Electrical connectors are useful for providing a connection point for telecommunications systems. For example, RJ-type connectors can be provided as wall sockets wherein electronic data cables are terminated and mating electrical plugs can be inserted into the sockets. Frequently, this termination process occurs in the field and at the actual location where the cables to be attached to the connectors are being installed. In such instances, it is often necessary to provide a grounding connection between the cable and its attached connector.
A connector assembly is disclosed. Connector assemblies including a grounding component are disclosed. The disclosed connector assemblies provide for a compact cable clamp/shield connection method that can accommodate a large range of cable sizes. For example, the disclosed clamp can accommodate cables ranging from 4.6 to 9.0 mm. Another feature of the disclosed assemblies is that all parts of the grounding features are inboard of the sides of the connector assembly or jack such that no protrusions exist. As the connector assemblies or jacks are to be used in high density applications, where in some cases they are mounted side by side and or back to back, any protrusions from a clamp outside the connector assembly bodies would prevent this configuration.
In one example, a connector assembly is disclosed including a connector part defining a front housing having a jack cavity and a cable manager part having a rear housing and a grounding part. The rear housing defines a central aperture through which a cable having an exposed conductive element can extend. The grounding part secures the rear housing to the front housing and provides grounding contact between the cable conductive element and the connector part. In one example, the cable manager part includes a lacing fixture part securing individual wires of the cable terminated to the connector part that is secured between the grounding part and the front housing.
A method for assembling a connector assembly is also disclosed that includes the steps of: providing a connector part defining a front housing having a jack cavity; providing a cable manager part including a rear housing and a grounding part, the grounding part being for providing a grounding connection between a sheath of an inserted cable and the connector part; securing the grounding part to the rear housing; and securing the grounding part to the front housing such that the front housing is secured to the rear housing.
In one example, a connector assembly is disclosed including a connector part defining a front housing having a jack cavity and a cable manager part having a rear housing and a grounding arrangement. The rear housing defines a central aperture through which a cable having an exposed conductive element can extend. The grounding arrangement is secured to the end wall of the rear housing and includes a plurality of deflectable flange members extending across the central aperture. The flange members are arranged to provide a spring force against the cable and grounding contact between the cable conductive element and the connector part.
A method for assembling a connector assembly is also disclosed that includes the steps of: providing a connector part defining a front housing having a jack cavity; providing a cable manager part including a rear housing and a grounding arrangement including a plurality of separate grounding members, the grounding arrangement being for providing a grounding connection between a sheath of an inserted cable and the connector part; securing each of the grounding members to an end wall the rear housing; and securing the front housing to the rear housing.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures, which are not necessarily drawn to scale, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
A telecommunications connector 10 for grounded connection with a cable 4 having a conductive element 5 and a plurality of wires 6 is shown. One example of a suitable cable 4 is shown at
As shown, the telecommunications connector 10 has a connector part 12 that mates to a cable manager part 20, each of which includes further subassemblies. As shown, the connector part 12 includes a jack cavity 14 for receiving a corresponding plug (not shown). A cover assembly 100 having a rotatable dust cover 90 is shown as providing selective access to the jack cavity 14, as discussed in more detail later. The connector part 12 can include a plurality of electrical contact members or conductors 16 for which electrical connection to the wires 6 will be made through a termination and connection process. As shown, the connector part 12 is configured with a front housing 18 having conductive sidewalls 18a (18a1, 18a2) which are formed from a conductive material, such as a metal material. In one aspect, one or more of the sidewalls 18a can define a respective recess portion 18b. As shown, two recess portions 18b (18b1, 18b2) are provided. The recess portions 18b receive and connect to portions of the connector part 20, such that conductive contact is established between the cable manager part 20 and the sidewalls 18a of the connector part front housing 18. Accordingly, the connector 10 is grounded to the cable conductive element 5 via the cable manager part 20 and the sidewalls 18a of the connector part 12.
