The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to connectors utilizing a novel spacer design, as well as methods of making and using the same.
Implantable electrical stimulation systems have proven therapeutic in a variety of diseases and disorders. For example, spinal cord stimulation systems have been used as a therapeutic modality for the treatment of chronic pain syndromes. Peripheral nerve stimulation has been used to treat chronic pain syndrome and incontinence, with a number of other applications under investigation. Functional electrical stimulation systems have been applied to restore some functionality to paralyzed extremities in spinal cord injury patients. Stimulation of the brain, such as deep brain stimulation, can be used to treat a variety of diseases or disorders.
Stimulators have been developed to provide therapy for a variety of treatments. A stimulator can include a control module (with a pulse generator), one or more leads, and an array of stimulator electrodes on each lead. The stimulator electrodes are in contact with or near the nerves, muscles, or other tissue to be stimulated. The pulse generator in the control module generates electrical pulses that are delivered by the electrodes to body tissue.
One embodiment is a connector assembly including an elongated connector housing having a first end, a second end, and a length, the connector housing defining a port at the second end of the connector housing, the port configured for receiving a proximal end of a lead or lead extension; a lead lumen that extends from the port along at least a portion of the length of the connector housing; connector contacts axially spaced-apart and disposed along the lead lumen such that the connector contacts are each exposed to the lead lumen, the connector contacts configured for coupling to terminals along a proximal end of a lead or lead extension when the proximal end of the lead or lead extension is inserted into the lead lumen; and non-conductive spacers disposed between adjacent connector contacts. Each of the spacers includes a first radial sidewall, a second radial sidewall, and an intermediate region extending between, and connecting, the first and second radial sidewalls. The first and second radial sidewalls and intermediate region define boundaries of an open circumferential space. wherein the first and second radial sidewalls and intermediate region define boundaries of an open circumferential space. The open circumferential space is disposed on a first side of the intermediate region and the lead lumen is disposed on a second side of the intermediate region opposite the first side. The intermediate region is configured and arranged to form a seal with the proximal end of the lead or lead extension when inserted into the lead lumen.
In at least some embodiments, the first and second radial sidewalls and the intermediate region, in combination, have a U-shaped cross-section. In at least some embodiments, the intermediate region has a V-shaped cross-section. In at least some embodiments, in cross-section, the intermediate region is curved towards a center of the lead lumen. In at least some embodiments, in cross-section, the intermediate region forms right angles with the first and second sidewalls.
In at least some embodiments, the spacer further includes a bridge extending from the first radial sidewall to the second radial sidewall and forming an additional boundary of the open circumferential space. In at least some embodiments, the spacer further includes a radial ridge extending inwardly from surface of the intermediate region and around at least a portion of a perimeter of the surface of the intermediate region. In at least some embodiments, the radial ridge extends around the entire perimeter of the surface of the intermediate region.
In at least some embodiments, the intermediate region is configured and arranged to stretch or deflect when the proximal end of the lead or lead extension is inserted into the lead lumen. In at least some embodiments, the first radial sidewall, second radial sidewall, and intermediate region have an equal thickness when a lead or lead extension is not inserted into the lead lumen. In at least some embodiments, the connector assembly is configured and arranged so that at least one of the connector contacts acts as a stop to stretching or deflection of the intermediate region of at least one of the spacers as the proximal end of the lead or lead extension is inserted into the lead lumen. In at least some embodiments, the connector assembly is configured and arranged so that at least one of the connector contacts acts as a stop to retraction of the intermediate region of at least one of the spacers as the proximal end of the lead or lead extension is removed into the lead lumen.
In at least some embodiments, at least one of the first and second radial sidewalls is configured and arranged to form a seal with the connector housing. In at least some embodiments, the first radial sidewall is configured and arranged to stretch or deflect when the proximal end of the lead or lead extension is inserted into the lead lumen. In at least some embodiments, the second radial sidewall is configured and arranged to stretch or deflect when the proximal end of the lead or lead extension is inserted into the lead lumen.
Another embodiment is an electrical stimulating system including an electrical stimulation lead including a proximal end, a distal end, a plurality of terminals disposed along the proximal end, and a plurality of electrodes disposed along the distal end; and a control module coupleable to the electrical stimulation lead. The control module includes a housing, an electronic subassembly disposed in the housing; and any of the connector assemblies describe above, where at least one of the connector contacts is electrically coupled to the electronic subassembly.
Yet another embodiment is a lead extension including any of the connector assemblies describe above disposed on a first end of the lead extension; and terminals disposed along a second end of the lead extension. A further embodiment is a lead assembly that includes the lead extension and a lead. Another embodiment is an electrical stimulation system that includes the lead assembly and a control module coupleable to the lead assembly. The control module includes a housing and an electronic subassembly disposed in the housing. In at least some embodiments, the control module also includes any of the connector assemblies described above.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals refer to like parts throughout the various figures unless otherwise specified.
For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying drawings, wherein:
The present invention is directed to the area of implantable electrical stimulation systems and methods of making and using the systems. The present invention is also directed to connectors utilizing a novel spacer design, as well as methods of making and using the same.
Suitable implantable electrical stimulation systems include, but are not limited to, a least one lead with one or more electrodes disposed along a distal end of the lead and one or more terminals disposed along the one or more proximal ends of the lead. Leads include, for example, percutaneous leads, paddle leads, and cuff leads. Examples of electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 6,181,969; 6,295,944; 6,391,985; 6,516,227; 6,609,029; 6,609,032; 6,741,892; 7,244,150; 7,450,997; 7,672,734; 7,761,165; 7,783,359; 7,792,590; 7,809,446; 7,949,395; 7,974,706; 8,831,742; 8,688,235; 6,175,710; 6,224,450; 6,271,094; 6,295,944; 6,364,278; and 6,391,985; U.S. Patent Applications Publication Nos. 2007/0150036; 2009/0187222; 2009/0276021; 2010/0076535; 2010/0268298; 2011/0004267; 2011/0078900; 2011/0130817; 2011/0130818; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0071949; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; 2012/0203321; 2012/0316615; 2013/0105071; 2011/0005069; 2010/0268298; 2011/0130817; 2011/0130818; 2011/0078900; 2011/0238129; 2011/0313500; 2012/0016378; 2012/0046710; 2012/0165911; 2012/0197375; 2012/0203316; 2012/0203320; and 2012/0203321, all of which are incorporated by reference in their entireties.
