This application claims the benefit under 35 U.S.C. §119(a) of patent application Ser. No. 14/190,516.6 filed in the European Patent Office (EPO) on Oct. 27, 2014, the entire disclosure of which is hereby incorporated by reference.
The present invention relates to an electrical connector assembly with a secondary locking device, and in particular wherein the electrical connector assembly allows for direct mating and unmating of a plug connector to a corresponding counter connector.
The safe coupling of connectors is of high importance for many applications. For example, modern passenger cars comprise a variety of different electrical connections. For ensuring that connectors mated with a corresponding counter connector cannot become loose unintentionally, secondary locking members are known in the art to guarantee a safe mechanical coupling between the connector and counter connector.
Further on, it is also desirable to indicate, either visually or physically, that a plug connector has been fully and properly mated with a corresponding counter connector during the assembly procedure for allowing a “fool proof” assembly. In order to reduce the risk associated with improperly mated connectors, so-called connector position assurance (CPA) devices have been developed. Such CPA devices are separate elements, which can be inserted into a connector housing of a plug connector and are often provided in a different color. When the connector is not properly or fully coupled to its corresponding counting connector, the CPA device cannot be fully inserted into the connector housing. Accordingly, the CPA device protrudes from the connector, indicating that full mating has not been accomplished yet. Only upon full and proper mating of the connector with the counter connector it is possibly to fully insert the CPA device into the connector housing. This allows to visually indicating whether the plug connector has been properly and correctly mated with the counter connector. Often, the functionalities of CPA devices and secondary locking devices are integrated in one part.
Accordingly, the commonly used mating procedure requires several steps. The connector has to be mated with a counter connector, and also locked thereto. Further, a secondary lock has to be closed and/or a CPA device has to be inserted to assure the proper mating. However, in modern manufacturing sites, it is often desired that a plug connector is mated with a counter connector in a fast and secure manner. This need arises among others for ergonomic reasons. Hence, it is desired that the mating procedure can be accomplished with a minimal number of steps.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
According to the present invention there is provided an electrical connector assembly, which comprises a plug connector. This plug connector comprises a connector housing having a flexible leg (i.e. one or more) with a primary locking device provided thereon. The primary locking device is adapted to provide a primary locking function when the plug connector is mated with a corresponding counter connector. The primary locking device is provided such that when the flexible leg of the connector housing is flexed, the primary locking function can be disengaged.
The plug connector further comprises a secondary locking device which is arranged moveable relative to the connector housing between an open position and a closed position. In the open position, it allows a mating of the plug connector with a counter connector and in the closed position it provides for an additional (secondary) locking between plug connector and counter connector. To this end, the secondary locking device comprises a flexible arm and at least one jamming portion. The jamming portion can be part of the flexible arm of the secondary locking device. Preferably, however, the jamming portion is an element which is separate from the flexible arm. This is advantageous, since it allows designing the jamming portion with a high rigidity and the flexible arm with a low rigidity, i.e. increased flexibility.
The flexible leg of the connector housing and the flexible arm of the secondary locking device are adapted to be in blocking contact when the flexible arm of the secondary locking device is not flexed. In other words: in the idle, not stressed or engaged configuration of the flexible arm the secondary locking device cannot be moved in the blocked direction, which preferably is the mating direction. This blocking contact inhibits in particular movement of the secondary locking device from the open position into the closed position. In other words, the flexible arm of the secondary locking device needs to be flexed in order to move the secondary locking device from the open position into the closed position. This has the advantage that an operator can push the plug connector into the mated position via the secondary locking device, e.g. by applying pressure onto the secondary locking device itself. Thereby, a so-called inertia locking functionality can be achieved.
Further on, the flexible arm of the secondary locking device is adapted to be flexed when the plug connector is mated with the corresponding counter connector. Accordingly, when the plug connector is mated with the counter connector, the flexible arm is flexed such that the secondary locking device can be moved into the closed position. Preferably, the arm is automatically flexed due to e.g. a (direct or indirect) contact with a portion of the counter connector. This is advantageous, since upon full mating, the secondary locking device is thus automatically released and can be pushed in its locked position.
When the secondary locking device is in the closed position, the jamming portion of the secondary locking device is adapted to prevent a flexing of the flexible leg of the connector housing. In other words, the primary locking function of the flexible leg of the connector housing cannot be disengaged when the secondary locking device is in the closed position, because the jamming portion prevents a flexing of the flexible leg which could otherwise disengaged the primary locking function. Thereby, a second locking is provided to the connector system.
Hence, the design of the electrical connector assembly according to the present invention allows for a straightforward mating process. Since the secondary locking device is released by pushing it in mating direction, the secondary locking device can be automatically closed in one single work step when mating the plug connector with the counter connector. The inertia involved in the mating process, when an operator pushes the plug connector via the secondary locking device with considerable force, has the effect that the secondary locking device is automatically closed by the operator, when the applied force is sufficient for mating. This particularity is also denoted as “inertia locking”. The interaction of the secondary locking device with the connector housing thereby provides in addition a connector position assurance (CPA) functionality, allowing for a direct verification of a successful and complete mating.