In one aspect, the connector part front housing 18 is provided cutting edges 18c which are designed to cut the wires 6 of the cable 4 during the termination process. One example of a suitable termination process and connector part is shown and described in Spain patent application P201530417, entitled Connector Assembly with Grounding Spring and filed on 27 Mar. 2015, the entirety of which is incorporated by reference herein. Another example of a suitable termination process and connector part is shown and described in Spain patent application P201531199, entitled Connector Assembly with Grounding Spring Clamp and filed on 13 Aug. 2015, the entirety of which is incorporated by reference herein.
In one aspect, the cable manager part 20 can be further provided with a lacing fixture 30, a rear housing 40, and a grounding part 50. As configured, the grounding part 50 latches and secures the connector part front housing 18 to the rear housing part 40 such that the lacing fixture is clamped therebetween.
The grounding part 50 is shown in isolation at
The grounding part 50 can also be provided with sidewalls 52a, 52b, 52c, 52d, and with arm extensions 52e, 52f, each of which extends from the end wall 50a. As shown, the sidewalls 52a, 52b, 52c, 52d extend generally orthogonally from the end wall 50a while the arm extensions 52e, 52f extend at a slight oblique angle a3 to facilitate insertion of the grounding part 50 into the rear housing 40. The sidewalls 52a, 52b are respectively provided with bent portions or tabs 54a, 54b and 54c, 54d that serve as latches that engage with corresponding recess portions 44a, 44b and 44c, 44d of the rear housing 40. The extension arms 52e, 52f are provided with bent portions or tabs 54e, 54f that also engage with recess portions 44e, 44f of the rear housing 40. The extension arms 52e, 52f are further provided with bent portions or tabs 54g, 54h and with orthogonal flange portions 54i, 54j. The tabs 54g, 54h engage with recess portions 18d, 18e of the front housing 18. The flange portions 54i, 54j extend orthogonally into corresponding slots or recesses 44h, 44g in the rear housing part 40 and into slots or recesses 18f, 18g in the front housing 18 so that when an attempt is made to separate the front housing 18 from the rear housing 40, there is a shear effect acting on the flange 54i, 54j. Thus, the flanges 54i, 54j provides increased retention force, since any removal force would be applied against the flanges 54i, 54j in a shear force condition. The angled tabs or latches 54g, 54h act as a means of deflection so that the locking flanges 54i, 54j are deflected to allow for the wall of the rear housing part 40 to run past before locking into the slots 18d, 18e.
The rear housing 40 is shown in isolation at
The rear housing 40 is also shown as including projecting sidewalls 42e, 42f which respectively extend from sidewalls 42a, 42b. In one aspect, the connector part 12 and the cable manager part sidewalls 42e, 42f may be configured in a complementary manner, so that the connector part 12 is able to engage with the cable manager part 20 only in one orientation. For example, the recess portion 18b1 on one side of the front housing 18 may be configured with a different size and/or shape than the recess portion 18b2 on the opposite side of the front housing 18. As can be seen at
Once the grounding part 50 is received and secured to the rear housing 40, the lacing fixture part 30 can be received by the rear housing 40. As shown, the lacing fixture part 30 includes a lacing fixture or structure 32, a pair of sidewalls 34a, 34b, and a perimeter wall structure 36. The lacing fixture 32 and perimeter wall structure 36 define a central aperture 30a that, once the lacing fixture part 30 is installed, is coaxially aligned with central apertures 40b and 50b. The sidewalls 34a, 34b and the perimeter wall structure 36 each extend from the lacing structure 32. The lacing structure 32 functions to place the wires 6 in the appropriate orientation for termination. An example lacing structure 32 suitable for use with the lacing fixture part 50 disclosed herein can be found in Spain patent application P201530372 entitled Connector with Separable Lacing Fixture and filed on 20 Mar. 2015, the entirety of which is incorporated by reference herein. As can be most easily seen at
The assembled cable manager part 20 with the lacing fixture part 30 and grounding part 50 mounted to the rear housing 40 can be seen at
With reference to
In one aspect, the disclosed cable manager part 20 can accommodate a variety of differently sized cables 4. For example, cables 4 ranging between 4.6 millimeters to 9 millimeters in diameter can be accepted and grounded by the same cable manager part. Additionally, no active steps are required on the part of the installer to ground the cable to the connector assembly 10 once the cable 4 is properly stripped and inserted into the cable manager part. This is in contrast to other designs where a clamp must be actively opened or closed by the installer during insertion.