Examples of connectors, connector contacts and connector assemblies for electrical stimulation systems with leads are found in, for example, U.S. Pat. Nos. 8,849,396; 7,244,150; 8,600,507; 8,897,876; 8,682,439; U.S. Patent Applications Publication Nos. 2012/0053646; 2014/0148885; 2015/0209575; 2016/0059019; and U.S. Patent Provisional Patent Application Nos. 62/193,472; 62/216,594; 62/259,463; and 62/278,667, all of which are incorporated by reference in their entireties.
The control module 102 typically includes one or more connector assemblies 144 into which the proximal end of the one or more lead bodies 106 can be plugged to make an electrical connection via connector contacts (e.g., 316 in
The one or more connector assemblies 144 may be disposed in a header 150. The header 150 provides a protective covering over the one or more connector assemblies 144. The header 150 may be formed using any suitable process including, for example, casting, molding (including injection molding), and the like. In addition, one or more lead extensions 324 (see
It will be understood that the electrical stimulation system can include more, fewer, or different components and can have a variety of different configurations including those configurations disclosed in the electrical stimulation system references cited herein. For example, instead of a paddle body 104, the electrodes 134 can be disposed in an array at or near the distal end of a lead body 106′ forming a percutaneous lead 103, as illustrated in
The electrical stimulation system or components of the electrical stimulation system, including one or more of the lead bodies 106, the control module 102, and, in the case of a paddle lead, the paddle body 104, are typically implanted into the body of a patient. The electrical stimulation system can be used for a variety of applications including, but not limited to, spinal cord stimulation, brain stimulation, neural stimulation, muscle activation via stimulation of nerves innervating muscle, and the like.
The electrodes 134 can be formed using any conductive, biocompatible material. Examples of suitable materials include metals, alloys, conductive polymers, conductive carbon, and the like, as well as combinations thereof. In at least some embodiments, one or more of the electrodes 134 are formed from one or more of: platinum, platinum iridium, palladium, titanium, or rhenium.
The number of electrodes 134 in the array of electrodes 133 may vary. For example, there can be two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, or more electrodes 134. As will be recognized, other numbers of electrodes 134 may also be used. In
The electrodes of the paddle body 104 or one or more lead bodies 106 are typically disposed in, or separated by, a non-conductive, biocompatible material including, for example, silicone, polyurethane, and the like or combinations thereof. The paddle body 104 and one or more lead bodies 106 may be formed in the desired shape by any process including, for example, molding (including injection molding), casting, and the like. Electrodes and connecting wires can be disposed onto or within a paddle body either prior to or subsequent to a molding or casting process. The non-conductive material typically extends from the distal end of the lead 103 to the proximal end of each of the one or more lead bodies 106. The non-conductive, biocompatible material of the paddle body 104 and the one or more lead bodies 106 may be the same or different. The paddle body 104 and the one or more lead bodies 106 may be a unitary structure or can be formed as two separate structures that are permanently or detachably coupled together.
Terminals (e.g., 310 in
Conductive wires (not shown) extend from the terminals (e.g., 310 in
The conductive wires may be embedded in the non-conductive material of the lead or can be disposed in one or more lumens (not shown) extending along the lead. In some embodiments, there is an individual lumen for each conductive wire. In other embodiments, two or more conductive wires may extend through a lumen. There may also be one or more lumens (not shown) that open at, or near, the proximal end of the lead, for example, for inserting a stylet rod to facilitate placement of the lead within a body of a patient. Additionally, there may also be one or more lumens (not shown) that open at, or near, the distal end of the lead, for example, for infusion of drugs or medication into the site of implantation of the paddle body 104. The one or more lumens may, optionally, be flushed continually, or on a regular basis, with saline, epidural fluid, or the like. The one or more lumens can be permanently or removably sealable at the distal end.
As discussed above, the one or more lead bodies 106 may be coupled to the one or more connector assemblies 144 disposed on the control module 102. The control module 102 can include any suitable number of connector assemblies 144 including, for example, two three, four, five, six, seven, eight, or more connector assemblies 144. It will be understood that other numbers of connector assemblies 144 may be used instead. In
In
The one or more connector assemblies 144 each include a connector housing 314 and a plurality of connector contacts 316 disposed therein. Typically, the connector housing 314 defines a port (not shown) that provides access to the plurality of connector contacts 316. In at least some embodiments, one or more of the connector assemblies 144 further includes a retaining element 318 configured to fasten the corresponding lead body 106/106′ to the connector assembly 144 when the lead body 106/106′ is inserted into the connector assembly 144 to prevent undesired detachment of the lead body 106/106′ from the connector assembly 144. For example, the retaining element 318 may include an aperture 320 through which a fastener (e.g., a set screw, pin, or the like) may be inserted and secured against an inserted lead body 106/106′.
When the one or more lead bodies 106/106′ are inserted into the one or more ports 304, the connector contacts 316 can be aligned with the terminals 310 disposed on the one or more lead bodies 106/106′ to electrically couple the control module 102 to the electrodes (134 of
In at least some embodiments, the electrical stimulation system includes one or more lead extensions. The one or more lead bodies 106/106′ can be coupled to one or more lead extensions which, in turn, are coupled to the control module 102/102′. In
The proximal end of a lead extension can be similarly configured as a proximal end of a lead body. The lead extension 324 may include a plurality of conductive wires (not shown) that electrically couple the connector contacts 340 to terminal on a proximal end 348 of the lead extension 324. The conductive wires disposed in the lead extension 324 can be electrically coupled to a plurality of terminals (not shown) disposed on the proximal end 348 of the lead extension 324. In at least some embodiments, the proximal end 348 of the lead extension 324 is configured for insertion into a lead extension connector assembly disposed in another lead extension. In other embodiments (as shown in
It will be understood that the control modules 102/102′ can receive either lead bodies 106/106′ or lead extensions 324. It will also be understood that the electrical stimulation system 100 can include a plurality of lead extensions 224. For example, each of the lead bodies 106 shown in
It will be understood that the connector assembly described below may be disposed in many different locations including, for example, on lead extensions (see e.g., 322 of
A connector assembly in the control module or on a lead extension or other location can include an arrangement of connector contacts separated by spacers (which may also be referred to as seals). The spacers isolate or electrically insulate the connector contacts from each other and may also provide a seal with the lead to further isolate the connector contacts from each other. The spacers provide a sealing force or pressure on the lead body and array of terminals at an end of the lead or lead extension. Providing the seal increases the force for insertion of the lead or lead extension. The insertion force may result in difficulty inserting a lead, user dissatisfaction, or even lead damage due to high columnar loads. Moreover, as the number of electrodes on a lead increases, adding more connector contacts in a connector and terminals on the lead or lead extension will typically increase the insertion force. Therefore, it is desirable to develop spacer configurations with lower insertion force than conventional spacers.
