Fixation elements may be used in orthopedic surgery to align and/or fix a desired relationship between anatomic structures. In the case of spinal surgery, for example, a spinal fixation element, such as a rod, plate, or cable, may be anchored to one or more vertebrae by attaching the fixation element to one or more bone anchors, such as a hook, a bolt, a wire, or a screw. The spinal fixation element may be contoured to a desired configuration, and once installed, the fixation element may hold the vertebrae in a desired spatial relationship, until, for example, desired healing or spinal fusion has taken place, or for some longer period of time. Connecting a fixation element to conventional bone anchors can be challenging and time consuming as it is often difficult to align the fixation element with each of the bone anchors. Accordingly, there is a need for improved devices and methods for facilitating the connection of a fixation element to one or more bone anchors.
Disclosed herein are connector assemblies and methods for connecting a bone anchor to a fixation element. The connector assemblies and methods disclosed herein are particularly suited to connecting a bone anchor anchored in a vertebra to a spinal fixation element, such as a rod, plate, or cable.
In one exemplary embodiment, a connector assembly for connecting a bone anchor to a fixation element comprises an anchor receiving member, a housing, an intermediate member, a first closure member, and a second closure member. In the exemplary embodiment, the anchor receiving member may have a first portion having an opening for receiving at least a portion of a bone anchor and a second portion. The housing, in the exemplary embodiment, may have a first passage for receiving a fixation element, a second passage for receiving the second portion of the anchor receiving member, and a third passage intersecting the first passage and the second passage. The exemplary intermediate member may be positionable within the third passage and may have a seat for receiving the fixation element and a distal end configured to engage the second portion of the anchor receiving member. In the exemplary embodiment, the first closure member may be positionable within the third passage to engage the intermediate member and the second closure member may be positionable within the third passage to engage a fixation element positioned in the seat of the intermediate member.
An exemplary method of connecting a bone anchor with a fixation element comprises positioning a portion of a bone anchor within an opening of an anchor receiving member of a connector assembly, positioning a fixation element within a passage of a housing of the connector assembly, rotating the anchor receiving member relative to a housing, securing the anchor receiving member in a desired orientation relative to the housing, and securing the fixation element relative the housing independently of securing the anchor receiving member in a desired orientation relative to the housing.
These and other features and advantages of the connector assemblies and methods disclosed herein will be more fully understood by reference to the following detailed description in conjunction with the attached drawings in which like reference numerals refer to like elements through the different views. The drawings illustrate principles of the connector assemblies and methods disclosed herein and, although not to scale, show relative dimensions.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the connector assemblies and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the connector assemblies and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The terms “comprise,” “include,” and “have,” and the derivatives thereof, are used herein interchangeably as comprehensive, open-ended terms. For example, use of “comprising,” “including,” or “having” means that whatever element is comprised, had, or included, is not the only element encompassed by the subject of the clause that contains the verb.
The exemplary connector assembly 10 may be used with any type of bone anchor, including, for example, hooks, screws, such as monoaxial screws, bolts, and polyaxial screws, and wires. In the exemplary embodiment, for example, the connector assembly 10 is illustrated connecting a bone anchor 12 having distal bone engaging threads 46, proximal threads 44 for engaging a fastener, such as a nut 40, and an integral shoulder 42 positioned between the distal threads 46 and the proximal threads 44. Similar bone anchors and other exemplary bone anchors are described in U.S. Pat. Nos. 4,854,311; 4,648,388; 5,129,900; 5,312,404; 5,741,255; 5,743,907; and 6,080,156. Each of the following patents is incorporated herein by reference.
The exemplary connecting element may be used with any type of fixation element including, for example, rods, plates, tethers, and cables. In the exemplary embodiment, the connector assembly 10 is illustrated connecting a smooth rod 14 to a bone anchor 12.
Referring to
The bone anchor may be fixed to the first portion 32 of the anchor receiving member 16 by any conventional fastener. In the illustrated exemplary embodiment, an internally threaded nut 40 may be employed to fasten the bone anchor 12 to the anchor receiving member 16. The exemplary nut 40 engages the proximal threads 44 of the bone anchor 12. The nut 40 may be advanced distally to engage the proximal surface of the first portion 32 of the anchor receiving member 16 and may be tightened against the proximal surface to clamp the first portion 32 between the nut 40 and the shoulder 42 of the bone anchor 12.
The second portion 34 of the anchor receiving member 16 may be configured to be positioned within a passage of the housing 18 and to facilitate rotation of the anchor receiving member 16 about the longitudinal axis 38 and relative to the housing 18. In the exemplary embodiment, for example, the second portion 34 is generally cylindrical shape having, for example, a generally circular cross section. The second portion 34, in the exemplary embodiment, may be smooth or, as in the exemplary embodiment, may include one or more teeth 50 provided on the outer surface of the second portion. Meshing engagement of the teeth 50 with one or more teeth 70 provided on the passage of the housing 18 receiving the second portion 34 of the anchor engaging member 16 inhibits rotation of the anchor receiving member 16 about the longitudinal axis 38 and relative to the housing 18. Each of the teeth 50 may be aligned parallel to the longitudinal axis 38 of the anchor receiving member 16. Any number of teeth 50 may be provided. The teeth 50 may be provided about a portion of the second portion or the entire extent of the second portion. In the illustrated embodiment, a plurality of teeth 50 are provided on the distal surface of the second portion and have an arcuate extent of approximately 180° about the longitudinal axis 38 of the second portion.
