The technical field generally relates to connector assemblies, and more particularly relates to connector assemblies used for the transmission of electromagnetic waves.
Some antennas for transmitting and receiving electromagnetic waves are configured as thin film antennas. A thin film antenna includes a thin substrate material, (for example, plastic), which bonds with and supports a thin layer of metallization (for example, metalized copper). Thin film antennas may be attached to surfaces without significantly altering the profile of the surface. Additionally, thin film antennas may be relatively flexible and, for this reason, may be easily attached to curved or contoured surfaces in a conformal manner. Furthermore, depending on the amount of metallization, thin film antennas may also be transparent and, for this reason, may be more esthetically pleasing than traditional antennas.
Thin film antennas, such as those disclosed in U.S. Pat. No. 7,427,961, may include a coplanar waveguide to guide the electromagnetic waves to and from the thin film antenna. Coplanar waveguides typically are contiguous with the thin film antenna and are constructed of the same materials.
Currently, many applications that utilize conventional antennas also utilize waveguides, such as a coaxial cable, to transmit electromagnetic waves between the conventional antenna and a receiver. Coaxial cables are typically mechanically connected or soldered to the leads extending from a conventional antenna. Attaching a coaxial cable directly to the coplanar waveguide of a thin film antenna in this manner, however, may be impracticable. This is because the substrate of the coplanar waveguide may not be structurally robust enough to support a mechanical fastener and the application of molten solder may melt or otherwise damage the coplanar waveguide.
Accordingly, it is desirable to connect a conventional waveguide, such as a coaxial cable, to a coplanar waveguide in a manner that provides a robust attachment and that does not significantly alter the coplanar waveguide. Furthermore, it is desirable that this connection have low insertion loss over the entire bandwidth of the antenna, and that the fabrication tolerances be achievable. These and other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
Apparatuses and methods are provided herein for connector assemblies. In a first non-limiting example, a connector assembly includes, but is not limited to a body having a top side and a bottom side. A bottom signal plate is connected to the bottom side. The bottom signal plate is configured for capacitive coupling to a conductor of a coplanar waveguide. A bottom grounding plate is connected to the bottom side and spaced apart from the bottom signal plate. The bottom grounding plate is configured for capacitive coupling to a grounding plane of the coplanar waveguide. A first electrically conductive pathway is electrically connected to the bottom signal plate and extends to the top side. A second electrically conductive pathway is electrically connected to the bottom grounding plate and extends to the top side. A dielectric adhesive at least partially covers a bottom portion of the connector assembly.
In a second non-limiting example, a connecting arrangement includes, but is not limited to a coplanar waveguide having a center conductor and a grounding plane and a connector assembly connected to the coplanar waveguide. The connector assembly includes, but is not limited to, a body having a top side and a bottom side. A bottom signal plate is connected to the bottom side. A bottom grounding plate is connected to the bottom side and is spaced apart from the bottom signal plate. A first electrically conductive pathway is electrically connected to the bottom signal plate and extends to the top side. A second electrically conductive pathway is electrically connected to the bottom grounding plate and extends to the top side. A dielectric adhesive at least partially covers a bottom portion of the connector assembly. In this second non-limiting example, the bottom conducting plate is capacitively coupled with the center conductor, the bottom grounding plate is capacitively coupled with the grounding plane, and the dielectric adhesive adheres the connector assembly to the coplanar waveguide.
In a third non-limiting example, a method of assembly that utilizes the connector assembly is provided. The method includes, but is not limited to the following steps. A coplanar waveguide is provided having a center conductor and a grounding plane. A connector assembly is also provided. The connector assembly includes, but is not limited to, a body having a top side and a bottom side, a bottom signal plate that is connected to the bottom side, a bottom grounding plate that is connected to the bottom side and spaced apart from the bottom signal plate, a first electrically conductive pathway that is electrically connected to the bottom signal plate and extends to the top side, a second electrically conductive pathway that is electrically connected to the bottom grounding plate and extends to the top side, and a dielectric adhesive that at least partially covers a bottom portion of the connector assembly. The connector assembly is aligned with the coplanar waveguide such that the bottom signal plate aligns with the center conductor and such that the bottom grounding plate aligns with the grounding plane. The connector assembly and the coplanar waveguide are pressed together such that the dielectric adhesive adheres the connector assembly to the coplanar waveguide.
