1. Field of the Invention
An electrical connector for electrically connecting a hollow bus bar member with an insulated multi-wire or braided conductor inserted axially therein, including a conductive contact screw that is threadably connected within a first opening contained in the bus bar member wall for axial displacement from a retracted position toward a fully penetrating position, thereby to cause a pointed end of the contact screw to successively pierce the adjacent insulation layer, extend diametrically through the multi-wire conductor, pierce the adjacent layer of insulation, and extend into a second opening contained in the adjacent bus bar member wall.
2. Description of Related Art
Insulation-penetrating connections for multi-wire and/or braided fine-strand conductors are known in the prior art, wherein one employs a piercing contact screw, and where the contact screw, during the contacting of the multi- and/or fine-strand conductor, penetrates into the latter, preferably in a radial diametric manner.
The purpose of the present invention is to provide such a connection device in a compact and stable manner using simple connector means. The electrical connection is to be particularly suitable also for assembly upon a printed circuit board.
The present invention solves this problem by means of a connection device for connecting at least one insulated multi-strand conductor with a bus bar member, wherein the bus bar member is hollow and forms a connection cage whose circumference is closed and where the connection cage on two places along its circumference is penetrated by a piercing contact screw, which contact screw is designed for contacting the multi- and/or fine-strand conductor through which it passes in the contacting state. In this way, by using simple connecting means, one can create a stable and reliable as well as also compactly structured connection device by means of which the multi-strand and fine-strand conductor to be contacted. If the insulated conductor has a corresponding diameter or if it is correspondingly dimensioned, during the contact process, the multi-strand and/or fine-strand conductor in the contacted state is so compressed that the insulation layer is pressed or clamped upon the interior circumference of the bus bar cage so that one can assure a stable, durable contact. Preferably, this contact cage is soldered upon a printed circuit board for which it is well suited because it consists of conducting metal, for example, a copper alloy.
Preferably, the bus bar member or cage has a rectangular shape so that in the assembled state it has a first leg resting upon the printed circuit board, two parallel lateral legs facing orthogonally away from the printed circuit board, and another leg spaced from and parallel with the first leg.
This bus bar member or connection cage can be made in a particularly simple manner in that the bus bar is bent from a conductive metal sheet to form a closed rectangle, especially a square. But the invention is not confined to making the connection cage in this fashion; the cage can also be made by other means. It is advantageous when, over the connection cage, one places a protective connection housing that can also be fixed upon the printed circuit board.
It is advantageous when the piercing contact screw consists of a conducting light-metal alloy, especially a copper alloy.
The invention also creates a connection unit for solar panels that has at least one connection device according to the present invention. It furthermore creates a terminal lock with one or several of the bus bar members connected together by integral connection straps.
Accordingly, a primary object of the present invention is to provide an electrical connector for electrically connecting a hollow bus bar member with an insulated multi-wire or braided conductor inserted axially therein, including a conductive contact screw that is threadably connected within a first opening contained in the bus bar member wall for axial displacement from a retracted position toward a fully penetrating position, thereby to cause a pointed end of the contact screw to successively pierce the adjacent insulation layer, extend diametrically through the multi-wire conductor, pierce the adjacent layer of insulation, and extend into second opening contained in the adjacent bus bar member wall.
According to a more specific object of the invention, the bus bar member may be soldered to a printed circuit board, thereby to connect the multi-wire conductor with conductors on the printed circuit board.
Another object of the invention is to provide a bus bar arrangement in which a plurality of bus bar members are formed by stamping and bending from a common conductive metal sheet, with the bus bar members being interconnected by integral straps.