With reference to the exploded view in
Referring to
As most easily seen at
In one aspect, the first portion 72 extends to a free end 72a and includes a pair of locking rib structures 78, wherein each of the locking ribs includes a first rib 78a and a spaced apart second rib 78b. The locking rib structures 78 are for engaging with the connector panel. Once installed, the first ribs 78a engage a front side of the connector panel while the second ribs 78b engage a back side of the connector panel such that the connector assembly 10 is locked in place into the opening of the connector panel. An example connector panel and a latch member with overlapping features with latch member 70 is shown and described in PCT Publication WO 2016/156644, the entirety of which is incorporated by reference herein.
In another aspect, the second portion 74 includes a retention structure 80. The retention structure 80 is for providing a secure connection between the latch member 70 and the front housing part 18 of the connector assembly 10. As shown, the retention structure 80 includes a pair of tabs 82 extending generally orthogonally from the latch member second portion 74. In one aspect, the tabs 82 are shaped to fit within the recess regions 18k defined in the front housing part 18 (i.e. the profiles of the tabs 82 and recessed regions 18k match or the profile of the tabs 82 is smaller than that of the recessed regions 18k). The recess regions 18k are generally of a depth that matches a thickness of the tabs 82. Accordingly, once the latch member 80 is installed onto the front housing part 18, a flush configuration results in which the tabs 82 do not extend past the sidewall surfaces 18a1, 18a2 of the housing part 18. In one aspect, the tabs 82 define an open region 84 for receiving the latching protrusion 18t on the front housing part 18. This arrangement facilitates a snap-fit type of connection between the latch member 70 and the front housing part 18. As with other similar types of connections described herein, the latch member 70 could be provided with protrusions similar to protrusions 18t while the front housing part 18 could be provided with recesses similar to open regions 84.
Referring to
In one aspect, the cover assembly 100 includes a pair of female hinge members 108 extending from the end wall 104. The female hinge members 108 receive a male hinge member 96 on a cover portion 90 of the cover assembly 100 such that the cover portion 90 can rotate between open and closed positions. In the open position, the cover portion 90 provides access to the jack cavity 14. In the closed position, the cover portion 90 acts as a dust cover for the jack cavity 14. As shown, the cover portion 90 includes a handle 92 for aiding an operator to digitally manipulate the position of the cover portion 90. The cover portion 90 is also shown as having a pair of protrusions 94 on the opposite side from the handle 92. The protrusions 94 engage interior portions of the jack cavity 14 in a frictional manner to aid in retaining the cover portion 90 in the closed position.
Referring to
An alternative configuration for a connector assembly 110 including a connector part 112, a cable manager part 120, and grounding arrangement 150 is illustrated at
The grounding arrangement 150 is shown in isolation at
In one aspect, the grounding arrangement 150 can be formed from a metal material, such as stainless steel or a copper alloy. Also, each of the grounding members 152 can be formed from an initially flat sheet stock which can be cut and then bent into the shape shown in the drawings. In an alternative embodiment, the grounding arrangement 150 can be integrally formed with interconnected grounding members 152 rather than by separate grounding members 152, as shown in the drawings.
As most easily seen at
The rear housing 140 is also shown as including projecting sidewalls 142e, 142f which respectively extend from sidewalls 142a, 142b. In one aspect, the connector part 112 and the cable manager part sidewalls 142e, 142f may be configured in a complementary manner, so that the connector part 112 is able to engage with the cable manager part 120 only in one orientation. For example, the recess portion 118b1 on one side of the front housing 118 may be configured with a different size and/or shape than the recess portion 118b2 on the opposite side of the front housing 118. As can be seen at
The assembled cable manager part 120 with the grounding arrangement 150 mounted to the rear housing 140 can be seen at
Referring to
In one aspect, the disclosed cable manager part 120 can accept a cable 4 having a variety of oblique entry angles. Additionally, no active steps are required on the part of the installer to ground the cable to the connector assembly 110 once the cable 4 is properly stripped and inserted into the cable manager part 120. This is in contrast to other designs where a clamp must be actively opened or closed by the installer during insertion. Many materials can be used for the components of the disclosed connector assembly 10.