One or more embodiments will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements throughout the drawing figures and may not be described in detail for all drawing figures in which they appear, and
The following detailed description is merely exemplary in nature and is not intended to limit application and uses. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Disclosed herein is a connector assembly that is attached to the coplanar waveguide by a thin layer of a dielectric adhesive. Although the dielectric adhesive will electrically insulate the coplanar waveguide from the connector assembly, when the dielectric adhesive is applied in layers that are sufficiently thin, the connector assembly can, nevertheless, receive and convey the electromagnetic wave from the coplanar waveguide through capacitive coupling between the connector assembly and the coplanar waveguide.
In a non-limiting example, the connector assembly includes a body, such as a printed circuit board, that serves as a platform for mounting additional components. Although the discussion contained herein centers around the use of a printed circuit board to serve as the body, it should be understood that any component made of a dielectric material may alternatively be employed to serve as the body. The bottom side of the body is adhered to the coplanar waveguide by the adhesive while the top side of the body may be configured to receive a conventional waveguide such as a coaxial cable.
The body includes first and second spaced apart electrically conductive pathways. The first and the second electrically conductive pathways extend from the bottom side to the top side of the body. In one non-limiting example, the first and the second electrically conductive pathways may be via holes. As used herein, the term “via hole” refers to a hole through the body having internal walls that are coated with a metal or other electrically conductive material. The holes may be drilled, bored, integrally molded or otherwise formed through the body. The walls of the holes may be coated with the electrically conductive material through a metal plating process, through a vacuum metallization process, or through any other process effective for coating the walls with an electrically conductive material. In other examples, the first and the second electrically conductive pathways may include electrical conductors that are embedded within the body, or which are otherwise disposed within holes extending from the top side to the bottom side.
The connector assembly may also include a bottom signal plate that is connected to the bottom side of the body and that is electrically connected to the first electrically conductive pathway. The bottom conductor may be configured and dimensioned so as to facilitate capacitive coupling with the coplanar waveguide. For example, the bottom signal plate may have a periphery that has a smaller footprint than a center conductor of the coplanar waveguide. Additionally, the bottom signal plate may have a very thin profile. In some examples, the thickness of the bottom signal plate may be between 0.001 and 0.5 mm. In other examples, the thickness of the bottom signal plate may be between 0.005 and 0.1 mm. In still other examples, the thickness of the bottom signal plate may be between 0.01 to 0.05 mm. In still other examples, the bottom signal plate may have any other desirable or suitable thickness.
In some examples, a microstrip may be attached to the top side of the body. As used herein, the term “microstrip” refers to a type of transmission line which can be fabricated using printed circuit board technology and which is used as a waveguide to convey signals. Microstrips are commonly used on printed circuit boards for conveying digital signals, as well as analog signals from 0 Hz to more than 50 GHz. The microstrip is electrically connected to the first electrically conductive pathway and is therefore electrically connected to the bottom signal plate.
A bottom grounding plate may be connected to the bottom side of the body and positioned in a spaced apart relationship with the bottom signal plate. The bottom grounding plate may be configured to facilitate capacitive coupling with a grounding plane of the coplanar waveguide. For example, the bottom grounding plate may have a footprint that permits alignment with the grounding plane of the coplanar waveguide without crossing over a gap that separates the grounding plane from the center conductor of the coplanar waveguide. Further, the bottom grounding plate may have a relatively thin profile. In some examples, the thickness of the bottom grounding plate may be between 0.001 and 0.5 mm. In other examples, the thickness of the bottom grounding plate may be between 0.005 and 0.1 mm. In still other examples, the thickness of the bottom grounding plate may be between 0.01 to 0.05 mm. In still other examples, the bottom grounding plate may have any other desirable or suitable thickness. Additionally, the bottom grounding plate is positioned on the bottom side of the body to electrically connect with the second electrically conductive pathway.