A spacer can include radial sidewalls with an intermediate region extending between, and connecting, the radial sidewalls. The radial sidewalls and intermediate region define (e.g., form at least a portion of a boundary for) an open circumferential space opposite the lead lumen of the connector to facilitate stretching, deflection, or other deformation of the spacer as the lead is inserted or removed from the connector. In at least some embodiments, the open circumferential space is disposed on a first side of the intermediate region and the lead lumen is disposed on a second side of the intermediate region opposite the first side. In at least some embodiments, this spacer can provide a reliable seal with the lead or lead extension inserted into the connector and may also provide a seal with a housing of the connector.
The connector housing 402 defines a port 414 that provides access to a lead lumen 416 and the connector contacts 404. The connector housing 402 can be made of any suitable material or materials. In at least some embodiments, the connector assembly 400 further includes a retention block 410 to fasten the corresponding lead body (or a retention ring on the lead body) of the lead or lead extension to the connector assembly 400 when the lead body is inserted into the connector assembly and prevent undesired detachment of the lead body from the connector assembly or misalignment of the terminals on the lead body with the connector contacts. For example, the retaining element 318 may include an aperture 418 through which a fastener (e.g., a set screw, pin, or the like) may be inserted and secured against an inserted lead body. Other types of retention blocks or retention assemblies can be used including, but not limited to, those described in U.S. Pat. No. 9,440,066; U.S. patent application Ser. Nos. 15/627,016 and 15/641,688; and U.S. Provisional Patent Application Ser. No. 62/464,710, all of which are incorporated herein by reference.
The connector contacts 404 may take the form of conductive spring contacts or any other suitable contact arrangement. Examples of connector contacts include, but are not limited to, canted coil contacts available from Bal Seal Engineering, Inc. (Foothill Ranch, Calif.) and contacts described in U.S. Pat. Nos. 7,803,021; 8,682,439; 8,897,876; 9,409,032; 9,604,068; 9,656,093; and 9,770,598; U.S. Patent Application Publications Nos. 2011/0022100; 2016/0228692; and 2016/0296745; U.S. patent application Ser. Nos. 15/627,016 and 15/656,612; and U.S. Provisional Patent Application Ser. No. 62/483,141, all of which are incorporated herein by reference.
The connector assembly 400 may include an end stop 408 which, at least in part, modulates insertion of the lead or lead extension into the port 414. The end stop 408 can be disposed in the lead lumen 416 of the connector assembly 400. The end stop 408 can provide one or more surfaces upon which the inserted lead or lead extension contacts, when the lead or lead extension is fully inserted into the port 414. In some cases, the end stop 408 can provide the proximal-most point of insertion for the lead or lead extension within the connector assembly 400.
The first and second radial sidewalls 580, 582 and intermediate region 584 define, at least in part, an open circumferential space 586. The open circumferential space 586 is opposite the lead lumen 416 with respect to the intermediate region 584. The first and second radial sidewalls 580, 582 and the intermediate region 584 can form, at least in part, boundaries of the open circumferential space 586. The open circumferential space 586. The open circumferential space 586 separates the first radial sidewall 580 from the second radial sidewall 582. In at least some embodiments, the presence of the open circumferential space 586 facilitates deformation of the first radial sidewall 580, second radial sidewall 582, or intermediate region 584 (or any combination thereof) during insertion or removal of the lead from the lead lumen 416 (see, for example,
Optionally, the spacer 406 can include a bridge 588 that connects the first radial sidewall 580 to the second radial sidewall 582 along an outer portion of the spacer 406. The bridge 588 may further define the open circumferential space 586. The bridge 588 may provide additional stability to the spacer 406 and prevent or reduce longitudinal compression of the sidewalls 580, 582 towards each other.
The spacer 406 can be made of any suitable flexible, non-conductive material including, but not limited to, silicone, polyurethane, or the like. The material of the spacer 406 is preferably stretchable. In at least some embodiments, the spacer 406 is formed by molding.
The shortest inner diameter 585 of the intermediate region 584 is preferably equal to, or slightly smaller (for example, no more than 15%, 10%, or 5% smaller) than, the diameter of the lead or lead extension to be inserted into the connector assembly 400. In at least some embodiments, the intermediate region 584 makes a seal (preferably, a hermetic seal) with the portion of the lead or lead extension inserted into the connector assembly 400. In at least some embodiments, a ratio of sealing force to insertion force is at least 1.5, 1.6, 1.7, or 1.8. This ratio can be determined using a finite element analysis.
Although not wishing to be bound to any particular theory, the following is a description of one method of analyzing the sealing force and the insertion force. In at least some embodiments, the insertion force can be considered the combination of two forces: displacement and friction. Displacement is the force generated by moving the portions of the spacer 406, such as, but not limited to, the intermediate region 584. As one example of a determination of the displacement force, when the spacer 406 is deformed (see, for example,
In at least some embodiments, the outer diameter 587 of the spacer 406 is equal to or slightly larger (for example, no more than 15%, 10%, or 5% larger) than, the inner diameter of the connector housing 402 of the connector assembly 400. In at least some embodiments, the first radial sidewall or second radial sidewall 580, 582 (or both) makes a seal (preferably, a hermetic seal) with the connector housing 402 of the connector assembly 400. In at least some embodiments, the first radial sidewall and second radial sidewall 580, 582 make a seal (preferably, a hermetic seal) with the adjacent connector contacts 404 (or with an adjacent connector contact 404 and the end stop 408 or retention block 410) of the connector assembly 400.
In at least some embodiments, the thicknesses of the first radial sidewall 580, the second radial sidewall, and the intermediate region 584 are equal or differ by no more than 5%, 10%, or 20%. In other embodiments, the first and second radial sidewalls 580, 582 can be thicker or thinner than the intermediate region 584. In at least some embodiments, the thicknesses of the first and second radial sidewalls may be different from each other. In at least some embodiments, the thicknesses of the first radial sidewall 580, the second radial sidewall, and the intermediate region 584 may vary.