The term “counter connector” used herein denotes any kind of connector adapted to connect to the plug connector. Furthermore, the terms “flexible leg” and “flexible arm” used herein are not limiting to a particular appearance or structure, however, both elements should not be stiff, i.e. rigid. For example, the flexible leg can be present in form of a plate-like element, while the flexible arm can be in the form of a ring-like structure instead. Preferably, the flexible leg and the flexible arm are of a rod-like or bar-like form, extending parallel to the mating direction.
As mentioned above, preferably, the direction of movement of the secondary locking device from the open position to the closed position is the same or approximately the same as the mating direction of the plug connector to the corresponding counter connector. Further preferred, the plug connector can be fully coupled to the corresponding counter connector by means of inertia locking. The skilled person understands that inertia locking implies that the whole coupling procedure is performed in one step, and the operator cannot stop at an intermediate coupling state. In other words, when starting the coupling procedure and overcoming a first barrier with a certain force, the coupling procedure is continued due to inertia until the plug connector is fully coupled to the corresponding counter connector. The term “fully coupled” thereby means that the plug connector is mated with the corresponding counter connector and the secondary locking device is in the closed position, thereby providing CPA functionality. Accordingly, due to the inventive design, it is possible to mate and unmate plug connector and corresponding counter connector in a direct and straightforward manner, requiring only a single action of the operator.
In a further preferred embodiment, the flexible arm of the secondary locking device comprises a T-shaped or L-shaped portion and the flexible leg of the connector housing comprises at least one projection. Preferably, when the plug connector is not mated with the corresponding counter connector, any forces acting in mating direction onto the secondary locking devices are transferred in longitudinal direction along the flexible arm, which is not flexed, onto the connector housing via the blocking contact between the T- or L-shaped portion and the projection. Accordingly, the interaction between the T-or L-shaped portion and the projection of the connector housing inhibits the movement of the secondary locking device from the open position into the closed position when the plug connector is not mated with the corresponding counter connector. Since the forces are transferred in longitudinal direction along the flexible arm, the flexible arm can withstand relatively high forces without being deformed or breaking.
In a further preferred embodiment, the secondary locking device comprises a release portion which is adapted to flex the flexible leg of the connector housing when a secondary locking device is moved from the closed position to the open position. Due to this flexing of the flexible leg, the primary locking function is disengaged and the plug connector can be unmated and removed from the corresponding counter connector.
In a further preferred embodiment, the connector housing comprises guiding means which guide the movement of the secondary locking device between the open and closed position. Preferably, the guiding means comprises a recess such that the secondary locking device can be rotated at least partially around an axis perpendicular to the mating direction. Due to this rotation, the secondary locking device interacts with the flexible leg of the connector housing such that the flexible leg is flexed and the primary locking function is disengaged. Accordingly, by rotating the secondary locking device, an operator can disengaged the primary locking function and unmate the plug connector from the corresponding counter connector with minimal effort.
The present invention will now be described, by way of example with reference to the accompanying drawings, in which:
It is therefore an object of the present invention to provide an electrical connector assembly which allows for a fast and secure mating of a plug connector with a counter connector. It is an additional object of the present invention to provide an electrical connector assembly which allows for an easy unmating procedure without increasing the risk of an unwanted release of the connector from the counter connector.
The flexible arm 21 features a T-shaped portion 22a, 22b with lateral extensions away from the flexible arm 21. Alternatively, the flexible arm 21 could also be provided with an L-shaped portion, however, the T-shape allows due to its symmetric design a more homogenous transfer of forces. Further on, the secondary locking device 20 comprises two jamming portions, of which only one jamming portion 24b is visible in
The secondary locking device 20 is provided with a relatively large actuating surface 29, allowing for a simple operation. Further on, the secondary locking device 20 features an actuating portion 28, which allows for inserting for example a screw driver and moving the secondary locking device 20 therewith.
As can further be seen in
In the configuration of
In a further preferred embodiment, as illustrated in
The depth of the recess 18b, which can receive the secondary locking device 20 at least partially, is in the range of 0.1 to 2.5 millimeters (mm), preferably in the range of 0.3 to 2.0 mm, more preferably in the range of 0.3 to 1.5 mm and most preferred in the range of 0.4 to 0.6 mm. With reference to
While this invention has been described in terms of the preferred embodiments thereof, it is not intended to be so limited, but rather only to the extent set forth in the claims that follow. Moreover, the use of the terms first, second, etc. does not denote any order of importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Number | Date | Country | Kind |
---|---|---|---|
14190516.6 | Oct 2014 | EP | regional |