Other objects and advantages of the invention will become apparent from a study of the following specification, when viewed in the light of the accompanying drawing, in which:
a is a sectional view illustrating the electrical connector with the contact screw in its retracted position relative to the bus bar member and the insulated multi-wire conductor, and
a is and exploded view of the electrical connector arrangement of
In the area of this side, bus bar member 1 is fastened to a printed circuit board 2, for example, by means of an SMD soldering process. The bus bar member includes a pair of vertical side walls 1a, 1b, a horizontal top wall 1c, and a bottom wall 1d. A horizontal fifth wall 1d′ is bent from side wall 1a beneath the bottom wall 1d, which bus bar fifth wall is seated on and soldered 22 (
In this way, bus bar member 1 forms two lateral legs 1a, b as well as a leg 1c facing away from printed circuit board 2 and a leg 1d resting on printed circuit board 2, in this case with double the wall thickness, whereby the two free ends of the bus bar walls 1d and 1d′ can be stapled or otherwise secured together.
Leg 1d adjacent the printed circuit board 2 and parallel leg 1c spaced from the printed circuit board 2 contain mutually aligned screw threaded/holes 3 and 4, respectively. In the bus bar member fifth leg or wall 1d′ resting upon printed circuit board 2, there is furthermore provided an oversized hole 4′ with a somewhat larger diameter is provided.
Placed vertically above bus bar member 1 is a protective connector housing 5, which is formed of an electrically insulating synthetic plastic material and which can be fixed upon printed circuit 2, and which housing overlaps bus bar member 1 in a U-shaped pattern.
A vertical through bore 7 extends longitudinally through the housing, and a counterbore 13 extends downwardly from the upper end 6 of the housing to define a support surface 15 in the end 6 facing away from the printed circuit board 2 of connector housing 5. Adjoining this passage opening is a counterbored receiving area 13 for the enlarged screw head 14 of the piercing contact screw 8. In the receiving area, one can furthermore make a support surface 15 for the screw head 14.
Passage opening 7 as well as boreholes 3, 4 in the contacted state are penetrated by a piercing contact screw 8 that has a sharp pointed penetration tip 9, the outer peripheral surface of which preferably is provided with a cutting screw thread.
To contact a multi-strand and/or braided fine-strand conductor 11 surrounded by an insulation layer 10, the free end of the insulated conductor 11 is inserted axially into the chamber C of the hollow bus bar member land is pushed all the way through the latter, whereupon the piercing contact screw 8 is screwed from the retracted position of
In the connection process, the insulation 10 of the multi-strand conductor 11 is penetrated, and the piercing contact screw 8 establishes an electrical contact between the bus bar member 1 and the multi- and/or fine-strand conductor 11, which are penetrated by individual strands in a geometric fashion of a circle cord (
Printed circuit board 2 is provided with a borehole 12 that is also aligned with boreholes 3, 4 so that the pointed tip of the piercing contact screw can protrude all the way into that opening.
Preferably, the multi- and/or fine-strand conductor 11 to be contacted and the bus bar member 1 are so dimensioned that the insulation of the multi- and/or fine-strand conductor 11 in the contacted state will be com pressed or clamped in a stable manner in engagement with the adjacent surfaces of the two side legs 1a and 1b of the bus bar member 1.
Piercing contact screw 8 preferably consists of a conducting light metal alloy, in particular, a copper alloy. Preferably, the openings 7, 3 and 4 are threadably connected with the contact screw 8.
Referring now to
While in accordance with the provisions of the Patent Statutes the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those skilled in the art that changes may be made without deviating from the invention described above.
Number | Date | Country | Kind |
---|---|---|---|
20 2008 016 801 U | Dec 2008 | DE | national |
20 2009 010 474 U | Aug 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4240687 | Bunnell et al. | Dec 1980 | A |
4834671 | Vigna et al. | May 1989 | A |
4968268 | Oh | Nov 1990 | A |
5203716 | Martucci et al. | Apr 1993 | A |
6210206 | Durham | Apr 2001 | B1 |
Number | Date | Country |
---|---|---|
6926918 | Nov 1969 | DE |
1000882 | Feb 1952 | FR |
Number | Date | Country | |
---|---|---|---|
20100159737 A1 | Jun 2010 | US |