The second portion 34 of the anchor receiving member 16 may include a groove 52 to facilitate engagement of the intermediate member 20 with the second portion 34 of the anchor receiving member 16 and minimize motion of the anchor receiving member 16 along the longitudinal axis 38 of the anchor receiving member 16. The groove 52 may have an arcuate extent of up to 360° about the longitudinal axis 38 of the second portion 34. For example, in the illustrated embodiment, the groove 52 has an arcuate extent of approximately 180° about the longitudinal axis 38 of the second portion. In other exemplary embodiments, a groove 52 may not be provided and the intermediate member 20 engages the outer surface of the second portion 34.
Referring to
In the exemplary connector assembly 10, the first passage 60 of the housing 18 extends between and is generally perpendicular to the first side surface 76 and the second side surface 78. The size and shape of the first passage 60 may be varied depending on, for example, the fixation element employed. In the case of a spinal rod, as in the illustrated embodiment, for example, the first passage 60 may have a generally oval cross section formed by a pair of circular openings having centers (C1 & C2, respectively), which are offset along a central axis 84, as illustrated in
In the exemplary connector assembly 10, the second passage 62 of the housing 18 extends between and is generally perpendicular to the third side surface 80 and the fourth side surface 84. In the illustrated embodiment, the second passage 62 is oriented generally perpendicular to the first passage 60 and generally perpendicular to the third passage 64. The second passage 62, in the exemplary embodiment, is offset distally from the first passage 60 along the axis of the third passage 64. The size and shape of the second passage 62 may be varied depending on, for example, the size and shape of the second portion 34 of the anchor receiving member 16. In the case of a cylindrically shaped second portion 34, as in the illustrated embodiment, for example, the second passage 62 may have generally oval cross section formed by a pair of circular openings having centers (C3 & C4, respectively), which are offset along a central axis 86, as illustrated in
In the exemplary connector assembly 10, the third passage 64 of the housing 18 extends from the top surface 72 toward the bottom surface 74. The third passage 64 intersects and, in the exemplary embodiment, is generally perpendicular to the first passage 60 and the second passage 62. The size and shape of the third passage 64 may be varied depending on, for example, the size and shape of the intermediate member 20. In the case of an intermediate member 20 having a generally circular cross section, as in the illustrated embodiment, for example, the third passage 64 may be generally cylindrical in shape with a generally circular cross section. The proximal end of the third passage 64 may have internal threads or another engagement mechanism for engaging a closure member. In the illustrated embodiment, for example, the third passage 64 has internal threads 70 for engaging external threads provided on the first closure member.
Referring to
Referring to
The second closure member 24 of the exemplary connector assembly 10 may be positionable within the third passage way 64 to engage a fixation element positioned within the seat 90 of the intermediate member 20. For example, the second closure member 24 may be advanced through the first closure member 22 into the U-shaped slot of the intermediate member 20 to engage and secure a fixation element seated at the base of the U-shaped slot. The second closure member 24, in the illustrated embodiment, may be an inner set screw have external threads, or other engagement mechanism, for engaging the threaded central opening 102 of the first closure mechanism 24.
In use, the exemplary connector assembly 10 may be employed to connect a bone anchor with a fixation element by, for example, positioning a portion of a bone anchor within the opening 36 of the anchor receiving member 16 of the connector assembly 10 and by positioning a fixation element, e.g., a rod 14, within the first passage 60 of the housing 18 of the connector assembly 10. The anchor receiving member 16 may be rotated relative to housing 18 to adjust the orientation of the bone anchor relative to the fixation element. For example, the bone anchor 12 may be positioned within the opening 36 of the anchor receiving member 16 and the housing 18 may be rotated relative to the anchor receiving member 16 to facilitate positioning of the fixation element in the first passage 60 of the housing 18. Alternatively, the fixation element may be positioned within the first passage 60 of the housing 18 and the anchor receiving member 16 may be rotated to facilitate positioning of the bone anchor in the opening 36 of the anchor receiving member 16. Moreover, the fixation element and the bone anchor may be oriented relative to one another after both are coupled to the connector assembly by rotating the anchor receiving member 16 relative to the housing 18. Once the fixation element is positioned in first passage 60, the fixation element is free to move within the first passage 60, both along the axis of the first passage 60 and transverse to the axis of the passage (e.g., toward and away from the top surface 72 of the housing 18), until the fixation element is secured within the housing.
In the exemplary embodiment, the anchor receiving member 16 may be secured in a desired orientation relative to the housing independent of securing the fixation element relative to the housing 18. For example, the first closure member 22 may be advanced into contact with the proximal surface of the intermediate member 20 to force the intermediate member 20 into engagement with the second portion 34 of the anchor receiving member 16 and thereby inhibit relative rotation between the anchor receiving member 16 and the housing 18. In embodiments employing teeth 50 and teeth 70, advancement of the first closure member 22 into contact with intermediate member forces the teeth 50 and teeth 70 into meshing engagement to inhibit rotation. The second closure member 24 may be advanced independently of the first closure member 22 into engagement within the fixation element to secure the fixation element within the seat 90 of the intermediate member 20 and thereby inhibit relative motion between the fixation element and the connector assembly 10. For example,
While the connector assemblies and methods of the present invention have been particularly shown and described with reference to the exemplary embodiments thereof, those of ordinary skill in the art will understand that various changes may be made in the form and details herein without departing from the spirit and scope of the present invention. Those of ordinary skill in the art will recognize or be able to ascertain many equivalents to the exemplary embodiments described specifically herein by using no more than routine experimentation. Such equivalents are intended to be encompassed by the scope of the present invention.