The intermediate region 584 of the spacer 406′ of
Any of the embodiments described herein can include one or more radial ridges 590 (
In
As the lead is retracted, the intermediate region 584 moves back toward the connector contact 404, as illustrated in
Some of the components (for example, a power source 712, an antenna 718, a receiver 702, and a processor 704) of the electrical stimulation system can be positioned on one or more circuit boards or similar carriers within a sealed housing of an implantable pulse generator, if desired. Any power source 712 can be used including, for example, a battery such as a primary battery or a rechargeable battery. Examples of other power sources include super capacitors, nuclear or atomic batteries, mechanical resonators, infrared collectors, thermally-powered energy sources, flexural powered energy sources, bioenergy power sources, fuel cells, bioelectric cells, osmotic pressure pumps, and the like including the power sources described in U.S. Pat. No. 7,437,193, incorporated herein by reference.
As another alternative, power can be supplied by an external power source through inductive coupling via the optional antenna 718 or a secondary antenna. The external power source can be in a device that is mounted on the skin of the user or in a unit that is provided near the user on a permanent or periodic basis.
If the power source 712 is a rechargeable battery, the battery may be recharged using the optional antenna 718, if desired. Power can be provided to the battery for recharging by inductively coupling the battery through the antenna to a recharging unit 716 external to the user. Examples of such arrangements can be found in the references identified above.
In one embodiment, electrical current is emitted by the electrodes 134 on the paddle or lead body to stimulate nerve fibers, muscle fibers, or other body tissues near the electrical stimulation system. The processor 704 is generally included to control the timing and electrical characteristics of the electrical stimulation system. For example, the processor 704 can, if desired, control one or more of the timing, frequency, strength, duration, and waveform of the pulses. In addition, the processor 704 can select which electrodes can be used to provide stimulation, if desired. In some embodiments, the processor 704 selects which electrode(s) are cathodes and which electrode(s) are anodes. In some embodiments, the processor 704 is used to identify which electrodes provide the most useful stimulation of the desired tissue.
Any processor can be used and can be as simple as an electronic device that, for example, produces pulses at a regular interval or the processor can be capable of receiving and interpreting instructions from an external programming unit 708 that, for example, allows modification of pulse characteristics. In the illustrated embodiment, the processor 704 is coupled to a receiver 702 which, in turn, is coupled to the optional antenna 718. This allows the processor 704 to receive instructions from an external source to, for example, direct the pulse characteristics and the selection of electrodes, if desired.
In one embodiment, the antenna 718 is capable of receiving signals (e.g., RF signals) from an external telemetry unit 706 which is programmed by the programming unit 708. The programming unit 708 can be external to, or part of, the telemetry unit 706. The telemetry unit 706 can be a device that is worn on the skin of the user or can be carried by the user and can have a form similar to a pager, cellular phone, or remote control, if desired. As another alternative, the telemetry unit 706 may not be worn or carried by the user but may only be available at a home station or at a clinician's office. The programming unit 708 can be any unit that can provide information to the telemetry unit 706 for transmission to the electrical stimulation system 700. The programming unit 708 can be part of the telemetry unit 706 or can provide signals or information to the telemetry unit 706 via a wireless or wired connection. One example of a suitable programming unit is a computer operated by the user or clinician to send signals to the telemetry unit 706.
The signals sent to the processor 704 via the antenna 718 and the receiver 702 can be used to modify or otherwise direct the operation of the electrical stimulation system. For example, the signals may be used to modify the pulses of the electrical stimulation system such as modifying one or more of pulse duration, pulse frequency, pulse waveform, and pulse strength. The signals may also direct the electrical stimulation system 700 to cease operation, to start operation, to start charging the battery, or to stop charging the battery. In other embodiments, the stimulation system does not include the antenna 718 or receiver 702 and the processor 704 operates as programmed.
Optionally, the electrical stimulation system 700 may include a transmitter (not shown) coupled to the processor 704 and the antenna 718 for transmitting signals back to the telemetry unit 706 or another unit capable of receiving the signals. For example, the electrical stimulation system 700 may transmit signals indicating whether the electrical stimulation system 700 is operating properly or not or indicating when the battery needs to be charged or the level of charge remaining in the battery. The processor 704 may also be capable of transmitting information about the pulse characteristics so that a user or clinician can determine or verify the characteristics.