A top grounding plate may be positioned on the top side of the body in a spaced apart relationship with the microstrip. The top grounding plate is electrically connected to the second electrically conductive pathway and therefore is electrically connected to the bottom grounding plate.
The top and bottom grounding plates, the microstrip, and the bottom signal plate may be made of any suitable electrically conductive material. In some examples, these components may be made of copper. In other examples, these components may be made of copper having a surface finish such as Electroless Nickel, Immersion Gold, or solder finish to ease the soldering process. In other examples, gold and brass may be utilized. In still other examples, any conducting material to which a coaxial cable can be both electrically connected and mechanically connected may be utilized.
The dielectric adhesive at least partially covers a bottom portion of the connector assembly. In some examples, the dielectric adhesive may either cover or at least partially cover a bottom portion of the bottom signal plate. In other examples, the dielectric adhesive may cover or at least partially cover a bottom portion of the bottom grounding plate. In still other examples, the dielectric adhesive may at least partially cover bottom or may entirely cover bottom portions of both the bottom signal plate and the bottom grounding plate. The dielectric adhesive may be applied using a transfer tape that has a removable backing which is removed at the time that the connector assembly is assembled to the coplanar waveguide. The dielectric adhesive may be relatively thin which may facilitate capacitive coupling between the connector assembly and the coplanar waveguide. In some examples, the layer of dielectric adhesive may have a thickness of 0.002 inches. While a suitable thickness of the dielectric adhesive will vary with the frequency of operation of the connector assembly, the size of the plates and the dielectric constant of the adhesive, the dielectric layer is preferably thick enough to provide a secure mechanical bond and thin enough to enable capacitive coupling.
A connecting arrangement may be formed between the connector assembly and the coplanar waveguide using the dielectric adhesive. The connector assembly may be positioned adjacent the coplanar waveguide such that the bottom signal plate aligns with the center conductor of the coplanar waveguide and such that the grounding plane of the connector assembly aligns with the grounding plane of the coplanar waveguide. With the connector assembly and the coplanar waveguide arranged in this manner, the connector assembly may be pressed onto the coplanar waveguide and will thereafter be held in position with respect to the coplanar waveguide by the dielectric adhesive which may provide a relatively robust connection.
A waveguide or transmission line may also be attached to the connector assembly. In one non-limiting example, a coaxial cable having an outer grounding shield (hereinafter “grounding shield”) and an internal central conductor (hereinafter “central conductor”) may be connected to the top side of the body. The coaxial cable may be positioned on the connector assembly such that the grounding shield is electrically connected to the top grounding plate and such that the central conductor is electrically connected to the microstrip. The coaxial cable may then be attached to the connector assembly through the use of solder, conductive epoxy, a mechanical fastener or in any other way effective to maintain the electrical connection between the respective grounding portions and the respective signal portions of the coaxial cable and the connector assembly.
In the arrangement described above, the bottom signal plate serves to capacitively couple the center conductor of the coplanar waveguide with the microstrip. By virtue of the capacitive coupling, the microstrip can receive the transmission of an electromagnetic signal from the coplanar waveguide. The microstrip, in turn, conveys the signal to the central conductor of the coaxial cable. Those skilled in the art recognize that loss of signal strength is minimized when the length and characteristic impedance of the microstrip is chosen appropriately in order to impedance match the coplanar waveguide to the coaxial cable. In some examples, it may be desirable to ensure that the transitions between all of the different types of transmission lines (e.g., coplanar waveguide to microstrip; microstrip to coaxial cable, etc. . . . ) are small by comparison with the wavelength of the signal that the transmission line conveys. This may help to prevent parasitic impedances which can cause reflections and/or radiation loss which, in turn, may cause loss of signal strength or decrease in bandwidth. In some examples, wideband low-loss performance is achieved by designing the characteristic impedances of the microstrip and CPW to be substantially the same as that of the coax. In one example in particular, an insertion loss of less than 0.5 dB is achieved over the entire frequency range of 0.9 GHz to 2.4 GHz with a tolerance for alignment errors of a least ±0.08 inches in any direction.
A greater understanding of the examples of the apparatus disclosed herein may be obtained through a review of the illustrations accompanying this application together with a review of the detailed description that follows.