Many materials can be used for the components of the disclosed connector assembly 10. For example, grounding part 50 can be formed from a metal material, such as plated copper alloy, stainless steel, and/or zinc die-casting.
The various embodiments described above are provided by way of illustration only and should not he construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the disclosure.
4 cable
5 conductive element/sheath
6 wires or filaments
10 connector assembly
12 connector part
14 jack cavity
16 electrical conductors
18 front housing
18
a conductive sidewalls (18a1, 18a2)
18
b recess portions (18b1, 18b2)
18
c cutting edges
18
d recess
18
e recess
18
f recess/slot
18
g recess/slot
18
i recess
18
j recess
18
k recess region
18
m sidewall
18
n latching protrusion
18
p perimeter wall
18
q raised structure
18
r raised structure
18
s raised structure
18
t latch recess
20 cable manager part
30 lacing structure part
30
a central aperture
32 lacing structure
32
a removable portion of lacing fixture
32
b removable portion of lacing fixture
32
c removable portion of lacing fixture
34
a sidewall
34
b sidewall
36 perimeter wall structure
36
a recess
40 rear housing
40
a end wall
40
b central aperture
42
a sidewall
42
b sidewall
42
c sidewall
42
d sidewall
42
e projecting sidewall
42
f projecting sidewall
44
a recess
44
b recess
44
c recess
44
d recess
44
e recess
44
f recess
44
g recess/slot
44
h recess/slot
44
i protrusion
44
j protrusion
50 grounding part
50
a end wall
50
b aperture
50
c flange members
50
d main portion
50
e base end
50
f tip portion
52
a sidewall
52
b sidewall
52
c sidewall
52
d sidewall
52
e extension arm
52
f extension arm
54
a tab/latch
54
a tab/latch
54
b tab/latch
54
c tab/latch
54
d tab/latch
54
e tab/latch
54
f tab/latch
54
g tab/latch
54
h tab/latch
54
i flange portion
54
j flange portion
60 gap
70 latch member
72 first portion
72
a free end
74 second portion
76 third portion
78 locking rib structure
78
a first rib
78
b second rib
80 retention structure
82 tabs
84 open region
90 cover portion
92 handle
94 protrusions
96 male hinge member
100 cover assembly
102 perimeter wall
104 end wall
104
a aperture
106 extension member
106
a latch member
108 female hinge members
100′ cap
102′ perimeter wall
104′ end wall
104
a′ aperture
106′ extension member
106
a′ latch member
108′ recess
110 connector assembly
112 connector part
114 jack cavity
115 dust cover
116 electrical conductors
118 front housing
118
a conductive sidewalls (18a1, 18a2)
118
b recess portions (18b1, 18b2)
118
c cutting edges
120 cable manager part
140 rear housing
140
a end wall
140
b central aperture
142
a sidewall
142
b sidewall
142
c sidewall
142
d sidewall
142
e projecting sidewall
142
f projecting sidewall
144
a protrusion
144
b protrusion
150 grounding arrangement
150
a central opening
152 grounding member
154 mounting member
154
a base portion
154
b aperture
156 sidewall member
156
a first end
156
b second end
158 flange member
158
a base end
158
b second end
D1 insertion direction
X longitudinal axis
This application is a Continuation of U.S. patent application Ser. No. 16/326,055, filed on Feb. 15, 2019, which is a National Stage Application of PCT/US2017/045539, filed on Aug. 4, 2017, which claims the benefit of U.S. Patent Application Ser. No. 62/375,269, filed on Aug. 15, 2016, and claims the benefit of U.S. Patent Application Ser. No. 62/375,260, filed on Aug. 15, 2016, and claims the benefit of U.S. Patent Application Ser. No. 62/521,952, filed on Jun. 19, 2017, the disclosures of which are incorporated herein by reference in their entireties. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Number | Date | Country | |
---|---|---|---|
62375269 | Aug 2016 | US | |
62375260 | Aug 2016 | US | |
62521952 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16326055 | Feb 2019 | US |
Child | 17018690 | US |