The above specification provides a description of the structure, manufacture, and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/617,990, filed Jan. 16, 2018, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3222471 | Steinkamp | Dec 1965 | A |
3601747 | Prall et al. | Aug 1971 | A |
3718142 | Mulier | Feb 1973 | A |
3757789 | Shanker | Sep 1973 | A |
3771106 | Matsumoto et al. | Nov 1973 | A |
3908668 | Bolduc | Sep 1975 | A |
3951154 | Hartlaub | Apr 1976 | A |
3990727 | Gallagher | Nov 1976 | A |
4003616 | Springer | Jan 1977 | A |
4112953 | Shanker et al. | Sep 1978 | A |
4142532 | Ware | Mar 1979 | A |
4180078 | Anderson | Dec 1979 | A |
4245642 | Skubitz et al. | Jan 1981 | A |
4259962 | Peers-Trevarton | Apr 1981 | A |
4310001 | Comben | Jan 1982 | A |
4364625 | Baker et al. | Dec 1982 | A |
4367907 | Buck | Jan 1983 | A |
4411276 | Dickhudt et al. | Oct 1983 | A |
4411277 | Dickhudt | Oct 1983 | A |
4461194 | Moore | Jul 1984 | A |
4466441 | Skubitz et al. | Aug 1984 | A |
4516820 | Kuzma | May 1985 | A |
RE31990 | Sluetz et al. | Sep 1985 | E |
4540236 | Peers-Trevarton | Sep 1985 | A |
4602624 | Naples et al. | Jul 1986 | A |
4603696 | Cross, Jr. et al. | Aug 1986 | A |
4614395 | Peers-Trevarton | Sep 1986 | A |
4630611 | King | Dec 1986 | A |
4695116 | Bailey et al. | Sep 1987 | A |
4695117 | Kysiak | Sep 1987 | A |
4712557 | Harris | Dec 1987 | A |
4715380 | Harris | Dec 1987 | A |
4744370 | Harris | May 1988 | A |
4784141 | Peers-Trevarton | Nov 1988 | A |
4832032 | Schneider | May 1989 | A |
4840580 | Saell et al. | Jun 1989 | A |
4850359 | Putz | Jul 1989 | A |
4860750 | Frey et al. | Aug 1989 | A |
4867708 | Iizuka | Sep 1989 | A |
4869255 | Putz | Sep 1989 | A |
4898173 | Daglow et al. | Feb 1990 | A |
4899753 | Inoue et al. | Feb 1990 | A |
4951687 | Ufford et al. | Aug 1990 | A |
4995389 | Harris | Feb 1991 | A |
5000177 | Hoffman et al. | Mar 1991 | A |
5000194 | van den Honert et al. | Mar 1991 | A |
5007435 | Doan et al. | Apr 1991 | A |
5007864 | Stutz, Jr. | Apr 1991 | A |
5070605 | Daglow et al. | Dec 1991 | A |
5082453 | Stutz, Jr. | Jan 1992 | A |
5086773 | Ware | Feb 1992 | A |
5135001 | Sinofsky et al. | Aug 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5201865 | Kuehn | Apr 1993 | A |
5241957 | Camps et al. | Sep 1993 | A |
5252090 | Giurtino et al. | Oct 1993 | A |
5261395 | Oleen et al. | Nov 1993 | A |
5312439 | Loeb | May 1994 | A |
5324312 | Stokes et al. | Jun 1994 | A |
5330521 | Cohen | Jul 1994 | A |
5336246 | Dantanarayana | Aug 1994 | A |
5348481 | Ortiz | Sep 1994 | A |
5354326 | Comben et al. | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5368496 | Ranalletta et al. | Nov 1994 | A |
5374279 | Duffin, Jr. et al. | Dec 1994 | A |
5374285 | Vaiani et al. | Dec 1994 | A |
5383913 | Schiff | Jan 1995 | A |
5413595 | Stutz, Jr. | May 1995 | A |
5433734 | Stokes et al. | Jul 1995 | A |
5435731 | Kang | Jul 1995 | A |
5458629 | Baudino et al. | Oct 1995 | A |
5486202 | Bradshaw | Jan 1996 | A |
5489225 | Julian | Feb 1996 | A |
5509928 | Acken | Apr 1996 | A |
5522874 | Gates | Jun 1996 | A |
5534019 | Paspa | Jul 1996 | A |
5545188 | Bradshaw et al. | Aug 1996 | A |
5545189 | Fayram | Aug 1996 | A |
5582180 | Manset et al. | Aug 1996 | A |
5560358 | Arnold et al. | Oct 1996 | A |
5679026 | Fain et al. | Oct 1997 | A |
5683433 | Carson | Nov 1997 | A |
5711316 | Elsberry et al. | Jan 1998 | A |
5713922 | King | Feb 1998 | A |
5720631 | Carson et al. | Feb 1998 | A |
5730628 | Hawkins | Mar 1998 | A |
5755743 | Volz et al. | May 1998 | A |
5766042 | Ries et al. | Jun 1998 | A |
5782892 | Castle et al. | Jul 1998 | A |
5796044 | Cobian et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5800495 | Machek et al. | Sep 1998 | A |
5807144 | Sivard | Sep 1998 | A |
5837006 | Ocel et al. | Nov 1998 | A |
5843141 | Bischoff et al. | Dec 1998 | A |
5843148 | Gijsbers et al. | Dec 1998 | A |
5906634 | Flynn et al. | May 1999 | A |
5931861 | Werner et al. | Aug 1999 | A |
5938688 | Schiff | Aug 1999 | A |
5951595 | Moberg et al. | Sep 1999 | A |
5968082 | Heil | Oct 1999 | A |
5987361 | Mortimer | Nov 1999 | A |
5989077 | Mast et al. | Nov 1999 | A |
6006135 | Kast et al. | Dec 1999 | A |
6018684 | Bartig et al. | Jan 2000 | A |
6038479 | Werner et al. | Mar 2000 | A |
6038481 | Werner et al. | Mar 2000 | A |
6042432 | Hashazawa et al. | Mar 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6080188 | Rowley et al. | Jun 2000 | A |
6112120 | Correas | Aug 2000 | A |
6112121 | Paul et al. | Aug 2000 | A |
6125302 | Kuzma | Sep 2000 | A |
6134478 | Spehr | Oct 2000 | A |
6154678 | Lauro | Nov 2000 | A |
6161047 | King et al. | Dec 2000 | A |
