The exemplary and non-limiting embodiments of the invention relate generally to connectors or connector arrangement that can be employed to interconnect radiofrequency apparatuses or components. Embodiments of the invention relate especially to coaxial connector arrangements that can be employed in radio frequency apparatuses.
The following description of background art may include insights, discoveries, understandings or disclosures, or associations together with disclosures not known to the relevant art prior to the present invention but provided by the invention. Some of such contributions of the invention may be specifically pointed out below, whereas other such contributions of the invention will be apparent from their context.
Connectors are used in radiofrequency apparatuses to connect apparatuses or components within an apparatus electrically to each other. For example, a typical arrangement in connecting a power amplifier of a radio transmitter is to an antenna arrangement is to use a cable comprising connectors at the both ends of the cable. The cable with the connectors provides the radio frequency signal produced by the power amplifier a path to the antenna. Connectors are typically attached by small screws or press fittings to radio module housing and the radio is connected to antenna by using different length of jumper cables. Similar arrangement may be used within a radio transmitter when the output signal of a filter is led to the power amplifier of the radio transmitter, for example.
A common problem with prior art, connecting solutions is that there are many connection joints between different radiofrequency parts and that can generate passive intermodulation or other electrical/mechanical contact problems.
According to an aspect of the present invention, there is provided a connector arrangement as claimed in claims 1 and 13.
Embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which
The following embodiments are only examples. Although the specification may refer to “an”, “one”, or “some” embodiment(s) in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that the feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments. Furthermore, words “comprising” and “including” should be understood as not limiting the described embodiments to consist of only those features that have been mentioned and such embodiments may also contain also features, structures, units, modules etc. that have not been specifically mentioned.
In an embodiment, the use of connecting feeders or cables in the realization of the signal path between devices may be avoided by utilising the proposed connector arrangement.
In an embodiment, the example connector arrangement comprises the first and second connectors and the bullet connector. This example is studied next.
In an embodiment, the first connector 200 comprises a first outer connector 206A, 206B and a first inner connector 208 with a protruding element 210. The first connector 200 further comprises first attaching means 212, 214 for attaching the first connector to the first object, the first connector being movable in relation to the first object in at least two different directions which may be orthogonal with each other. The first attaching means may comprise a spring loaded bed, for instance, which provide degrees of freedom in the movement of the first connector in at least two directions which may be orthogonal with each other. The movement may also be partly rotational.
In an embodiment, the second connector 202 comprises a second outer connector 216A, 216B and a second inner connector 218 with a protruding element 220. The second connector 202 further comprises first attaching means 222, 224 for attaching the second connector to the second object.
In an embodiment, the bullet connector 204 comprises a bullet outer connector 226A, 226B 226C, 226D and bullet inner connector 228.
In an embodiment, the bullet connector 204 is attachable to the first 200 and second 202 connectors between the first and second connector, as illustrated in
The bullet inner connector 228 may comprise means 230A, 230B for receiving the protruding elements 210, 220 of the first and second inner connectors to form a second conductive signal path from the first inner connector 200 to the second inner connector 202. The bullet connector may comprise cavity 230A, 230B matched to the protruding elements 210, 220 of the first and second inner connectors. The outer surfaces of the protruding elements 210, 220 and the inner surfaces of the cavities may comprise conductive material to enable forming the second conductive signal path.
In an embodiment, the connector arrangement comprises shielding means 232 attached to the outer surfaces of the first and second outer connectors connector 206A, 206B, 216A, 216B forming the first conductive signal path as illustrated in
In an embodiment, the example connector arrangement comprises the first connector and the bullet connector. This example is studied next.
As in the previous example, the first connector 200 comprises a first outer connector 206A, 206B and a first inner connector 208 with a protruding element 210. The first connector 200 further comprises first attaching means 212, 214 for attaching the first connector to the first object, the first connector being movable in relation to the first object in at least two different directions which may be orthogonal with each other. The first attaching means may comprise a spring loaded bed, for instance, which provide degrees of freedom in the movement of the first connector in at least two directions which may be orthogonal with each other. The movement may also be partly rotational.
In an embodiment, the bullet connector 204 comprises a bullet outer connector 226A, 226B 226C, 226D and bullet inner connector 228.
In an embodiment, the bullet connector 204 is being attachable from a first side to the first connector 200. The bullet outer connector 226A, 226B of the first side may be configured to make a contact with the first outer connector 206A, 206B to form a first conductive signal path from the first outer connector 206A, 206B to the bullet outer connector 226A, 226B of the first side. The bullet inner connector 228 may comprise means 230A on the first side for receiving the protruding element 210 of the first inner connector to form a second conductive signal path from the first inner connector 200 to the bullet inner connector.
In an embodiment, the bullet connector 204 is further attachable from a second side to another connector. The bullet outer connector 226C, 226D of the second side may be configured to make a contact with an outer connector of the another connector to extend the first conductive signal path from the first outer connector to the outer connector of the another connector. The bullet inner connector 228 may comprise means 230B on the second side for receiving the protruding element of the inner connector of the another connector to extend the second conductive signal path from the first inner connector to inner connector of the another connector.
In an embodiment, the first connectors are movable in relation to the antenna 100 in at least two directions orthogonal with each other. The movability may be achieved by using a spring loaded bed, for instance. The connection of the first connectors may be called floating and the connection of the second connectors may be called fixed. The floating connection makes the connecting of the antenna and the radio part and the first connector-bullet connector-second connector combinations easier.
In an embodiment, guide elements or guiding means 400, 402 may be utilized to attach the antenna 100 into correct position with the radio part 102. The guiding means 400, 402 may comprise a plug in the antenna part and a cavity in the radio part or vice versa, for example. The use of guiding means makes it possible to direct the first and second outer connectors together with the accuracy smaller than the movement allowed by the floating connection. The floating connection may be either on the antenna side or on the radio part side.
Advantages of the described solution comprise are stabile structure and quick assembly. From the electrical point of view the length of radio frequency lines are shorter than in prior art solution using feeders or cables and that means lower losses in radiofrequency lines. In addition, phase variance is minimal because cable usage is minimized.
In prior art connectors comprise several parts such as connector housing (outer connector) insulator and inner connector part. This kind of structure causes connection joints between different radiofrequency parts that can generate for instance passive intermodulation or other electrical/mechanical contact problems and extra costs.
In an embodiment, the inner connector 208 comprises a low pass filter 600 integrated to the same body as the inner connector. Thus, the low pass filter is of the same material and there are no joints between the protruding element 210 and the low pass filter.
In an embodiment, the inner connector 208 comprises one or more insulators 600, 602 axially surrounding at least part of the inner connector. In an embodiment, inner connector comprises one or more grooves 606 on a surface facing radially outwards of the inner connector. The insulator 604 of the inner connector may be attached to the one or more grooves. The insulator 604 of the inner connector 208 may be injection moulded to the one or more grooves 606, for instance.
The proposed solution leads to a good mechanical structure that is easy to implement. Minimizing amount of parts and joints leads to a shorter tolerance chain. The structure is stabile structure and quick to assemble in production. In addition, parts of the connector can be reused if needed for example in production failure situation. Reducing the number of parts and joints and the ease of assembly leads also to cost reduction. For example, typically in connectors a FEP (fluor plastics) tube is used for supporting and isolating a separate low pass filter. In the proposed structure the use of the FEP tube, which is difficult to produce accurately, is avoided as insulation may be provided by insulator bands attached to grooves of the inner connector material.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
14181119 | Aug 2014 | EP | regional |