions


24




a


and the lower portions


24




b


of the guide ribs


24


do not interfere with the stationary-side guide ribs


15


. Thus, there is no interference in the operation of bringing the movable-side housing


20


into contact with the stationary-side housing


10


. Because it is unnecessary at this stage to match the entrances of the cam grooves


34




a


and


34




b


with the cam followers


13




a


and


13




b


respectively, the movable-side housing


20


is permitted to vertically shift a little from the matching position. Therefore, it is unnecessary to accurately position the movable-side housing


20


in bringing the movable-side housing


20


into contact with the stationary-side housing


10


. Because the upper end of the hood part


12


enters the fit-on portion


22


when the movable-side housing


20


is at the unmatching position, the movable-side housing


20


is restricted from freely shifting greatly from the stationary-side housing


10


in a lateral direction (a direction orthogonal to the plane of the paper in FIGS.


1


-


4


).




Immediately after the movable-side housing


20


at the unmatching position is moved toward the matching position, with the movable-side housing


20


being pressed against the hood part


12


, the lower end of the lower portion


24




b


starts to be locked to the upper end of the stationary-side guide rib


15


. As the movement of the movable-side housing


20


progresses, the locking area of the upper portion


24




a


and the lower portion


24




b


and that of the stationary-side guide rib


15


increase in the longitudinal direction. The guide structure performs its guiding function in conjunction with this locking. Thus, the movable-side housing


20


moves to the matching position reliably without freely moving in a longitudinal direction (a direction parallel to the direction in which the movable electrodes


21


engage the stationary electrodes


11


) with respect to the stationary-side housing


10


. During this period of time, the movable-side housing


20


is restricted from freely moving in the longitudinal direction with respect to the stationary-side housing


10


, and the posture of the movable-side housing


20


is prevented from inclining forward or rearward. This is because the upper portions


24




a


and the lower portions


24




b


of the guide ribs


24


are locked to the stationary-side guide ribs


15


, and the lower-surface wall


26


of the fit-on portion


22


contacts the side walls


16


of the hood part


12


.




When the movable-side housing


20


moves further toward the matching position, as shown in

FIG. 2

, the lower portions


24




b


slidably contact the leading ribs


17


, and the front end of the lower-surface wall


26


of the fit-on portion


22


slidably contacts the leading surface


18


of the hood part


12


. At this time, the contact direction (obliquely down to the left, in

FIG. 2

) in which the lower portions


24




b


contact the leading ribs


17


is opposite to the contact direction (obliquely up to the right) in which the lower-surface wall


26


contacts the leading surface


18


. Thus, the movable-side housing


20


is restricted from greatly loosening vertically or in the longitudinal direction with respect to the stationary-side housing


10


, and from inclining forward or rearward.




Owing to the sliding contact between the leading ribs


17


and the lower portions


24




b


and the sliding contact between the leading surface


18


and the lower-surface wall


26


, the moving direction of the movable-side housing


20


is altered from a straight-down direction to a direction that is obliquely downward to the right in FIG.


2


. Thus, as the movable-side housing


20


moves downward, it approaches the stationary-side housing


10


. Owing to the approaching operation, the entrances of the cam grooves


34




a


and


34




b


approach the cam followers


13




a


and


13




b


, respectively. Simultaneously with arrival of the movable-side housing


20


at the matching position, the cam followers


13




a


and


13




b


fit in the entrances of the cam groove


34




a


and that of the cam groove


34




b


, respectively (see FIG.


3


). The front end of the hood part


12


fits shallowly in the fit-on portion


22


in this state. Therefore, the movable-side housing


20


is restricted from moving in the vertical direction (up-down direction in

FIG. 3

) and in a lateral direction (a direction orthogonal to the plane of the paper in

FIG. 3

) with respect to the stationary-side housing


10


.




When the slide lever


30


at the initial position is pressed downward, the movable-side housing


20


is caused to approach the stationary-side housing


10


owing to the cam operation caused by the engagement between the cam grooves


34




a


and the cam followers


13




a


and between the cam grooves


34




b


and the cam followers


13




b


. When the pressing-down of the slide lever


30


is completed and when the cam followers


13




a


and


13




b


arrive at the inward end (upper end) of the cam grooves


34




a


and


34




b


, respectively, the movable-side housing


20


fits on the stationary-side housing


10


completely (see FIG.


4


). Thus, the movable electrodes


21


are connected to the stationary electrodes


11


.




As is apparent from the foregoing description, in the above-described embodiment, in the initial operation of fitting the movable-side housing


20


on the stationary-side housing


10


, the entrances of the cam grooves


34




a


and


34




b


are not placed in position for the cam followers


13




a


and


13




b


, but the front lower end of the fit-on portion


22


is merely brought into contact with the front upper end of the hood part


12


. Thereafter, the movable-side housing


20


is guided by the guide ribs


15


,


24




a


, and


24




b


until the entrances of the cam grooves


34




a


and


34




b


and the cam followers


13




a


and


13




b


are correspondent to each other. Therefore, even in a situation in which it is difficult to visually check the position of the housing and hence it is necessary to perform a positioning operation gropingly, the movable-side housing


20


can be fitted on the stationary-side housing


10


easily and reliably.