6162101 | Fischer et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167311 | Rezai | Dec 2000 | A |
6167314 | Fischer, Sr. et al. | Dec 2000 | A |
6175710 | Kamaji et al. | Jan 2001 | B1 |
6181969 | Gord | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6192278 | Werner et al. | Feb 2001 | B1 |
6198969 | Kuzma | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6224450 | Norton | May 2001 | B1 |
6271094 | Boyd et al. | Aug 2001 | B1 |
6295944 | Lovett | Oct 2001 | B1 |
6319021 | Billman | Nov 2001 | B1 |
6321126 | Kuzma | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6343233 | Werner et al. | Jan 2002 | B1 |
6364278 | Lin et al. | Apr 2002 | B1 |
6370434 | Zhang et al. | Apr 2002 | B1 |
6391985 | Goode et al. | May 2002 | B1 |
6397108 | Camps et al. | May 2002 | B1 |
6415168 | Putz | Jul 2002 | B1 |
6428336 | Akerfeldt | Aug 2002 | B1 |
6428368 | Hawkins et al. | Aug 2002 | B1 |
6430442 | Peters et al. | Aug 2002 | B1 |
6466824 | Struble | Oct 2002 | B1 |
6473654 | Chinn | Oct 2002 | B1 |
6498952 | Imani et al. | Dec 2002 | B2 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6556873 | Smits | Apr 2003 | B1 |
6564078 | Marino et al. | May 2003 | B1 |
6604283 | Kuzma | Aug 2003 | B1 |
6605094 | Mann et al. | Aug 2003 | B1 |
6609029 | Mann et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6654641 | Froberg | Nov 2003 | B1 |
6662035 | Sochor | Dec 2003 | B2 |
6663570 | Mott | Dec 2003 | B2 |
6671534 | Putz | Dec 2003 | B2 |
6671553 | Helland et al. | Dec 2003 | B1 |
6678564 | Ketterl et al. | Jan 2004 | B2 |
6725096 | Chinn et al. | Apr 2004 | B2 |
6741892 | Meadows et al. | May 2004 | B1 |
6757039 | Ma | Jun 2004 | B2 |
6757970 | Kuzma et al. | Jul 2004 | B1 |
6799991 | Williams et al. | Oct 2004 | B2 |
6805675 | Gardeski et al. | Oct 2004 | B1 |
6854994 | Stein et al. | Feb 2005 | B2 |
6878013 | Behan | Apr 2005 | B1 |
6895276 | Kast et al. | May 2005 | B2 |
6913478 | Lamrey | Jul 2005 | B2 |
6921295 | Sommer et al. | Jul 2005 | B2 |
6968235 | Belden et al. | Nov 2005 | B2 |
6980863 | van Venrooij et al. | Dec 2005 | B2 |
7027852 | Helland | Apr 2006 | B2 |
7047084 | Erickson et al. | May 2006 | B2 |
7058452 | Dahberg | Jun 2006 | B2 |
7069081 | Biggs et al. | Jun 2006 | B2 |
7083474 | Fleck et al. | Aug 2006 | B1 |
7108549 | Lyu et al. | Sep 2006 | B2 |
7110827 | Sage et al. | Sep 2006 | B2 |
7128600 | Osypka | Oct 2006 | B2 |
7155283 | Ries et al. | Dec 2006 | B2 |
7164951 | Ries et al. | Jan 2007 | B2 |
7168165 | Calzada et al. | Jan 2007 | B2 |
7191009 | Laske et al. | Mar 2007 | B2 |
7195523 | Naviaux | Mar 2007 | B2 |
7203548 | Whitehurst et al. | Apr 2007 | B2 |
7225034 | Ries et al. | May 2007 | B2 |
7231253 | Tidemand et al. | Jun 2007 | B2 |
7241180 | Rentas | Jul 2007 | B1 |
7242987 | Holleman et al. | Jul 2007 | B2 |
7244150 | Brase et al. | Jul 2007 | B1 |
7270568 | Osypka | Sep 2007 | B2 |
7283878 | Brostrom et al. | Oct 2007 | B2 |
7286882 | Cole | Oct 2007 | B2 |
7287995 | Stein et al. | Oct 2007 | B2 |
7292890 | Whitehurst et al. | Nov 2007 | B2 |
7396335 | Gardeski et al. | Jul 2008 | B2 |
7402083 | Kast et al. | Jul 2008 | B2 |
7422487 | Osypka | Sep 2008 | B2 |
7430958 | Wong | Oct 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7450997 | Pianca et al. | Nov 2008 | B1 |
7489971 | Franz | Feb 2009 | B1 |
7512446 | Honeck | Mar 2009 | B2 |
7516447 | Drew | Mar 2009 | B2 |
7526339 | Lahti et al. | Apr 2009 | B2 |
7539542 | Malinowski | May 2009 | B1 |
7548788 | Chinn et al. | Jun 2009 | B2 |
7554493 | Rahman | Jun 2009 | B1 |
7583999 | Bedenbaugh | Sep 2009 | B2 |
7585190 | Osypka | Sep 2009 | B2 |
7590451 | Tronnes et al. | Sep 2009 | B2 |
7650184 | Walter | Jan 2010 | B2 |
7668601 | Hegland et al. | Feb 2010 | B2 |
7672734 | Anderson et al. | Mar 2010 | B2 |
7736191 | Sochor | Jun 2010 | B1 |
7758384 | Alexander et al. | Jul 2010 | B2 |
7761165 | He et al. | Jul 2010 | B1 |
7761985 | Hegland et al. | Jul 2010 | B2 |
7783359 | Meadows | Aug 2010 | B2 |
7792590 | Pianca et al. | Sep 2010 | B1 |
7798864 | Barker et al. | Sep 2010 | B2 |
7803021 | Brase | Sep 2010 | B1 |
7809446 | Meadows | Oct 2010 | B2 |
7822477 | Rey et al. | Oct 2010 | B2 |
7822482 | Gerber | Oct 2010 | B2 |
7840188 | Kurokawa | Nov 2010 | B2 |
7848802 | Goetz | Dec 2010 | B2 |
7856707 | Cole | Dec 2010 | B2 |
7860570 | Whitehurst et al. | Dec 2010 | B2 |
7949395 | Kuzma | May 2011 | B2 |
7974705 | Zdeblick et al. | Jul 2011 | B2 |
7974706 | Moffitt et al. | Jul 2011 | B2 |
7979140 | Schulman | Jul 2011 | B2 |
8000808 | Hegland et al. | Aug 2011 | B2 |
8019440 | Kokones et al. | Sep 2011 | B2 |
8036755 | Franz | Oct 2011 | B2 |
8041309 | Kurokawa | Oct 2011 | B2 |
8046073 | Pianca | Oct 2011 | B1 |
8046074 | Barker | Oct 2011 | B2 |
8078280 | Sage | Dec 2011 | B2 |
