1. Field of the Invention
An electrical connector arrangement for tapping off electrical current from a plurality of coplanar parallel input insulated conductors and supplying the same to a plurality of output conductors, respectively, includes a rectangular base member having a horizontal upper surface that supports a plurality of parallel coplanar longitudinally-extending alternately-staggered input conductors, respectively, and a pair of pivot members connected with the ends of the base member for pivotal movement about transverse horizontal pivot axes, respectively. As the pivot members are pivoted from disengaged positions relative to the base member toward engaged positions parallel with and directly above the base member top surface, bifurcated insulation-piercing knives on the pivot members pierce the insulation layers of the insulated conductors and electrically engage the conductors. Junction blocks fastened to the pivot members include output contacts connected with the insulation piercing knives via bus bars, which output contacts in turn are connected with the output conductors, respectively.
2. Description of Related Art
It is well known in the patented prior art to provide connectors with insulation piercing contacts, as shown, for example, by the prior U.S. patents to Gaertner et al U.S. Pat. No. 6,120,315, Lux No. U.S. Pat. No. 6,135,804, Stuckmann et al U.S. Pat. No. 6,478,605, and Huiskamp et al U.S. Pat. No. 6,692,292, among others. It is also known to provide quick-fastening terminal blocks and junction blocks having one-way resilient contacts for automatically engaging and retaining a bare conductor end that is inserted through an access opening, as shown by the patents to Beege et al U.S. Pat. Nos. 6,280,233 and 6,712,641, and Fricke et al U.S. Pat. No. 6,796,855, among others.
In the German patent No. DE 297 06 750 U1, an electrical connector is disclosed in which a plurality of taps are provided for tapping off electrical current from an insulated conductor. For this purpose, a plurality of groove-like seats are provided on a base plate into which seats one can insert a flat cable or a plurality of electrical conductors that are parallel with respect to each other. Then an upper part is displaced in order to slacken the conductors or the flat cable. Upon this preassembled unit, which is provided with separating walls, one then locks clamp-like bodies in a pivotal motion, which bodies in each case are provided with an insulation-penetrating contact that is connected via a bus bar with, in each case, two traction spring clamps for connection of branching conductors. In this manner, one can make in each case two branches on each conductor without having to separate the continuous conductors.
It is also known that one can arrange connection devices on a shaft that is rotatably mounted on a bottom plate. This design did not prove effective because the conductors must be inserted sideways so that the arrangement is not suitable for assembly on already installed continuous cables.
The present invention therefore is an improvement over the typical state of the prior art and seeks to simplify said state of the art with respect to its design structure. A compact structure and easy handling are also to be achieved as a result.
Accordingly, a primary object of the present invention is to provide a connector arrangement in which a plurality input insulated conductors are supported in parallel, spaced, alternately-staggered coplanar arrangement on a rectangular base member, whereupon pivot members pivotally connected with opposite ends of the base member are pivoted downwardly to cause insulation piercing contacts thereon to pierce the insulation layers of alternate insulated conductors, respectively. A plurality of bus bars connect the piercing contacts with the output contacts of junction boxes that are rigidly fastened to the pivot members, respectively. The output contacts are preferably of the quick-fastening one-way resilient contact type that automatically engage the bare end of an output conductor that is inserted through an access opening in the junction block.
According to a more specific object of the invention, insulation means are provided for electrically isolating the pivotally displaceable junction blocks from each other. In one embodiment, insulation plates are mounted on the adjacent sides of the junction blocks. In another embodiment, each pivot member and junction block that pivot as a unit at one end of the base member is contained within the chamber of an insulating jacket that is mounted on the base member. At the other end, a similar insulating jacket is provided having chambers for receiving the pivot units, respectively.
In terms of design, the connector arrangement is further simplified when compared to the state of the art because the invention uses tool-free connectable IDC contacts, in particular, insulation layer penetrating fork contacts for wiring purposes. In spite of the use of the IDC contacts with the greater width due to its design—especially in the version as fork contacts—it produces a very narrowly structured arrangement consisting of connecting devices, which furthermore in a simple manner makes it possible in an extremely simple fashion without the use of any tools to contact both the continuous conductors and the branching conductors (at any rate, when direct plug contacts are used).
The continuous conductors, for example, can be the continuous conductors of a flat cable or any other cable—for example, a round cable—whose cable sheath was removed in the area of the connection system, whereby the continuous conductors in this sheath-stripped area are inserted in the recesses of the bottom plate. For contacting purposes, one then merely needs to put on the connection disc, to swing them, and then to insert the conductor ends of the branch conductors. In this way, one can also quickly and subsequently assemble a branching on an already installed cable.
It is also desirable that, in any event, the IDC contacts of neighboring connection discs in the chosen staggered arrangement are located relatively far removed from each other, something that definitely reduces any disadvantageous effects such as the occurrence of undesirable leakage currents.
An advantageous development that can also be considered as an independent invention of its own is given in the second embodiment including insulating jacket means, whose object is distinguished by a particularly simple handling coupled with a furthermore particularly good insulation of the individual conductors from each other.
Other objects and advantages of the invention will become apparent from a study of the following specification, when viewed in the light of the accompanying drawing, in which:
a is a front perspective view of a first embodiment of the connector arrangement of the present invention when in the partially assembled condition, and with certain parts broken away;
b is an exploded perspective view of the apparatus of
c is a perspective view of the apparatus of
d is a perspective view of the apparatus of
e is a perspective view of the apparatus of
a is a front perspective view of a second embodiment of the invention when in a partially assembled condition;
b is an exploded perspective view of the apparatus of
c is a perspective view of the apparatus of
d is a perspective view of the apparatus of
e is a perspective view of the apparatus of
Referring first more particularly to
In accordance with a characterizing feature of the present invention, each pivot member 3 is provided with a bifurcated insulation piercing fork 4 that is adapted to pierce the insulation layer 10′ of a given conductor, thereby to effect electrical engagement between the insulation piercing member 4 and the inner conductor member 10″ of the insulated conductor 10. The insulation piercing fork 4 is connected by means of a bus bar 6 contained within the junction block 2 to a pair of outlet contacts 5a and 5b that are arranged beneath access openings 7a and 7b contained in the top wall of the junction block 2. The bare ends of output conductors 30 are adapted for insertion within the access openings 7a and 7b for engagement with the contacts 5a and 5b, respectively, thereby capping off a portion of the current from the conductor 10 for supply to the output conductors 30.
Referring to
Referring now to
Referring to
In the illustrated first embodiment of
Referring again to
Referring now to the second embodiment of the invention illustrated in
Referring now to
Referring to
It should also be mentioned that the entire arrangement in FIGS. 1 to 6 can again be set up within a master cover housing. It is also conceivable that one might use them directly for assembly, for example, in the switch cabinet, assuming the bottom plates are corresponding designed with a corresponding fastening. Furthermore, one can make cross-connections and/or markings or the like, for instance, on the connection discs. It is also possible to replace the direct plug connections with other connections using the other connection technique—for example, IDC technique, traction spring technique or screw connection technique—and/or to provide the connection discs with electrical structural elements (again not shown here).
While in accordance with the provisions of the Patent Statutes the preferred forms and embodiments of the invention have been illustrated and described, it will be apparent to those skilled in the art that changes may be made without deviating from the invention described above.
Number | Date | Country | Kind |
---|---|---|---|
20 2005 014 719.2 | Sep 2005 | DE | national |