In the above-described embodiment, in the stage in which the movable-side housing


20


moves from a position slightly before the matching position to the matching position, the moving direction of the movable-side housing


20


is altered to the oblique direction by the guidance of the leading ribs


17


and the leading surface


18


. As this movement progresses, the cam followers


13




a


and


13




b


fit into the entrances of the cam groove


34




a


and the cam groove


34




b


respectively. That is, it is possible to accomplish the operation of moving the movable-side housing


20


to the matching position and the operation of fitting the cam followers


13




a


and


13




b


on the entrance of the cam groove


34




a


and that of the cam groove


34




b


, respectively, by a single action, e.g., the single action of pushing the movable-side housing


20


in one direction with respect to the stationary-side housing


10


.




In the above-described embodiment, in changing the moving direction of the movable-side housing


20


by the guidance of the leading ribs


17


and the leading surface


18


, the movable-side housing


20


is guided at upper and lower positions. Thus, the movable-side housing


20


is kept in a predetermined posture. Thereby, the cam followers


13




a


and


13




b


are capable of reliably fitting into the entrances of the cam grooves


34




a


and


34




b


respectively.




In the above-described embodiment, the direction of the movable-side housing as it moves from the unmatching position to the matching position is the same (downward) as the direction of the slide lever that moves thereafter from the initial position to the fit-on position. Hence, high operability can be obtained. There is little chance that the movable-side housing


20


at the matching position will return to the unmatching position when the slide lever


30


is operated.




The present invention is not limited to the embodiment described above with reference to the drawings. For example, the following embodiments are included in the scope of the present invention. Further, various other modifications can be made without departing from the spirit and scope of the present invention.




(1) In the above-described embodiment, as a structure for bringing the front leading end of the movable-side housing into the front base portion of the stationary-side housing, the guide of the fit-on portion is set to exist in a region excluding the leading end portion of the fit-on portion. However, according to the present invention, the range of the guide in the stationary-side housing may be set to exist in a region excluding the base portion of the fit-on portion.




(2) In the above-described embodiment, the direction of the movable-side housing as it moves from the unmatching position to the matching position is the same as the direction of the slide lever as it moves from the initial position to the fit-on position. However, the direction of the movable-side housing as it moves from the unmatching position to the matching position may be different from the direction of the slide lever as it moves from the initial position to the fit-on position.



Claims
  • 1. A connector apparatus comprising:a first housing having at least one cam follower; at least one first electrode provided in said first housing; a second housing including a fit-on portion that covers a portion of said first housing when the second housing is mated with said first housing; at least one second electrode provided in said second housing; a slide lever capable of moving linearly between an initial position and a fit-on position in a direction substantially orthogonal to a direction in which said second housing fits on said first housing, the slide lever including at least one cam groove, wherein said at least one first electrode and said at least one second electrode are connected to each other, with said fit-on portion being fitted on said first housing owing to a cam operation performed by cooperation of said at least one cam groove and said at least one cam follower, by moving said slide lever to the fit-on position; at least one first guide provided on an outer side surface of said first housing; and at least one second guide provide on an inner side surface of said fit-on portion, wherein the at least one first guide and the at least one second guide do not engage each other at an unmatching position of said second housing in which a front leading end portion of said second housing contacts a front base portion of said first housing and at a matching position in which an entrance of said at least one cam groove matches with said at least one cam follower, and the at least one first guide and the at least one second guide engage each other during movement of said second housing from said unmatching position to said matching position to thereby guide said second housing.
  • 2. A connector apparatus according to claim 1, wherein said at least one first guide includes a leading portion that guides said at least one cam follower into said entrance of said at least one cam groove and guides said second housing in an oblique direction with respect to the direction of movement of said slide lever during a movement of said second housing from a position before said matching position to said matching position.
  • 3. A connector apparatus according to claim 2, further comprising a leading surface formed on a front edge of a lower end of the first housing, wherein the leading surface assists the leading portion in guiding said second housing in an oblique direction with respect to the direction of movement of said slide lever during the movement of said second housing from a position before said matching position to said matching position, the leading surface being provided at a position spaced from the leading portion in a direction in which said second housing moves between said unmatching position and said matching position.
  • 4. A connector apparatus according to claim 1, wherein a direction of said second housing as said second housing moves from said unmatching position to said matching position is the same as a direction of said slide lever as said side lever moves from said initial position to said fit-on position.
  • 5. A connector apparatus according to claim 1, wherein the connector apparatus is a breaker apparatus, and wherein:the at least one first electrode comprises at least two first electrodes; and the at least one second electrode electrically connects the at least two first electrodes to each other when the slide lever is moved to the fit-on position.
Priority Claims (1)
Number Date Country Kind
2002-190081 Jun 2002 JP
US Referenced Citations (5)
Number Name Date Kind
4586771 Kraemer et al. May 1986 A
5478251 Jaklin Dec 1995 A
6036509 Maejima Mar 2000 A
6244880 Fukase et al. Jun 2001 B1
6254407 Burns Jul 2001 B1