8099177 | Dahlberg | Jan 2012 | B2 |
8100726 | Harlan et al. | Jan 2012 | B2 |
8140163 | Daglow et al. | Mar 2012 | B1 |
8167660 | Dilmaghanian et al. | May 2012 | B2 |
8175710 | He | May 2012 | B2 |
8190259 | Smith et al. | May 2012 | B1 |
8206180 | Kast et al. | Jun 2012 | B1 |
8224450 | Brase | Jul 2012 | B2 |
8225504 | Dye et al. | Jul 2012 | B2 |
8239042 | Chinn et al. | Aug 2012 | B2 |
8271094 | Moffitt et al. | Sep 2012 | B1 |
8295944 | Howard et al. | Oct 2012 | B2 |
8301255 | Barker | Oct 2012 | B2 |
8321025 | Bedenbaugh | Nov 2012 | B2 |
8342887 | Gleason et al. | Jan 2013 | B2 |
8359107 | Pianca et al. | Jan 2013 | B2 |
8364278 | Pianca et al. | Jan 2013 | B2 |
8391985 | McDonald | Mar 2013 | B2 |
8412330 | Kast et al. | Apr 2013 | B2 |
8527054 | North | Sep 2013 | B2 |
8583237 | Bedenbaugh | Nov 2013 | B2 |
8600507 | Brass et al. | Dec 2013 | B2 |
8682439 | DeRohan et al. | Mar 2014 | B2 |
8688235 | Pianca et al. | Apr 2014 | B1 |
8784143 | Edgell et al. | Jul 2014 | B2 |
8831742 | Pianca et al. | Sep 2014 | B2 |
8849396 | DeRohan et al. | Sep 2014 | B2 |
8849415 | Bedenbaugh | Sep 2014 | B2 |
8897876 | Sundaramurthy et al. | Nov 2014 | B2 |
8897891 | Romero | Nov 2014 | B2 |
8968331 | Sochor | Mar 2015 | B1 |
9101775 | Barker | Aug 2015 | B2 |
9149630 | Howard et al. | Oct 2015 | B2 |
9162048 | Romero et al. | Oct 2015 | B2 |
9234591 | Dilmaghanian et al. | Jan 2016 | B2 |
9270070 | Pianca | Feb 2016 | B2 |
9289596 | Leven | Mar 2016 | B2 |
9352147 | Nguyen-stella et al. | May 2016 | B2 |
9381348 | Romero et al. | Jul 2016 | B2 |
9403022 | Ries et al. | Aug 2016 | B2 |
9409032 | Brase et al. | Aug 2016 | B2 |
9440066 | Black | Sep 2016 | B2 |
9498618 | Stetson et al. | Nov 2016 | B2 |
9498620 | Romero et al. | Nov 2016 | B2 |
9504839 | Leven | Nov 2016 | B2 |
9604068 | Malinowski | Mar 2017 | B2 |
9656093 | Villarta et al. | May 2017 | B2 |
9770598 | Malinowski et al. | Sep 2017 | B2 |
9855413 | Vadlamudi et al. | Jan 2018 | B2 |
20010023368 | Black et al. | Sep 2001 | A1 |
20020143376 | Chinn et al. | Oct 2002 | A1 |
20020156513 | Borkan | Oct 2002 | A1 |
20020183817 | Van Venrooij et al. | Dec 2002 | A1 |
20030163171 | Kast et al. | Aug 2003 | A1 |
20040064164 | Ries et al. | Apr 2004 | A1 |
20040230268 | Huff et al. | Nov 2004 | A1 |
20040260373 | Ries et al. | Dec 2004 | A1 |
20050015130 | Gill | Jan 2005 | A1 |
20050027326 | Ries et al. | Feb 2005 | A1 |
20050027327 | Ries et al. | Feb 2005 | A1 |
20050038489 | Grill | Feb 2005 | A1 |
20050043770 | Hine et al. | Feb 2005 | A1 |
20050043771 | Sommer et al. | Feb 2005 | A1 |
20050137665 | Cole | Jun 2005 | A1 |
20050171587 | Daglow et al. | Aug 2005 | A1 |
20050186829 | Balsells | Aug 2005 | A1 |
20050272280 | Osypka | Dec 2005 | A1 |
20060015163 | Brown | Jan 2006 | A1 |
20060025841 | McIntyre | Feb 2006 | A1 |
20060030918 | Chinn | Feb 2006 | A1 |
20060167522 | Malinowski | Jul 2006 | A1 |
20060224208 | Naviaux | Oct 2006 | A1 |
20060247697 | Sharma et al. | Nov 2006 | A1 |
20060247749 | Colvin | Nov 2006 | A1 |
20060259106 | Arnholdt et al. | Nov 2006 | A1 |
20070042648 | Balsells | Feb 2007 | A1 |
20070142889 | Whitehurst et al. | Jun 2007 | A1 |
20070150036 | Anderson | Jun 2007 | A1 |
20070161294 | Brase et al. | Jul 2007 | A1 |
20070168007 | Kuzma et al. | Jul 2007 | A1 |
20070203546 | Stone et al. | Aug 2007 | A1 |
20070219551 | Honour et al. | Sep 2007 | A1 |
20080077186 | Thompson et al. | Mar 2008 | A1 |
20080103580 | Gerber | May 2008 | A1 |
20080114230 | Addis | May 2008 | A1 |
20080139031 | Ries et al. | Jun 2008 | A1 |
20080177167 | Janzig et al. | Jul 2008 | A1 |
20080208277 | Janzig et al. | Aug 2008 | A1 |
20080208278 | Janzig et al. | Aug 2008 | A1 |
20080208279 | Janzig et al. | Aug 2008 | A1 |
20080215125 | Farah et al. | Sep 2008 | A1 |
20080255647 | Jensen et al. | Oct 2008 | A1 |
20080274651 | Boyd et al. | Nov 2008 | A1 |
20090054941 | Eggen et al. | Feb 2009 | A1 |
20090187222 | Barker | Jul 2009 | A1 |
20090204192 | Carlton et al. | Aug 2009 | A1 |
20090264943 | Barker | Oct 2009 | A1 |
20090276021 | Meadows et al. | Nov 2009 | A1 |
20090287191 | Ferren et al. | Nov 2009 | A1 |
20100029127 | Sjostedt | Feb 2010 | A1 |
20100030298 | Martens et al. | Feb 2010 | A1 |
20100036468 | Decre et al. | Feb 2010 | A1 |
20100057176 | Barker | Mar 2010 | A1 |
20100070012 | Chinn et al. | Mar 2010 | A1 |
20100076535 | Pianca et al. | Mar 2010 | A1 |
20100077606 | Black et al. | Apr 2010 | A1 |
20100082076 | Lee et al. | Apr 2010 | A1 |
20100094387 | Pianca et al. | Apr 2010 | A1 |
20100100152 | Martens et al. | Apr 2010 | A1 |
20100268298 | Moffitt et al. | Oct 2010 | A1 |
20100269338 | Dye | Oct 2010 | A1 |
20100269339 | Dye et al. | Oct 2010 | A1 |