With reference to
Vehicle 12 may be any type of mobile vehicle such as a motorcycle, car, truck, recreational vehicle (RV), boat, plane, etc., and is equipped with suitable hardware and software that enables it to communicate over communication system 10. Some of the vehicle hardware 20 is shown generally in
The telematics unit 24 is an onboard device that provides a variety of services through its communication with the call center 18, and generally includes an electronic processing device 38, one or more types of electronic memory 40, a cellular chipset/component 34, a wireless modem 36, a dual mode antenna 70, and a navigation unit containing a GPS chipset/component 42. In one example, the wireless modem 36 includes a computer program and/or set of software routines adapted to be executed within electronic processing device 38.
The telematics unit 24 may provide various services including: turn-by-turn directions and other navigation-related services provided in conjunction with the GPS based chipset/component 42; airbag deployment notification and other emergency or roadside assistance-related services provided in connection with various crash and/or collision detection sensor interface modules 66 and collision sensors 68 located throughout the vehicle; and/or infotainment-related services where music, Internet web pages, movies, television programs, videogames, and/or other content are downloaded by an infotainment center 46 operatively connected to the telematics unit 24 via vehicle bus 32 and audio bus 22. In one example, downloaded content is stored for current or later playback. The above-listed services are by no means an exhaustive list of all the capabilities of telematics unit 24, but are simply an illustration of some of the services that the telematics unit may be capable of offering. It is anticipated that telematics unit 24 may include a number of additional components in addition to and/or different components from those listed above.
Vehicle communications may use radio transmissions to establish a voice channel with wireless carrier system 14 so that both voice and data transmissions can be sent and received over the voice channel. Vehicle communications are enabled via the cellular chipset/component 34 for voice communications and the wireless modem 36 for data transmission. In order to enable successful data transmission over the voice channel, wireless modem 36 applies some type of encoding or modulation to convert the digital data so that it can be communicated through a vocoder or speech codec incorporated in the cellular chipset/component 34. Any suitable encoding or modulation technique that provides an acceptable data rate and bit error can be used with the present examples. Dual mode antenna 70 services the GPS based chipset/component 42 and the cellular chipset/component 34.
Microphone 26 provides the driver or other vehicle occupant with a means for inputting verbal or other auditory commands, and can be equipped with an embedded voice processing unit utilizing a human/machine interface (HMI) technology known in the art. Conversely, speaker 28 provides audible output to the vehicle occupants and can be either a stand-alone speaker specifically dedicated for use with the telematics unit 24 or can be part of a vehicle audio component 64. In either event, microphone 26 and speaker 28 enable vehicle hardware 20 and call center 18 to communicate with the occupants through audible speech. The vehicle hardware also includes one or more buttons and/or controls 30 for enabling a vehicle occupant to activate or engage one or more components of the vehicle hardware 20. For example, one of the buttons and/or controls 30 can be an electronic pushbutton used to initiate voice communication with call center 18 (whether it be a human such as advisor 58 or an automated call response system). In another example, one of the buttons and/or controls 30 can be used to initiate emergency services.
The vehicle audio component 64 is operatively connected to the vehicle bus 32 and the audio bus 22. The vehicle audio component 64 receives analog information, rendering it as sound, via the audio bus 22. Digital information is received via the vehicle bus 32. The vehicle audio component 64 provides amplitude modulated (AM) and frequency modulated (FM) radio, compact disc (CD), digital video disc (DVD), and multimedia functionality independent of the infotainment center 46. Vehicle audio component 64 may contain a speaker system, or may utilize speaker 28 via arbitration on vehicle bus 32 and/or audio bus 22.
The vehicle crash and/or collision detection sensor interface modules 66 is operatively connected to the vehicle bus 32. The collision sensors 68 provide information to the telematics unit via the crash and/or collision detection sensor interface modules 66 regarding the severity of a vehicle collision, such as the angle of impact and the amount of force sustained.
Vehicle sensors 72, connected to various sensor interface modules 44 are operatively connected to the vehicle bus 32. Example vehicle sensors include but are not limited to gyroscopes, accelerometers, magnetometers, emission detection, and/or control sensors, and the like. Example sensor interface modules 44 include powertrain control, climate control, and body control, to name but a few.
Wireless carrier system 14 may be a cellular telephone system or any other suitable wireless system that transmits signals between the vehicle hardware 20 and land line network 16. According to an example, wireless carrier system 14 includes one or more cell towers 48, base stations and/or mobile switching centers (MSCs) 50, as well as any other networking components required to connect the wireless carrier system 14 with land network 16. As appreciated by those skilled in the art, various cell tower/base station/MSC arrangements are possible and could be used with wireless carrier system 14. For example, a base station and a cell tower could be co-located at the same site or they could be remotely located, and a single base station could be coupled to various cell towers or various base stations could be coupled with a single MSC, to list but a few of the possible arrangements. A speech codec or vocoder may be incorporated in one or more of the base stations, but depending on the particular architecture of the wireless network, it could be incorporated within a Mobile Switching Center or some other network components as well.
Land line network 16 can be a conventional land-based telecommunications network that is connected to one or more landline telephones, and that connects wireless carrier system 14 to call center 18. For example, land line network 16 can include a public switched telephone network (PSTN) and/or an Internet protocol (IP) network, as is appreciated by those skilled in the art. Of course, one or more segments of the land line network 16 can be implemented in the form of a standard wired network, a fiber or other optical network, a cable network, other wireless networks such as wireless local networks (WLANs) or networks providing broadband wireless access (BWA), or any combination thereof.
Call center 18 is designed to provide the vehicle hardware 20 with a number of different system back-end functions and, according to the example shown here, generally includes one or more switches 52, servers 54, databases 56, advisors 58, as well as a variety of other telecommunication/computer equipment 60. These various call center components are suitably coupled to one another via a network connection or bus 62, such as the one previously described in connection with the vehicle hardware 20. Switch 52, which can be a private branch exchange (PBX) switch, routes incoming signals so that voice transmissions are usually sent to either the live advisor 58 or an automated response system, and data transmissions are passed on to a modem or other piece of telecommunication/computer equipment 60 for demodulation and further signal processing. The telecommunication/computer equipment 60 may include an encoder, as previously explained, and can be connected to various devices such as a server 54 and database 56. For example, database 56 could be designed to store subscriber profile records, subscriber behavioral patterns, or any other pertinent subscriber information. Although the illustrated example has been described as it would be used in conjunction with a manned call center 18, it will be appreciated that the call center 18 can be any central or remote facility, manned or unmanned, mobile or fixed, to or from which it is desirable to exchange voice and data.
With respect to
As depicted in
Telematics unit 24 communicates with external entities by transmitting signal through, and by receiving signals with, dual mode antenna 70. In the illustrated example depicted in
With respect to
Connector assembly 82 is best seen in
Body 88 includes a plurality of via holes 94 (see
As depicted in
Microstrip 100 is positioned over the via holes 94 that comprise the first electrically conductive pathway 96 and is electrically connected to the via holes 94 of the first electrically conductive pathway 96. In some examples, microstrip 100 is positioned on body 88 before via holes 94 are drilled such that the drilling also forms holes 102 in microstrip 100.