20100287770 | Dadd et al. | Nov 2010 | A1 |
20110004267 | Meadows | Jan 2011 | A1 |
20110005069 | Pianca | Jan 2011 | A1 |
20110022100 | Brase et al. | Jan 2011 | A1 |
20110047795 | Turner et al. | Mar 2011 | A1 |
20110056076 | Hegland et al. | Mar 2011 | A1 |
20110077699 | Swanson et al. | Mar 2011 | A1 |
20110078900 | Pianca et al. | Apr 2011 | A1 |
20110130803 | McDonald | Jun 2011 | A1 |
20110130816 | Howard et al. | Jun 2011 | A1 |
20110130817 | Chen | Jun 2011 | A1 |
20110130818 | Chen | Jun 2011 | A1 |
20110131808 | Gill | Jun 2011 | A1 |
20110184480 | Kast et al. | Jul 2011 | A1 |
20110238129 | Moffitt et al. | Sep 2011 | A1 |
20110245903 | Schulte et al. | Oct 2011 | A1 |
20110270330 | Janzig et al. | Nov 2011 | A1 |
20110301665 | Mercanzini et al. | Dec 2011 | A1 |
20110313500 | Barker et al. | Dec 2011 | A1 |
20120016378 | Pianca et al. | Jan 2012 | A1 |
20120046710 | DiGiore et al. | Feb 2012 | A1 |
20120053646 | Brase et al. | Mar 2012 | A1 |
20120071937 | Sundaramurthy et al. | Mar 2012 | A1 |
20120071949 | Pianca et al. | Mar 2012 | A1 |
20120165911 | Pianca | Jun 2012 | A1 |
20120185019 | Schramm et al. | Jul 2012 | A1 |
20120197375 | Pianca et al. | Aug 2012 | A1 |
20120203302 | Moffit et al. | Aug 2012 | A1 |
20120203316 | Moffitt et al. | Aug 2012 | A1 |
20120203320 | DiGiore et al. | Aug 2012 | A1 |
20120203321 | Moffitt et al. | Aug 2012 | A1 |
20120232603 | Sage | Sep 2012 | A1 |
20120253443 | Dilmaghanian et al. | Oct 2012 | A1 |
20120259386 | DeRohan et al. | Oct 2012 | A1 |
20120316615 | DiGiore et al. | Dec 2012 | A1 |
20130053864 | Geroy et al. | Feb 2013 | A1 |
20130098678 | Barker | Apr 2013 | A1 |
20130105071 | DiGiore et al. | May 2013 | A1 |
20130109254 | Klardie et al. | May 2013 | A1 |
20130116754 | Sharma et al. | May 2013 | A1 |
20130149031 | Changsrivong et al. | Jun 2013 | A1 |
20130197424 | Bedenbaugh | Aug 2013 | A1 |
20130197602 | Pianca et al. | Aug 2013 | A1 |
20130197603 | Eiger | Aug 2013 | A1 |
20130218154 | Carbunaru | Aug 2013 | A1 |
20130261684 | Howard | Oct 2013 | A1 |
20130288501 | Russell et al. | Oct 2013 | A1 |
20130304140 | Derohan et al. | Nov 2013 | A1 |
20130317587 | Barker | Nov 2013 | A1 |
20130325091 | Pianca et al. | Dec 2013 | A1 |
20140039587 | Romero | Feb 2014 | A1 |
20140088666 | Goetz et al. | Mar 2014 | A1 |
20140142671 | Moffitt et al. | May 2014 | A1 |
20140148885 | DeRohan et al. | May 2014 | A1 |
20140180375 | Pianca et al. | Jun 2014 | A1 |
20140353001 | Romero et al. | Dec 2014 | A1 |
20140358207 | Romero | Dec 2014 | A1 |
20140358208 | Howard et al. | Dec 2014 | A1 |
20140358209 | Romero et al. | Dec 2014 | A1 |
20140358210 | Howard et al. | Dec 2014 | A1 |
20150018915 | Leven | Jan 2015 | A1 |
20150021817 | Romero et al. | Jan 2015 | A1 |
20150025609 | Govea | Jan 2015 | A1 |
20150045864 | Howard | Feb 2015 | A1 |
20150066120 | Govea | Mar 2015 | A1 |
20150119965 | Govea | Apr 2015 | A1 |
20150151113 | Govea et al. | Jun 2015 | A1 |
20150209575 | Black | Jul 2015 | A1 |
20150360023 | Howard et al. | Dec 2015 | A1 |
20150374978 | Howard et al. | Dec 2015 | A1 |
20160059019 | Malinowski et al. | Mar 2016 | A1 |
20160129242 | Malinowski | May 2016 | A1 |
20160129265 | Malinowski | May 2016 | A1 |
20160158558 | Shanahan et al. | Jun 2016 | A1 |
20160206891 | Howard et al. | Jul 2016 | A1 |
20160228692 | Steinke et al. | Aug 2016 | A1 |
20160296745 | Govea et al. | Oct 2016 | A1 |
20160375238 | Leven et al. | Dec 2016 | A1 |
20170072187 | Howard et al. | Mar 2017 | A1 |
20170143978 | Barker | May 2017 | A1 |
20170203104 | Nageri et al. | Jul 2017 | A1 |
20170333702 | Barner | Nov 2017 | A1 |
20170361108 | Leven | Dec 2017 | A1 |
20180008832 | Leven | Jan 2018 | A1 |
20180028820 | Nageri | Feb 2018 | A1 |
20180093098 | Nageri et al. | Apr 2018 | A1 |
20180243570 | Malinowski et al. | Aug 2018 | A1 |
20180289968 | Lopez | Oct 2018 | A1 |
20180369596 | Funderburk | Dec 2018 | A1 |
20190030345 | Funderburk | Jan 2019 | A1 |
20190103696 | Conger | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
0580928 | Feb 1994 | EP |
0650694 | Jul 1998 | EP |
0832667 | Feb 2004 | EP |
1181947 | Jan 2006 | EP |
1625875 | Feb 2006 | EP |
2092952 | Aug 2009 | EP |
1997032628 | Sep 1997 | WO |
1999055411 | Feb 2000 | WO |
2000038574 | Jul 2000 | WO |
2001058520 | Aug 2001 | WO |
2002068042 | Sep 2002 | WO |
2004045707 | Jun 2004 | WO |
2008018067 | Feb 2008 | WO |
2008053789 | May 2008 | WO |
2008100841 | Aug 2008 | WO |
2009025816 | Feb 2009 | WO |
2009102536 | Aug 2009 | WO |
2009148939 | Dec 2009 | WO |
2013162775 | Oct 2013 | WO |
2014018092 | Jan 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20190217103 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62617990 | Jan 2018 | US |