A bottom signal plate 104 (
Bottom signal plate 104 may be constructed from any suitable conductive material, for example, copper and may have any suitable configuration. Configuring bottom signal plate 104 in the form of a relatively thin plate may be beneficial in that the thinner bottom signal plate 104 is, the closer connector assembly 82 comes to being planar, as is seen in
Bottom signal plate 104 is positioned on bottom side 92 so as to be aligned over via holes 94 of first electrically conductive pathway 96. In some examples, bottom signal plate 104 is positioned on body 88 before via holes 94 are drilled such that the drilling also forms holes 106 (
A top grounding plate 108 (
Top grounding plate 108 may be constructed from any suitable conductive material, for example, copper and may have any suitable configuration. Configuring top grounding plate 108 in the form of a relatively thin plate extends its conductive surface area and contributes to maintaining an overall thin profile of connector assembly 82. In the illustrated example depicted in
Top grounding plate 108 is aligned over via holes 94 of second electrically conductive pathway 98 and is electrically connected to the via holes 94 of the second electrically conductive pathway 98. In some examples, top grounding plate 108 is positioned on body 88 before via holes 94 are drilled such that the drilling also forms holes 110 (
A bottom grounding plate 112 (
Bottom grounding plate 112 may be constructed from any suitable conductive material, for example, copper and may have any suitable configuration. Configuring bottom grounding plate 112 in the form of a relatively thin plate may be beneficial in that the thinner bottom grounding plate 112 is, the closer connector assembly 82 comes to being planar, as is seen in
Bottom grounding plate 112 is positioned on bottom side 92 so as to be aligned over via holes 94 of second electrically conductive pathway 98 and is electrically connected to the via holes 94 of the second electrically conductive pathway 98. In some examples, bottom grounding plate 112 is positioned on body 88 before via holes 94 are drilled such that the drilling also forms holes 114 (
Coplanar waveguide 86, as best seen in
As depicted in
When connector assembly 82 is placed over coplanar waveguide 86 for attachment, connector assembly 82 is positioned such that bottom signal plate 104 aligns with widened end 124 of center conductor 116 and such that bottom grounding plate 112 aligns with grounding plane 118.
A dielectric adhesive 126 (
As depicted in
When a signal is received by dual mode antenna 70 (
With respect to
Two microstrip lines 150 extend from circuit 148 to two top grounding plates 152. Each of the two top grounding plates 152 are electrically connected to bottom grounding plate 112 (not shown in
In the illustrated example, a third microstrip line 154 extends from circuit 148 to and edge of body 88. Microstrip line 154 permits a power line and/or a control line to be connected to connector assembly 146. Additionally as depicted in
With respect to
At step 138, a coaxial cable is provided. In other examples, rather than using a coaxial cable, other types of waveguides and/or transmission lines may be employed. At step 140, the coaxial cable is connected to connector assembly 82. In some examples, this may be accomplished by soldering the coaxial cable to connector assembly 82. In other examples, connector assembly 82 may include terminal 132 (
At step 142, connector assembly 82 is aligned with coplanar waveguide 86 such that bottom signal plate 104 is aligned with center conductor 116 and such that bottom grounding plate 112 is aligned with grounding plane 118. In examples of coplanar waveguide 86 where gap 120 forms a loop having widened end 124 as depicted in
At step 144, connector assembly 82 is attached to coplanar waveguide 86 by pressing the two components together. This allows dielectric adhesive 126 to contact coplanar waveguide and to adhere thereto. In examples where dielectric adhesive 126 includes a backing layer, that layer would first need to be removed. This may be done either at step 142 or at step 144, or at any other suitable time. In examples where terminal 132 is utilized, it may be desirable to perform steps 142 and 144 prior to attaching the coaxial cable.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope as set forth in the appended claims and the legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
5543386 | Findikoglu et al. | Aug 1996 | A |
5631446 | Quan | May 1997 | A |
5973648 | Lindenmeier et al. | Oct 1999 | A |
6032054 | Schwinke | Feb 2000 | A |
6211831 | Nagy et al. | Apr 2001 | B1 |
6366249 | Jones et al. | Apr 2002 | B1 |
6417747 | Dearden et al. | Jul 2002 | B1 |
6617943 | Fazelpour | Sep 2003 | B1 |
6728113 | Knight et al. | Apr 2004 | B1 |
6795741 | Simon | Sep 2004 | B2 |
6847276 | Tamaki et al. | Jan 2005 | B2 |
6853337 | Barabash | Feb 2005 | B2 |
6861991 | Mueller et al. | Mar 2005 | B2 |
7015860 | Alsliety | Mar 2006 | B2 |
7053845 | Holloway et al. | May 2006 | B1 |
7233296 | Song et al. | Jun 2007 | B2 |
7342547 | Maniwa et al. | Mar 2008 | B2 |
7427961 | Song et al. | Sep 2008 | B2 |
20030103010 | Boyle | Jun 2003 | A1 |
20100164790 | Wisnewski et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20110121924 A1 | May 2011 | US |